Journal of Siberian Federal University. Mathematics & Physics 2022, 15(5), 672678

DOI: 10.17516/1997-1397-2022-15-5-672-678
VIIK 532.5+517.9

Some Solutions of the Euler System of an Inviscid
Incompressible Fluid
Oleg V. Kaptsov*

Institute of computational modelling SB RAS
Krasnoyarsk, Russian Federation

Received 10.04.2022, received in revised form 02.06.2022, accepted 08.08.2022

Abstract. We consider a system of two-dimensional Euler equations describing the motions of an
inviscid incompressible fluid. It reduces to one non-linear equation with partial derivatives of the third
order. A group of point transformations allowed by this equation is found. Some invariant solutions and
solutions not related to invariance are constructed. The solutions found describe vortices, jet streams,
and vortex-like formations.
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Introduction
It is well known that the system of two-dimensional Euler equations
Up + Uy + VUy + P = 0, V¢ + UV 4+ vy + Dy =0, Uy + vy =0 (1)

describes plane motions of an inviscid incompressible fluid [1]. Here u,v are the components
of the velocity vector, p is the pressure. The symmetry group of the system (1) was found by
A.Rodionov and V. Andreev. They found a new non-local operator and constructed some [2]
invariant solutions. Moreover. they studied the invariant properties of the system in Lagrangian
coordinates. Very non-trivial and interesting solutions in Lagrangian variables are constructed in
the monograph [3]. At present, the question of the integrability of the system (1) by the method
of the inverse scattering problem remains open.

It is very interesting to study axisymmetric flows with swirl [1]. The transformation group is
admitted by these equations in Euler and Lagrangian coordinates is also presented in [2]. Few
solutions are known for this model.

In this paper, the Euler system (1) is converted to one equation for the stream function. An
infinite group of symmetries for this equation is found, and invariant solutions describing single
vortices and kinks are constructed. Two kinks solutions and ones corresponding to the infinite
group are given. A new solution of the stationary equation of axisymmetric flows with swirl,
known in the physical literature as the Grad-Shafranov equation [4], is found.
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1. Symmetry groups and invariant solutions

It is well known [1] that the system of equations (1) can be reduced to one equation with
partial derivatives of the third order

(AY)i + 1y (AY)e — Pu(A¢)y = 0, (2)

where 1) is a stream function, A is the two-dimensional Laplacian operator and the lower indices
denote differentiation by the corresponding variables. If the solution of the equation (2) is known,
then the components of the velocity vector are reconstructed by the formulas u = v, v = —,.

Standard methods [5] can be used to find an Lie symmetry algebra of the equation (2). It is
generated by the following operators

0 0 0
Xl—aa Xy = 7 1/)61/} X3 = o +y37+2w81/)
0 0] 0 0 5
0] 0 0 3

where f, g and h are arbitrary functions of ¢. The first four operators generate well-known trans-
formations: the translation in the t-direction, two scaling symmetries and rotation in R?(z,y).
The operator X3 is responsible for the transition to a coordinate system rotating with a constant
angular velocity. It generates the transformation

t=t, &=uwxcosat—ysinat, § = xsinat+ ycosat, @Z:w+a(x2+y2)/2, Va € R.

The operator Xg defines the time shift of the function ¥: ¥ — ¢ + f(t), and the operators
X7, Xg give the generalized Galilean boosts

=t j=y, i=a+g, v=1v+yg,

:t7 r =, ?J:?J‘Fh; ’l[}:’d}—ilfhl

St

The infinite subalgebra generated by the three operators Xg, X7, Xg induces action on the solu-
tions of the equation (2)

U(t,z,y) — Ytz — g,y — h) +yg' — xh' +m, (3)

where m is an arbitrary function of ¢.
Let us consider the stationary equation (2)

The left-hand side of this equation is the Jacobian determinant of ¢ and Aw. Therefore, any
solution to the equation

A =w(v)
satisfies (4). It can be shown that equation (4) admits a symmetry algebra generated by six
operators
0 0 0 0
Y1 = — Yo = — Y= — Yi=¢—
1 8$’ 2 ay7 3 awa 4 ¢8¢7
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0 0 0 0

Let us proceed to the construction of solutions related to the symmetries of the equations.
Vortices. A solution of the equation (4), which is invariant under the rotation transformation,
has the form v = F(2? 4+ y?), where F is an arbitrary smooth function. Hence, according to (3),
the function

Y =F((a—9)?+(y—h)?) +yg —al’
also the solution of this equation for any smooth functions g(t), f(¢).

Define the functions F, g, h as follows

1 .
F = m, g = Sln(t) + 05t, h = 3COS(4t) + Olt
Then the pattern of streamlines at time ¢ = 0 looks like in Fig. 1, where we see a single vortex.
At t = 1.2 the vortex disappears (Fig. 2), but at time ¢ = 2.4 it appears again. We get a

6 — —
j—
f— —
4
P N\
— \ —
2 5—___.—-—__:__—'_'
—— —

Fig. 1. Vortex at time t=0.

"flickering" vortex: it either appears or disappears. It is easy to choose the functions F), f, g so
that the vortex will exist all the time. To do this, it is enough to leave the function F' the same,
and change the functions g and h a little: g = sin(¢t) 4+ 1.5¢, h = cos(4t) + ¢.

If one chooses the function 1

then we obtain a steady flow with a singularity at the origin of coordinates. This singular solution
is analogous to the classical point vortex in a irrotational flow [1], but this flow is rotational.
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Fig. 2. The disappearance of the vortex at t=1.2

Using the action of the transformation group (3), it is not difficult to obtain a nonstationary
vortex with a singular point.
Kink and soliton. The solution of the equation (4) invariant under the combination of trans-
lations is of the form
Y= F(ax +by), a,beR,

where F' is an arbitrary smooth function. If we take the function F equal to arctan(ax + by),
then its graph is a two-dimensional kink (step). Using the Galilean transformations, we obtain
a nonstationary solution of the equation (2)

Y =yg — xh’ + arctan(exp(z — g +y — h)),

where g = 0.5¢,h = 0.1¢. In this case, the graphs of the velocity components at different times
are similar to a soliton and an antisoliton with variable amplitudes, respectively.

"Two soliton" solution. Using computer algebra systems, it is not difficult to find the following
stationary solution

()

P = arctan< St J2 >

1+s12fifo

of the equation (4). Here fi, fo are functions equal to exp(k;x + n;y + m;) (i = 1,2) , and
k;,n;,m;, S10 are parameters that satisfy two relations

(n1 — ng)?

2 2 _ 2 2 —
n2+k2 =n, +k1, SlQ—m.
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A typical graph of the function ¢ given by the formula (5) looks like two stationary kinks for real
parameter values (Fig.3). The streamline pattern represents the interaction of two jets. Using the

Fig. 3. Two stationary kinks

generalized Galilean subgroup, one can construct non-stationary solutions of the equation (2).
Another way to construct stationary solutions of the equation (2) follows from the next
statement. Let ¢ be the solution Laplace equation A¢ = 0, then the function

¢ =log(sA(log¢)), Vse€R,

satisfies the equation (2). One can obtain nonstationary solutions using the symmetry group of
the equation (2). This representation for the stream function is due to the fact that the Liouville
equation

Arp = exp(v),

admits an infinite group of transformations.

2. Additional solutions

We proceed to the construction of other non-stationary solutions of the equation (2). We
look for the function % in the form

N
W = F(kx +ny +m(t) + ro(t)x + ri(y + Y ri(t) (ke +ny)’, (6)
i=2
where F' is an arbitrary function, k,n are arbitrary constants, and m,r; (j = 0,...,N) are

unknown functions on ¢. Substituting the representation (6) into equation (2), we have a system of
ordinary differential equations on functions m(t), r;(¢). Solving this system, we obtain recurrence
formulas for the functions m,r;

m:/Sdt, ’I“N:C'7 Ti_lzi/TiSdt, i:2,...,N,
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where C' is an arbitrary constant, S = —krg + nry, and rg,r; are arbitrary smooth functions
on t.
One can look for a solution to the equation (2) in the form

b= F(k(t)x +n(t)y +mt) + Y ri(t)a'y’.
i+5>0
Substituting the latter expression into equation (2) results in a system of nonlinear ordinary
differential equations on functions k(t), n(t), m(t),r;;(t). Finding its solutions remains an open
problem.
Let us now consider the stationary equation for the stream function, which describes an
axisymmetric swirling flow [1],

wmw‘FwM" —%/7‘ = T2G+H, (7)

where G, H are arbitrary functions of ¥. In plasma physics, this equation is called the Grad-
Shafranov equation [4]. Some of its solutions are presented in the monograph [2], where there
is also a group classification of this equation. Shan’ko [6] found some functionally-invadant
solutions of the equation (7).

We will look for a solution to the equation (7) in the form

Y = S(2* + ar?), a €R,

where S is the function to be found. Substituting this representation into the equation (7), we
obtain the relation
25" + 42%8" + r*(4a*S" — G) — H = 0.

We introduce a new variable ¢ = 22 + ar? and rewrite the last relation as
25" +4¢S” — H + r*(4a(a — 1)S" — G) = 0.
Two equations follow from this
28" +4¢S" = H(9), da(a —1)S" = G(S). (8)

If the function S is given, then from the last two equations (8) one can find the functions
G and H. Suppose, for example, S = 1/q. Then from the first equation of the system (8) we
have H(q~') = 6¢~2. So the function H(z) is 612. Similarly, from the second equation of the
system (8) we find the function G(v)) = 8a(a — 1)13. Therefore, the equation (7), with the found

functions G, H, has a solution
1

v= 2 +ar?’
The components of the velocity vector, according to [1], are
-2 2 A — 43
a4 = ¢ i AeR.

W= —"-y,

v= (22 + ar2)?’ U= r(z2 + ar?)?’ r

This solution has a singularity at » = 0 and tends to zero at infinity.
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HekoToppble pelnieHnsi cucteMbl Ditjiepa HEBI3KOIA
HECXKMMAaeMOl »KIUJAKOCTH
Ouger B. Kanmos

MNucruryT Bhrauncanrensaoro mogenuposanns CO PAH
Kpacnosipck, Poccuiickas @eneparus

Awnnoranusi. B pabore usyuaercs cucreMa IByMEpPHBIX ypaBHEHHN Dilepa, OMUCHIBAIOIAS [IBHKEHUS
HEBA3KON HecknMaeMoil kuakoctu. OHa CBOAWTCA K OJHOMY HEJIMHEHHOMY YPABHEHWIO C YaCTHBIMU
IIPOM3BOJHBIMU TPEThbero mnopsinka. HafimeHa rpymmna TOYeYHBIX IPEOOPA30BAHUI, JOIMYCKAEMBIX STUM
ypaBHeHHeM. IlocTpoeHBI HEKOTOpPBIE MHBAPUAHTHBIE PEIIEHUs U PEIIeHUs He CBsI3aHHbIE C MHBAPHAHT-
HOCTBIO. Haii/ieHHbIe pelreHnsi OMMCHIBAIOT BUXPU, CTPYWHBIE TEUEHNUS U BUXPEIIOAO0HBIE 00PA30BaHNUS.

KuroueBsbie ciioBa: ypaBHeHus Diljiepa, IPYIIbI IpeoOpa3oBaHuil, MHBADUAHTHBIE DEIIeHUs, BUXDH,
CTpyH.
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