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Abstract. In this paper, we proposed a weighted least square estimator based method to estimate the
shape parameter of the Frechet distribution. We show the performance of the proposed estimator in a
simulation study, it is found that the considered weighted estimation method shows better performance
than the maximum likelihood estimation. Maximum product of spacing estimation and least-squares in
terms of bias and root mean square error for most of the considered sample sizes. In addition, a real
example from Danish data is provided to demonstrate the performance of the considered method.
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Introduction
In many theoretical concepts, the parametric estimating distribution methods have received
great interest, among them are: Maximum likelihood estimation (MLE) method which has good
theoretical properties for large sample sizes and is often preferred. On the other hand, the use
of regression depends on a probability plot to estimate the parameters of statistical distributions
because the procedure for its implementation is simple in cases of complete and censoring data.
Where it represents the linear regression model, and its dependent variable is the nonparametric
estimate for the value of the distribution function at the ranked sample, is obtained. From it,
the estimates of the least squares of the parameters of the resulting regression model become the
estimates of the parameters of the studied statistical distribution.

Least squares regression method (LS) based on the relationship between the empirical cumula-
tive distribution function (cdf) and the order statistics are frequently used to estimate parameters
of distributions. The weighted least squares method (WLS) is applied for parameter estimation,
this method is comparatively concise and easy to perceive. In the literature, WLS estimation can
be a better alternative that is superior to the existing methods than: [?, 5, 13, 17]. [15] studied
the LS method, ridge regression and maximum product of spacing methods (MPS) to estimate
parameters for the Pareto distribution, while [17] considered the Laplace distributed errors [11]
and Box-Cox regression to stabilize variance. [13] considers the LSE and WLSE for the Pareto
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distribution. [17] considers regression procedure for the parameters of the three-parameter gener-
alized Pareto distribution and applies the WLSE with the Box-Cox procedure. [?] applied WLS
rank regression to estimate of the parameters of the Weibull, the exponential and the Gumbel
distributions, and the results showed that the WLS estimator outperform the usual LS estima-
tor, especially in small samples. Additionally, some research has been conducted on the Frechet
distribution where [2] studied the performance of three different estimation methods of scale
parameter LS, WLS and MLE, for two parameters Frechet distribution, and the results of the
Monte Carlo simulation were show that the MLE method was the best as compared to LS and
WLS method in terms of bias as well as mean square error.

In this paper, we propose a weighted least squares regression from introduce a new estimator
of the cumulative distribution function for heavy tailed for the shape parameter of the Frechet
distribution. The weights are based on the idea of calculating a derive approximate weights
to stabilize the variances ( [?]). Thus, the weights are of a simple form and independent of
the parameter of the distribution. Then, the proposed WLS is then applied to a Monte Carlo
simulation where in most cases the results give better performance than the usual LS estimator,
we also get approximate results for the MLE and MPSE estimators. Next, an applied illustrative
example from Danish data.

The rest of the paper is organized as follows, we define our estimators of the LS method
and the WLS method in Section 1. In Section 2 we perform a simulation study to illustrate the
performance of our estimator and an application with real data of Danish fire insurance claims.
Concluding notes are relegated to the Section 2.3.

1. Methodology and main results
Extreme value models play an important role in statistic. The generalized extreme value

(GEV) distribution [9] and its sub-models are widely used in application involving extreme
events. We consider the one-parameter Frechet distribution. The probability density function
with parameter γ > 0 is,

f(x; γ) = γx−(γ+1) exp(−x−γ) for x, γ > 0

the cdf is given by :
F (x; γ) = exp(−x−γ). (1)

In this section, we describe the methods of estimation for the one-parameter Frechet distribution.

1.1. Least squares method
The principles of LSE are independently discovered by [1,6,12].The distribution function can

be transformed to a linear regression model, if it can be written as an explicit function.
After algebraic manipulation, Equation 1 can be linearized as follows :

− log(− log(F (x)) = γ log(x).

Suppose that random variables x(1) 6 x(2) 6 . . . 6 x(n) be the order statistics of x1, x2, . . . , xn.
are independent and identically distributed from the Frechet distribution, the regression model
is rewritten as:

− log(− log(F (x(i); γ))) = γ log(x(i)). (2)

Comparing equation 2 with Yi = γXi, we get Yi = − log(− log(F (x(i); γ))) and Xi = log(x(i)),
the regression model with error term occurs as :

Y(i) = γx(i) + ε(i). (3)
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On the other hand, the error term of the model given in equation 3 is not identically distributed
as mentioned model have no equal variance. This situation may adversely affect the LSE. In
such cases, alternative estimation approaches to stabilize variances should be used.

In estimation, the sum of the squares of the errors, which is defined below, should be mini-
mized

min
γ

n∑
i=1

(Yi − γ log(x(i)))
2; with Yi = − log(− log(F (x(i); γ))). (4)

In [3], we use in this study the mean rank estimator to estimate the values of the cumulative
distribution function F (x),

F̂ (x(i)) =
i

n+ 1

where i denotes the ith smallest value of x(1), x(2), . . . , x(n).
Therefore, the estimate γ̂ of the parameter γ is given by differentiating equation 4 partially

γ and equaling to zero, we get LS estimate is :

γ̂LS =

n∑
i=1

− log(− log F̂ (x(i))) log(x(i))

n∑
i=1

(
log(x(i))

)2 .

1.2. Weighted least squares method

For estimating parameter of the Frechet distribution, the order statistics x(1) 6 x(2) 6 . . . 6 x(n)

denotes a sample of size n from a Frechet distribution F , so that the regression model based on
equation :

Y
(i)

= γX
(i)
, (5)

called regression of Y on X by [16], knowing that the order statistics x(1) 6 x(2) 6 . . . 6 x(n) do
not have constant variance, nor do the log transformed order statistics X, so that the regression
model 5 is non-homogeneous.

Equation 2 with error term yield the following equation and replacing F (x(i)) by its estimate,
called F̂i, we obtain the equation

− log(− log(F̂ (x(i))) = γ log(x(i)) + εi. (6)

To estimate γ̂ of the regression parameter γ, than the regression model can be expression to
minimize the function

min
γ

n∑
i=1

wi

[
Y(i) − γ log(x(i))

]2
,

where wi is the weight factor i = 1, . . . , n.
In this paper, we derive approximate weights to stabilize the variances proposed by [?] defined

by the following formula

V ar(Λ(x(i))) ≈
mi(1−mi)

(n+ 2)

[
dΛ(F (x(i)))

dF (x(i))

]2
, (7)

in order to calculate weights using large sample properties of the empirical distribution function
or order statistics, and the weights for least-squares derivation from large sample variances, we
use the inverse of the approximate variance of a scalar function Λ of a derived order statistic, to
stabilize the variance in order to perform the WLS estimation method.
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Furthermore, if Λ(x(i))is of the form as Λ(x(i)) = Λ(F (x(i))), we calculate the approximate
variance of − log(− log(F (x(i); γ))) = γ log(x(i)) using the formula 7 :

V ar(− log(− log(F (x(i))))

≈ mi(1−mi)

(n+ 2)(f(x(i)))2

[
d
[
− log(− log(F (x(i); γ)))

]
d
(
x(i)

) ]2
x(i)=xi

≈ mi(1−mi)

(n+ 2)

1

m2
i

; with mi =
i

n+ 1

≈
i

n+1 (1−
i

n+1 )

(n+ 2)

1(
i

n+1

)2
≈ i

(n+ 1− i)2
.

Therefore, we get the weights are independent of the parameter of the considered distribution .
In addition, the linear regression model given in 5, The weighted least-squares regression

equation is solved by letting

Yi = Y t = (− log(− log(F̂1)), . . . ,− log(− log(F̂n)),
Xi = Xt = (log(x(1)), . . . , log(x(n))) and
w = diag (w1, w2, . . . , wn) , wi =

(n+1−i)2

i , i = 1, . . . , n

which is solved by
γ̂WLS = (XtwX)−1XtwY .

Where γ̂WLS is the vector of the WLS estimate of γ, then it follows that :

γ̂WLS :=

n∑
i=1

−wi log(x(i)) log(− log F̂i)

n∑
i=1

wi(log(x(i)))2
, wi ≈ 1/V ar(− log(− log(F (x(i))))).

In Tab. 1, we will show values γ̂
WLS

by changing values of γ = (1.67, 1. 11, 0.5) and sample size
n = (10; 20; 30; 50; 100; 200; 500; 1000; 2000).

2. Simulation and example

2.1. Performance of the estimator
To compare the performance of our proposed estimator γ̂

WLS
against the least square estima-

tor γ̂
LSE

, the maximum likelihood estimator γ̂
MLE

and Maximum product of spacing estimation
γ̂

MPSE
, we made some simulation studies. A common approach to select the best method is the

Monte Carlo simulation by using appropriate criteria: bias and mean squared error MSE [10].
In this section, the considered WLS is compared with the MLE, MPSE and LSE, we propose
a Monte Carlo study of 10000 randomly generated samples, for each sample sizes ranging from
n = 10, 20, 30, 50, 100, 200, 500, 1000 to 2000 for Frechet distribution and the shape parameters
are considered as γ = (1.67; 1.11; 0.5). The efficiency of the methods is based on an com-
parison between the root mean square error (RMSE) and Bias. The Bias of an estimator is
Bias(γ̂) = E(γ̂) − γ. The RMSE is defined as root of the sum of the variance and the squared
bias of an estimator.
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Table 1. The estimation of γ̂ by different estimators at true value γ = (1/0.6; 1/0.9; 0.5) (note:
the value of each entry is mean, and results are re-scaled by the factor 0.00001)

n Methods γ = 1.67 γ = 1.11 γ = 0.5

10

MLE
MPSE
LSE
WLS

1.32995
1.30107
2.49297
2.06358

0.95437
1.89420
1.61866
1.48917

0.45015
0.41260
0.49807
0.47880

20

MLE
MPSE
LSE
WLS

1.49870
1.46761
2.09857
2.04806

0.99107
0.95218
1.66033
1.34121

0.52681
0.49972
0.70631
0.68271

30

MLE
MPSE
LSE
WLS

1.60355
1.54872
2.16820
2.06776

1.07210
1.01028
1.35582
1.28703

0.56824
0.49935
0.70790
0.60878

50

MLE
MPSE
LSE
WLS

1.44972
1.42337
1.48879
1.44812

1.05178
1.01293
1.37017
1.04935

0.47361
0.44725
0.47361
0.45039

100

MLE
MPSE
LSE
WLS

1.52108
1.41076
1.38191
1.19045

1.04215
1.03052
1.13933
1.09802

0.45006
0.43118
0.47727
0.46916

200

MLE
MPSE
LSE
WLS

1.70824
1.69816
1.82353
1.77158

1.22987
1.21880
1.22692
1.19479

0.53599
0.54960
0.55239
0.53146

500

MLE
MPSE
LSE
WLS

1.65717
1.52088
1.79043
1.66917

1.12576
1.02215
1.13586
1.12096

0.49174
0.47583
0.47122
0.49279

1000

MLE
MPSE
LSE
WLS

1.65780
1.63754
1.73552
1.68209

1.12194
1.08834
1.14054
1.11442

0.49958
0.46457
0.51225
0.51928

2000

MLE
MPSE
LSE
WLS

1.63653
1.60534
1.64144
1.65295

1.08665
1.06778
1.11822
1.11291

0.51535
0.50646
0.52656
0.51404
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From the simulation results presented in Tab. 2 which shows the RMSE and bias values for
MLE, MPSE and LSE estimation and the considered WLS in this study, for selected sample sizes
and considered values of the Frechet parameter.

Table 2. Simulated bias and RMSE when γ = (1.667; 1.111; 0.5), and results are re-scaled by the
factor 0.00001

γ = 1.666 γ = 1.111 γ = 0.5

n Methods Bias RMSE Bias RMSE Bias RMSE

10

MLE
MPSE
LSE
WLS

−0.42880
−0.44991
−0.33831
−0.33348

0.57890
0.55032
0.54721
0.53601

−0.95252
−0.97364
−0.89221
−0.88898

1.03148
1.04259
1.05260
1.05734

−0.42863
−0.43001
−0.40149
−0.40004

0.47367
0.46928
0.46417
0.41580

20

MLE
MPSE
LSE
WLS

−0.32511
−0.33076
0.33339
0.32463

0.28018
0.30029
0.59442
0.20644

−0.21651
−0.22108
0.22226
0.21442

0.58715
0.60739
0.69628
0.50429

−0.09743
−0.09956
0.10002
0.09239

0.18422
0.19070
0.19833
0.18193

30

MLE
MPSE
LSE
WLS

−0.21613
−0.23182
0.25063
0.20260

0.25724
0.30835
0.46406
0.26453

−0.11059
−0.14268
0.16709
0.15507

0.55177
0.57266
0.60937
0.50969

−0.07176
−0.73280
0.07519
0.06978

0.16830
0.18033
0.19922
0.13936

50

MLE
MPSE
LSE
WLS

−0.11182
−0.14393
0.17100
0.10558

0.17517
0.27124
0.33949
0.14598

−0.11782
−0.11813
0.11953
0.10372

0.41691
0.42014
0.42633
0.33065

−0.04952
−0.05096
0.05136
0.04367

0.08261
0.09907
0.10185
0.07379

100

MLE
MPSE
LSE
WLS

−0.09519
−0.09938
0.10359
0.08920

0.12317
0.16086
0.22574
0.11128

−0.05947
−0.06458
0.06906
0.04345

0.32213
0.35150
0.39049
0.28419

−0.03155
−0.03479
0.03696
0.02676

0.04696
0.05707
0.06772
0.03939

200

MLE
MPSE
LSE
WLS

−0.05917
−0.06157
0.06246
0.05417

0.08742
0.10553
0.15187
0.06031

−0.04145
−0.04194
0.04203
0.03611

0.30828
0.33039
0.35125
0.30687

−0.01665
−0.01778
0.01874
0.01525

0.02923
0.03045
0.04556
0.02809

500

MLE
MPSE
LSE
WLS

−0.02649
−0.02988
0.03100
0.02109

0.05554
0.07663
0.09109
0.05095

−0.01999
−0.20984
0.02067
0.01739

0.13703
0.15184
0.17072
0.11530

−0.00744
−0.01032
0.01182
0.00703

0.01966
0.02104
0.02733
0.01838

1000

MLE
MPSE
LSE
WLS

−0.01663
−0.01475
0.01767
0.01599

0.03994
0.05597
0.07299
0.03091

−0.01091
−0.01109
0.01178
0.01066

0.02627
0.03230
0.04199
0.01727

−0.00619
−0.00428
0.00945
0.00480

0.01182
0.01187
0.01189
0.01127

2000

MLE
MPSE
LSE
WLS

−0.00940
−0.01002
0.01027
0.00899

0.02776
0.03387
0.04365
0.01911

−0.00626
−0.00657
0.00685
0.00599

0.01850
0.02521
0.02910
0.01274

−0.00302
−0.00306
0.00308
0.00270

0.00833
0.00945
0.01309
0.00473

2.2. Results and discussion

According to bias criterion:
We evaluate the estimator WLS the proposed in this study in terms of bias criterion, is best

for the small sample size n = 10 and it is the best performer next to the LSE, MLE and MPSE.
For other size n > 10 and in all cases of shape parameters we show that in general the estimator
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WLS is clearly the best estimator in terms of bias next to the MLE, MPSE and LSE. In addition,
bias decreases with increasing sample size and shape parameters cases.

According to the RMSE criterion:
For the sample size n = 10 and for γ = (1.67; 0.5), the proposed WLS shows smaller than RMSE
of the LSE, MPSE and MLE, also for γ = 1.11 the RMSE of MLE it’s smaller than RMSE of
the MPSE, LSE and the WLS.

For n > 10 we show the RMSE of LSE it’s larger than MPSE, MLE and WLS for each shape
parameters cases. Since the RMSE of the WLS is asymptotically the best, it can be seen from
analysis that MLE and MPSE have better performance as the sample size increases the RMSE
decreases in each method and shape parameters cases, thus we conclude that there are accurate
increments of the parameters.

2.3. Illustrative example
As a real application, We take 2167 observations from the Danish data that describe large fire
insurance claims in Denmark from Thursday 3rd January 1980 until Monday 31st December 1990
available in “evir” package of the Rsoftware [8].This data has been used by many value theories
in an important application context.

In this section, we are concerned performance of the proposed estimator in weekly and
monthly maximum losses during the mentioned period. There are 310 weekly maxima and 132
monthly maxima from the given 2167 observations which would provide an excellent example of
the use of extreme as all studies confirm that the Danish data show a heavy tail with an index
between 1 and 2.

This allows us to fit the data to heavy-tailed models with the proposed estimator which meets
the objective of this paper and compare it with new bias-reduced estimator for µ in the case of
infinite second moment, see (Tab. 7, [4]) defined by the following formula

µ̂ := (k/n)(nĉ/k)1/γ̂

(
γ̂

γ̂ − 1
+

d̂ĉ−β̂/γ̂(k/n)β̂/γ̂−1

β̂ − 1

)
+

1

n

n∑
i=k+1

Xn−i+1,n .

Our case study is mostly based on samples from the Frechet distribution 1 with shape parameter
γ = 1.5, we then calculate estimate of shape parameter of the Frechet distribution using the
previously mentioned estimation method in this study, see Tab. 3.

Table 3. Parameter estimate for Frechet distribution of the weekly and monthly maxima of the
Danish fire losses.

Monthly
N γ̂MLE γ̂MPSE γ̂LS γ̂WLS µ̂
132 0.63622 0.67531 0.71649 0.68363 0.466853

Weekly
N γ̂

MLE
γ̂

MPSE
γ̂

LS
γ̂

WLS
µ̂

310 0.67842 0.65912 0.69471 0.67593 0.408663

Conclusion
The WLS method is meant to calculate weights. In this paper, we propose weighted least squares
estimator, based on an easily-calculated propose by [?], is then applied to the estimation of a
heavy tailed for the shape parameter of the Frechet. Considering the results of the Monte Carlo
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simulation, the efficiency of the method is compared based on bias and the RMSE criterion,
where the WLS with the proposed weights in this study can be a good alternative estimation
method for the shape parameter of the Frechet in all sample cases. Considering at the results
in a real application, it is shown that the proposed WLS shows a better performance than other
considered methods.

Moreover, it is also emphasized that the considered estimation methods can be applied to
Burr XII, and other distributions, which have explicit cumulative distribution functions, after
calculating the inverse of the approximate variance them, and estimating the variances in the
weighted least squares estimation.
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Оценка индекса тяжелого хвоста с помощью взвешенной
ранговой регрессии по методу наименьших квадратов

Захия Хемисси
Брахим Брахими

Фатх Бенатиа
Лаборатория прикладной математики

Университет Мохамеда Хидера
Бискра, Алжир

Аннотация. В этой статье мы предложили метод взвешенной оценки методом наименьших квад-
ратов для оценки параметра формы распределения Фреше. Мы показываем производительность
предложенной оценки в имитационном исследовании, установлено, что рассматриваемый метод
взвешенной оценки показывает лучшую производительность, чем оценка максимального правдо-
подобия. Максимальное произведение оценки интервала и метода наименьших квадратов с точки
зрения систематической ошибки и среднеквадратичной ошибки для большинства рассматриваемых
размеров выборки. Кроме того, приведен реальный пример из датских данных, демонстрирующий
работоспособность рассматриваемого метода.

Ключевые слова: Распределение Фреше, взвешенная регрессия наименьших квадратов, регрес-
сия Ранга, моделирование методом Монте-Карло, параметр формы.
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