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Abstract. The rotation algebra Ay is the universal C*-algebra generated by unitary operators U,V
satisfying the commutation relation UV = wVU where w = >, They are rational if § = p/q with
1 < p < ¢—1, othewise irrational. Operators in these algebras relate to the quantum Hall effect [2,26,30],
kicked quantum systems [22,34], and the spectacular solution of the Ten Martini problem [1|. Brabanter
[4] and Yin [38] classified rational rotation C*-algebras up to *-isomorphism. Stacey [31] constructed
their automorphism groups. They used methods known to experts: cocycles, crossed products, Dixmier-
Douady classes, ergodic actions, K-theory, and Morita equivalence. This expository paper defines A;/q
as a C'"-algebra generated by two operators on a Hilbert space and uses linear algebra, Fourier series
and the Gelfand—Naimark—Segal construction [16]| to prove its universality. It then represents it as the
algebra of sections of a matrix algebra bundle over a torus to compute its isomorphism class. The
remarks section relates these concepts to general operator algebra theory. We write for mathematicians
who are not C*-algebra experts.
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1. Uniqueness of universal rational rotation C*-algebras

N, Z, Q, R, C and T C C denote the sets of positive integer, integer, rational, real, complex
and unit circle numbers. For a Hilbert space H let B(H) be the C*-algebra of bounded operators
on H. All homomorphisms are assumed to be continuous. We assume famliarity with the material
in Section 4.

Fix p,q € N with p < ¢ — 1 and ged(p,q) = 1, define o := €2™/9 and w := 0P, and let
€,/q be the set of all C*-algebras generated by a set {U,V} C B(H) satisfying UV = wVU.
Since {U,V} ={V.U}, €(4—p)/q = €(q—p)/q- Mg and the circle subalgebra of L?(T) generated by
(Uf)(z) == 2f(2) and (Vf)(2) := f(wz) belong to €4_p/q- The circle algebra is isomorpic to
the tensor product C(T) ® M,.

Definition 1. A € €,,, generated by {U,V} C B(H) satisfying UV = wVU is called universal
if for every A1 € &,/q generated by {Uy,V1} C B(Hy) satisfying UiVi = wViUy, there exists a
x-homomorphism ¥ : A — A; satisfying ¥(U) = Uy and (V) = V7.

Lemma 1. If A, A; € €/, are both universal, then they are isomorphic.
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Proof. Let U,V,U;,V; be as in Definition 1. There exists *-homomorphisms ¥ : A — A; and
Uyt A o Awith O 0 U(U) = U, Uy 0U(V) =V, ol (Uy) = Uy, ¥oly(V;) = V. Since
{U,V'} generates A, ¥; o ¥ is the identity map on A. Similarly, ¥ o ¥; is the identity map on
Aj. Therefore ¥ is a *-isomorphism of A onto A; and A is *-isomorphic to A;. O

2. Construction of universal rational rotation C*-algebras

Define the Hilbert space H, := L?(R? C?) consisting of Lebesgue measurable v : R? — C?

satisfying [ v*v < oo, equipped with the scalar product < v,w >:= [ w*v. Define P, to be the
R2 R2
subset of continuous a : R? — M, satisfying

a(xr,2) = a(z1 + ¢,22) = a(z1, 29 + q), (21,22) € R? (1)

and regarded as a C*-subalgebra of B(H,) acting by (av)(z) := a(z)v(z), a € Py, v € Hy. The
operator norm of a € P, satisfies

[|all ax, [la(z)]] (2)
Define U,V € P, by
Uy, zo) := e2™™1/90,, V(xy, xq) = 2702/ 1Y, (3)

where Up, Vy € M, are defined by (7), and define A,,/, to be the C*-subalgebra of P, generated
by {U,V}. Choose r € {1,...,q — 1} such that pr =1 mod ¢. Then r is unique, ged(r,q) = 1.
Define o := €2™/9 and w := wP. Then w" = 0.

Theorem 1. If a € A, /, then
a(zy 4+ 1,29) = Vy "alxy, 22)Vy and a(xy,xe 4+ 1) = USa(zy, 29)Uy *. (4)
Conversely, if a € Py satisfies (4), then a € Ap)q.
Proof. (3) and (8) give V-"UV" = oU and U"VU " =cV. If a = U™V™, then
a(zy + 1,20) = 0™a(x1, x2) = Vg "a(z1, 22)Vy; a(z1,xe + 1) = o™a(z1, x2) = Uja(z,x2)Uy "

The first assertion follows since span{U™V™ : m,n € Z} is dense in A, ;,. Conversely, if a € P,
then (1), Lemma 3, and Weierstrass’ approximation theorem implies that there exist unique
c(m,n, j, k) € C with

q—1
a(wy, x) ~ Z Z c(m,n, j, k) e2mimatnz2)/a gk
(m,n)€Z?2 j,k=0

where ~ denotes Fourier series. Then (4) gives c(m,n,j,k)o™ = c(m,n,j k)o’ and

n

c(m,n, j, k)o™ = c(m,n, j, k)o¥. Since 07 = 1, ¢(m,n,j,k) = 0 unless j = m mod gand k = n

mod gq. Define ¢(m,n) := ¢(m,n,m mod ¢,n mod ¢). Then a € A,,, since
an~ Z c(m,n)U™V™.
(m,n)€Z?

Representations p1,p1 : A +— B(H) of a C*-algebra A are unitarily equivalent if there exists
U € U(H) such that pa(a) = Up1(a)U~L, a € A. O
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Theorem 2. If A € &,/ is generated by {U,V} with UV = wVU and p : A — B(H) is an
irreducible representation then:

1. dim H = q so B(H) = My,
2. there exist 21,2y € T such that p = p., ., where p,, .,(UIVF) = 2] KUV,
8. p 2y 18 unitarity equivalent to p., ., iff (21/21)7 = (23/22)7 = 1.

Proof. Boca gives a proof in ([1], p. 5, Lemma 1.8, p. 7, Theorem 1.9). We give a proof based on
Schur’s lemma. Let C C A be the C*-subalgebra generated by {U?, V?}. Since p is irreducible and
p(C) commmutes with p(A), there exists a *-homomorphism v : C — C such that p(c) = y(c)I,
c € C. Choose h € H\{0} and define H; := span{p(U'V¥)h;0 < j, k < q — 1}. Since H;
is closed, p-invariant, H; # {0}, and p is irreducible, H = H;. Since dim H < ¢?, p(V) has
an eigenvector b with eigenvalue A € T and ||b]| = 1. Define 2o := Aw. Choose z; € T so
2] = ~(U?) and define b; := z{p(Uﬁj)b7 1 < j < q. Then p(V)b; = 20w’ ™1b;, j =1,...,¢q, and
p(U)b1 = z1by, and p(U)b; = z1bj_1, 2 < j < ¢. Therefore {b1,...,b;} is a basis for H, and (7)
implies that p(U) = 21Uy, and p(V) = 22V with respect to this basis. This proves assertions 1
and 2. Assertion 3 follows since the set of eigenvalues of p(U) is {z1w’, 0 < j < ¢ — 1}, the set
of eigenvalues of p(V) is {z2w’, 0 < j < q — 1}, and the set of eigenvalues determines unitary
equivalence. O

Theorem 3. A,,, C B(H) is the universal C*-algebra in €, ;.

Proof. Assume that B € €,/,. Then there exists a Hilbert space H; and Uy, V; € B(H;)
with U1V; = wViU; and B is generated by {U;,Vi}. It suffices to construct a continuous
*-homomorphism ¢ : A, /, — B satisfying p(U) = U; and (V') = V1. Define dense *-subalgebras

.Z;/; .= span {U'V*:j ke Z} C A/, B := span {(UIVE: jkeZ}CB,

and a *-homomorphism @ : .//4;; — B by G(UIVk) := UIVF. To extend @ to *-homomorphism
¢ A,/q — B it suffices to show that for every Laurent polynomial of two variables p(u,v) the
following inequality is satisfied ||p(U1, V1)|| < [|p(U, V)|| since p(U1V1) = @(p(U, V')). Then ([13],
Corollary 1.9.11), which follows directly from the Gelfand-Naimark-Segal construction, implies
that there exists an irreducible representation py : B — M, and v € Hy with ||v|| = 1 such that
[lp(U1, V)| = ||p1(p(U1, V1))vl||. Theorem 2 implies that p; (Uy) = 21Uy and p1(Vy) = 22V} for
some z1,22 € T. Let p: A,/ — M, be the irreducible representation defined by Theorem 2 so
p(U) = 21Uy and p(V') = 25Vj. Since py 0 @ = the restriction of p to :4;2, (2) and (3) imply that

[[p(Ur, Vi)I| = llp1(p(Ur, Vi))vl| < [lppU, V)| < [|Ip(U, V)]

which concludes the proof. O

3. Bundle topology and isomorphism classes

Define E; to be the Cartesian product [0,1]? x M, with the identification
(17x27M) = (Ovaa VO_TMVEJT)a T2 € [07 1]7 M e Mq

and
(1,1, M) = (21,0, U MU;"), x1 €[0,1], M € M,
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and define the algebra bundle 7; : E; — T? by
’/Tl(.’El, X9, M) = (627Tm1 s 627riw2), (xl, xo, M) e El.

A map s : T? — E; is called a section if it is continuous and 7; o s = I where I denotes the
identity map on T?. Since for every p € T?, the fiber wfl(p) = My, the set of sections under
pointwise operations is a C*-algebra. The theorems above show that this algebra is isomorphic
to A, /4. Furthermore, since points in T2 correspond to unitary equivalence classes of irreducible
representations, isomorphism of algebras induces homeomorphisms of T2. In order to compute
isomorphism classes of universal rational rotation C'*-algebras it is convenient to use a slightly
different bundle representation of A, /,. Define W € P,

1 0 0 0

0 e2miz/a 0 0
Wz, x2) := )

0 0 " 0

0 0 0 eQTri(qfl)azl/q

and .A; Jq = WA, /qul, which is #-isomorphic to A, ;. Then .AZ’) /g 18 represented as the algebra
of sections of the algebra bundle 75 : Ey +— T? where E, is the Cartesian product T x [0, 1] x M,
with the identification

(21,1, M) = (1,0,G"MG™™), z1 €T, M € M,

and
1 0 0 0 O
01 0 0 O
G(zl) = 0 0 .. 0 0 Uo.
00 0 1 O
00 0 0 =

G" is the clutching function of the bundle. Let G;p, : T — Aut; be the map defined by conjugation
by G. Using the arguments for vector bundles in [18], it can be shown that the isomorphism classe
of A,/ is determined the homotopy class of G, : T+ Aut}. Since 71(Gin) = —1, m1(G},) = —r
which gives:

Theorem 4. A, , is isomorphic to Ay /q: iff ¢' = q and either p’ =p or p’ =q—p.

4. Requisite results

4.1. Hilbert spaces and adjoints

H is a Hilbert space with inner product < -,- >: H x H — C, norm |jv|| := /< v,v >,
and metric d : H x H — [0,00) defined by d(v,w) := ||[v — w||. B(H) is the Banach algebra of
bounded operators on H (continuous linear maps from H to H) with operator norm

|lal[ := sup{|lav]| : v € H, [[v|| =1}

The dual space H* is the set of continuous linear functions L : H — C. For w € H define
L, € H* by Lyv:=<wv,w>, veEH.
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Lemma 2. If L € H* then there exists a unique w € H such that L = L.

Proof. Rudin gives a direct proof (28], Theorem 4.12). If 9B is an orthonormal basis for H and
w:= Y. Lbb, then since for every v € H, v = Y. <w,b> b, it follows that

beB beB
LU:Z <wv,b> Lb= <v, ZLbb> =< v,w>= Lyv.
beB beDB

Lemma 2 ensures the existence of adjoints. For a € B(H) define its adjoint a* € B(H) by
Ly+w := Ly oa, w € H where o denotes composition of functions. Therefore

<av,w>=<wv,a"w>, v,we€ H.

Clearly a** = a, (ab)* = b*a*, and the Cauchy—Schwarz inequality gives

lla*|| = sup{ | <a’v,w>|:v,w e H, ||| = [lw]| =1} =
=sup{| <wv,aw > | : v,w € H, ||| = [[w|| = 1} = |[a]]
and
[la*al| = sup{| < a*av,w > | :v,w € H, ||| = ||w|| =1} = 5
=sup{ | < av,aw > |:v,w € H, |]v|| = ||Jw|| = 1} = [|a]|.

(5) is called the C*-identity. It makes B(H) equipped with the adjoint a C*-algebra. The identity
operator I € B(H) is defined by Iv :=wv for all v € H.

UH) :={U € B(H) : UU* = U*U = I},

the set of unitary operators, is a group under multiplication. A subalgebra A C B(H) is a
C*-algebra if it is closed in the metric space topology on B(H) and a* € A whenever a € A. The
intersection of any nonempty collection of C*-subalegras of B(H) is a C*-algebra. If S C B(H)
the intersection of all C*-subalgebras of B(H) that contain S is the C*-algebra generated by S.

O

4.2. Matrix algebras

For m,n € N, C™*" denotes the set of m by n matrices with complex entries and C" := C"**!.
The adjoint of @ € C™*" is the matrix a* € C"*"™ defined by a} , := @y ;. C" is a Hilbert space
with scalar product < v,w >:= w*v, v,w € C". Clearly

B(C™) = M,

where for a € M,, the adjoint of a as an operator corresponds to the adjoint of a as a matrix.
I,, denotes the n by n identity matrix whose diagonal entries equal 1 and other entries equal 0.

The operator norm of a € M,, is ||a|]| = v/spectral radius a*a where the spectral radius is the
largest moduli of the eigenvalues of a matrix. Thus M,, is a C*-algebra. It is also a Hilbert
space a Hilbert space of dimension n? with inner product

< a,b>:=Trace b*a (6)
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and orthonormal basis e;; := matrix with 1 in row j and column j with all other enties = 0.
Fix p,q € N with p < ¢ — 1 and ged(p, ¢) = 1. Define Uy, Vo € M, by

01 0 O 1 0 O 0
0 : 0 w O 0
Uy :i= ! s Vo = ) (7)
0O 0 1 0 0 0
1 0 0 O 0 0 0 wit

Lemma 3. {(1/\/51)U3V0k :0 < 4,k < g— 1} is an orthonormal basis for M, with the scalar
product defined by (6). Furthermore,

UV, = wVoUp. (8)
Proof. (8) is obvious. The first assertion follows since

< UV, UPVE > Trace VU ™UIVE = Trace UL~ ™VE" = {q ifj=m andk=n,
0 otherwise.

Define the groups of unitary matrices U,, := U(C™) and special unitary matrices S, := {a €
U, : deta = 1}. Clearly Uy and Vj are unitary. Since detUy = detVy = (—1)97!, they are
special unitary iff ¢ is odd. A map ¥ : M, — M, is a homomorphism if it is linear and
satisfies ¥(ab) = (a)y(b) for all a,b € M,, and an automorphism if is also a bijective. An
automorphism 1 is a s-automorpism if ¥ (b*) = ¢¥(b)* for all b € M,,. Aut,, Aut’ denote the
group of all automorpisms, *-automorphisms of M,,. ¥ € Aut,, is called inner if there exists an
invertible a € M,, such that ¢ (b) = aba™! for every b € M,,.

Theorem 5 (Skolem—Noether). Every ¢ € Aut,, is inner.

Proof. The algebra M,, is simple, meaning it has no two-sided ideals othe that itself ( [29], 11.41),
so the result follows from the classic Skolem—Noether theorem. An elementary constructive proof
is given in [32]. |

Theorem 6. If ¢ € Aut} then there exists a € U,, such that 1 (b) = aba* for every b € M,,.

Proof. Every ¢ € Aut? induces an irreducible representation ¢ : M, — B(C") so Theorem 2
implies that there exists a basis {by,...,b,} with respect to which 1(Uy) has the matrix rep-
resentation z1Uy and 9 (Vp) has the representation z3Vy. Since Uf = V' =1, 2] = 2I =1 so
without loss of generality this basis can be chosen to make z; = zo = 1 and then v(a) = aba~*—1
where ae; = b; and {e1,...,e,} is the standard basis for C™. This theorem can also be derived
as a corollary of of Theorem 5. Clearly ¢ (I,) = I,. Theorem 5 implies that there exists an
invertible a € M,, such that (b) = aba~! for all b € M,,. Since v is a *-homomorphism
ab*a=! = (aba=1)* = (a=1)*b*a* hence a*ab* = b*a*a for every b € M, which implies that

a*a = cI, for some ¢ > 0. Replacing a by a/+/c gives the conclusion.

Corollary 1. Let T,, C T be the subgroup of n-th roots of unity. T, I, C S, is isomorphic to
Z/nZ. Aut} is isomorphic to the quotient group S, /T, I,. The fundamental group m (Aut}) is
isomorphic to Z/nZ.

Proof.  Assertion one is obvious. Define ¢ : U, — Aut’ by ((a)(b) := aba*. ¢ is a
x-homomorphism, kernel ( = T I,, and Corollary 1 implies that ¢ is onto. The first homo-
morphism theorem of group theory ([33], 7.2) implies that Aut} is isomoprhic to U, /T I,,. Since
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S, = (T1,)(T,1I,) and T, I,, = S, N (TI,), the second isomorphism theorem of group theory
([33], 7.3) implies that Aut? is isomporphic to S,,/T,I,. S, is simply connected ([17], Proposi-
tion 13.11) hence since T, I,, is discrete S, is the univeral cover of S,,N(T1,) hence the discussion
in ([18], 1.3) implies the last assertion.

4.3. Spectral Decomposition Theorem for Unitary Operators

E € B(H) is called a projection if E* = E and E? = E. Then P : H — PH is orthog-
onal projection. A collection of projections {E, : ¢ € [0,27] is called a spectral family if
E, By, =E,,E, = FE, whenver o < Es.

Let A,P,N € B(H). A is self-adjoint if A* = A. P € B(H) is positive if < Pv,v >> 0
for all v € H. N € B(H) is called normal if AA* = A*A. Clearly self-adjoint and unitary
operators (or transformations) are normal. Furthermore eigenvalues of self-adjoint operators
are real and eigenvalues of unitary operators have modulus 1. If dim H < oo, then H admits
an orthonormal basis of eigenvectors ([29], Theorem 9.33). Therefore every unitary matrix in
M,, can be diagonalized and its diagonal entries have modulus 1. The following result, copied
verbatim from the classic textbook by F.Riesz and B.Sz.-Nagy ([27], p. 281), extends this
diagonalization to unitary operators on arbitrary Hilbert spaces.

Theorem 7. Every unitary transformation U has a spectral decomposition

27
U= / e?dE,,
-0

where { E,} is a spectral family over the segmen 0 < ¢ < 2m. We can require that E,, be continuous
at the point ¢ = 0, that is, Ey = 0; {E,} will then be determined uniquely by U. Moreover, E,
is the limit of a sequence of polynomials in U and U~'.

Proof. The authors of [27] reference 1929 papers by von Neumann [25] and Wintner [37],
1935 papers by Friedricks and Wecken, and a 1932 book by Stone. They observe that the
theorem can be deduced from the one on symmetric transformation ( [27], p. 280) (since
U = A+ iB where A := (U + U*)/2 and B := —i(U — U*)/2 are symmetric) or from
the theorem on trigonometric moments ( [27], Section 53), but they give a direct three page
proof. We sketch their proof. For every trigomometric polynomial p(e’?) = icke“w we as-

—-n

sociate the transformation p(U) := i cU". This gives a *-homomorphism of the algebra of
—-n
trigonometric polynomials (where * means complex conjugation) into the subalgebra of B(H)
generated by U and U* = U~!. Clearly if p(e’?) is real-valued then p(U) is self-adjoint. If
p(e’?) > 0 the Riesz Fejer factorization Lemma ( [27|, Section 53) implies that there ex-
ists a trigonometric polynomial g(e’?) with p(e¥?) = q(e*?)q(e™®) hence p(U) = q(U)q(U)*.
Therefore < p(U)v,v >=< ¢q(U)v,q(U) >>= 0, v € H, hence p(U) is a positive operator.
For 0 < ¢ < 27 let ey be the characteristic function of (0,%] extended to a 27w periodic
function on R. Let p, be a monotonically sequence of positive trigonometric functions with
limy, 00 pu(U)v = Eyv, v € H (py(U) converges to E,, € B(H) in the strong operator topol-
ogy). Ey is a projection since Ej = E, and Ei = Ey, so , and the set {E, : ¢ € [0,2n]
is a spectral family. Since the functions e, are upper semi-continuous limy .y >y Ey = Ey.
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Given € > 0 choose 0 < 9y < ¥ < -+ < ¢, = 27 with max (¢Yr+1 — ¥r) < € and choose
Ok € [Wr—1,¥k], k=1,...,n. Then for ¢ € (Yi_1, V]

=" — "¥F)| <o — oi| <€

n
e — Z g [ewk - 61/)1%1]
k=1

with a similar inequality for ¢ = 0. Since this inequality holds for all ¢ € [0, 27]

n
U - Z e'er (Ewk - E"/)k—l)
k=1

<e€

A subspace H; C H is called proper if Hy; # {0} and Hy; # H. The following is an immediate
consequence of Theorem 7

Corollary 2. If U € U(H) then either U = ~I for some v € T or there exists a projection
operator E : H — H satisfying

1. E is the limit in the strong operator topology on B(H) of polynomials p(U,U~1).

2. EH is a proper closed U-invariant subspace of H.

4.4. Irreducible representations and Schur’s lemma

A representation of a C*-algebra A on a Hilbert space H is a *-homomorphism p : A +— B(H).
A subspace Hy C H is called p-invariant if p(a)H; C H; for every a € A. p is irreducible iff it H
has no closed proper p-invariant subspaces. The following result extends Shur’s lemma for finite
dimensional representations ([29], 11.33) for unitary operators.

Theorem 8 (Schur’s Lemma). If p: A— B(H) is an irreducible representation and U € U(H)
commutes with p(a) for every a € A, then there exists v € T with U = ~I.

Proof. If the conclusion does not hold then Corollary 2 implies that there exists a projection F
satisfying conditions (1) and (2). Condition (1) implies that Up(a) = p(a)U for every a € A.
The EH C H is closed and p-invariant since for every a € A, p(a)EH = Ep(a)H. Condition (2)
asserts that E'H is a proper subspace thus contradicting the hypothesis that p is irreducible, and
concluding the proof.

Corollary 3. If A is an commutative C*-algebra generated by a set of unitary operators and
p: A B(H) is irreducible then dim H = 1 and there exists a x-homomorphism T : A — C with
p(a) =T(a)l for every a € A.

Proof. Follows from from Theorem 8 since if uw € A is unitary the p(u) € U(H) and p(u)
commutes with p(a) for every a € A.

5. Remarks

We relate concepts introduced to explain rational rotation algebras to general C*-algebra
theory, especially two breakthrough results obtained by teams of computer scientists.

Remark 1. Dauns [14] initiated a program to represent C*-algebras by continuous sections over
bundles over their primitive ideal spaces (kernels of irreducible representations equipped with
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the hull-kernel topology). The primitive ideal space of rational rotation algebras is homemorpic
to the torus T2.

Remark 2. Bratteli, Elliot, Evans, and Kishimoto [5] represent fixed point C*-subalgebras of
Ayp/q by algebras of sections of Mg-algebra bundles over the sphere 52, which is the space of

orbits of T2 under the map g + g~ 1.

Remark 3. Elliot and Evans [15] derived the structure of irrational rotation algebras. They
proved that if p/q < 6 < p’/q’, then Ay can be approximated by a C*-subalgebra isomorphic to
C(T)® My & C(T) ® My/. This approximation, combined with the continued fraction expansion
of 0, represents Ay as an inductive limit of these subalgebras.

Remark 4. Williams [36] gives an extensive explanation of crossed product C*-algebras, which
include rotation algebras.

Remark 5. Kadison and Singer [21] formulated a problem about extending pure states. Such an
extension is used in the Gelfand—Naimark—Segal construction which we used to prove Theorem 3.
This problem was shown to be equivalent to numerous problems in functional analysis and signal
processing [6], dynamical systems [23,24], and other fields [3]. Weaver [35] gave a discrepancy—
theoretic formulation that was proved in a seminal paper by three computer scientists: Marcus,
Spielman, and Shrivastava [19].

Remark 6. Courtney [8,9] proved that the class of residually finite dimensional C*-algebras,
those whose structure can be recovered from their finite dimensional representations, coincides
with the class of algebras containing a dense set of elements that attain their norm under a finite
dimensional representation, this set is the full algebra iff every irreducible representation is finite
dimensional (as for rational rotation algebras), and related these concepts to Conne’s embedding
conjecture [7]. Her publications [10-12] cite many references that discuss equivalent formulations
of this conjecture.

Remark 7. In January 2020 five computer scientists: Ji, Natarajan, Vidick, Wright and Yuen
submitted a proof that the Conne’s embedding conjecture is false. As of November 2021 their
paper is still under peer review. However, the editors of the ACM decided, based on the enormous
interest that their paper attracted, to publish it [20].
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Y4eOHUK 110 pamnoHaJbHOMY BpalineHuio C*-AJjredbpbl

V¥aiin M. JIoyTon
Cubupckuii deiepaibHbIl YHUBEPCUTET

Kpacuosipck, Poccuiickas @exeparms

Awnsoranus. Anrebpa spamennii Ag — 310 yHuBepcaibHas C™-ajqrebpa, MOPOXKIEHHAs yHUTAPHBIMEA
oneparopamu U, V, yI0BIETBOPSIOIMMI KOMMYTAIMOHHOMY cootHommennio UV = wVU, tue w = 2™,
Omnu paruonanbsl, ecan 0 = p/q ¢ 1 < p < ¢ — 1, B IpOTUBHOM cilydae MpparoHaabHbl. OnepaTopst
B 9THX ajrebpax CBs3aHbI ¢ KBAHTOBBIM 3dderTom Xosta [2,26, 30|, kBanToBbIME cucTeMamu [22, 34|
n 3 dexrabiM permermem npobiaembr Tena Maprunu [1]. Bpabanrep [4] m Unb [38] xnaccndunmposanm
C”-anreGpbl PAIMOHAIBHOIO BPAIEHUsS] ¢ TOYHOCTBIO 110 *-n3oMopdusma. Creiicu [31] mocrpounna ceon
rpynnsl aBroMopdu3moB. OHE HCIOJIB30BAIM U3BECTHBIE CHEIMAINCTaM METO/IbI: KOIMKJIbI, CKPEIeH-
Hble Ipou3BejieHus, Kiaccol Jlukembe-/yaau, sprojgudeckue neiictBusi, K-Teoprio u 5KBUBaJEHTHOCTH
Moputsl. Dra noscHuTenbHasS cTaThs oupegenser A, , kax C*-anrebpy, HOPOXKIEHHYIO AByMs OIepa-
TOpaMU B TJILOEPTOBOM MIPOCTPAHCTBE, W UCIIOIb3YeT JIMHEHHYIO airedbpy, psaasl Pypbe U KOHCTPYKITUIO
Tlensdanna—Haitmapka—Curada [16] 1yt [oKa3aTeIbCTBA €r0 YHUBEPCAJIBHOCTU. 3aTeM OH IIPeJICTABIIs-
er ero Kak ajrebpy cedeHuil pacC/JOeHUsl MATPUIHON ajareGpbl HAJ[ TOPOM JIJIsi BHIYUCJIEHUs €TI0 KJiacca
n3omopduzma. Paznen npumeuanuii CBA3bIBAET 9TH KOHIENINN ¢ OOITEeil Teopueil ormepaTopHoii aaredphl.
Mpl numem st MATEMaTUKOB, He sIBJISIIONmMXCcs dKcnepramu B C™-ajrebpe.

KimroueBsblie ciioBa: TomoJiorusi paccioenus, KoHcrpykius [enbdanna—Haiimapka—Curana, Henpuso-

JUMOe IIpe/icTaB/IeHue, CIIEKTPaJIbHOE Pa3JI02KEeHUEe.
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