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Abstract. The inverse problem of determining coefficient before the lower term of the hyperbolic
equation of the second order is considered. The coefficient depends on time and n spatial variables. It
is supposed that this coefficient is continuous with respect to variables ¢,z and it is analytic in other
spatial variables. The problem is reduced to the equivalent integro-differential equations with respect
to unknown functions. To solve this equations the scale method of Banach spaces of analytic functions
is applied. The local existence and global uniqueness results are proven. The stability estimate is also
obtained.
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1. Introduction and problem formulation

The inverse problem of determining coefficient a(t,z,y), t € R, (z,y) = (z,y1,...,Ym) €
R!'*™_ before the lower term of the hyperbolic equation is studied in this paper. The problem
is considered in the class of coefficients that are continuous with respect to variables ¢,z and
it is analytic in variable y. It is known that such problems are referred to as multidimensional
inverse problems. For multidimensional inverse problems there are only special cases for which
solvability is established. One of such classes of functions in which local solvability takes place is
the class of analytic functions. The technique used here is based on the scale method of Banach
spaces of analytic functions developed by L.V.Ovsyannikov [1,2] and L. Nirenberg [3]. This
method was first applied to the problem of solvability of multidimensional inverse problems by
V. G. Romanov [4-6].
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This method was used to study multidimensional inverse problems of determining the con-
volution kernel in parabolic and hyperbolic integro-differential equations of the second order;
theorems of local unique solvability of inverse problems in the class of functions with finite
smoothness with respect to time variable and analytic with respect to spatial [7-13]. variables.
This paper generalizes the results given in [4] (Sec. 3) for the case of non-stationary potential.

Let us consider the problem of determining a pair of functions u and a that satisfy the
following equations

Ut — Ugy — ANu — a(t, z,y)u = g(y)d(x)d (t —to), (t,z,y) € R2t™ ¢, >0, (1)

u|t<05 0, (2)

where A is the Laplace operator with respect to variables (y1, ..., ¥m) =y, d(-) is the Dirac delta
function, ¢(+) is the derivative of the Dirac delta function, ¢y is a problem parameter. Therefore
u=u(t,z,y,tp), and g(y) is a given smooth function so that g(y) # 0 for y € R™.

It is required to find potential a(z,t,y) in (1) if the solution of problem (1)—(3) is known for
x =0, i.e., the condition

U(t,o,y,to) = f(tayatﬂ)a t> 07 tO >0 (3)

is given.

Following monograph [4, sec. 3|, we consider the Banach space As(r) s > 0 of functions ¢(y),
y € R™ which are analytic in the neighbourhood of the origin and they satisfy the following
relation

||
s
[lls(r) := sup Z [ D%p(y)] < oo.
|y\<r‘a| -0 !
Here r > 0, s > 0 and
N olel
D = W’ o = (O[l,...,Oém)7
.
laf := a1 4+ -+ am, al = (a)!... (am)!.

In what follows, parameter r is fixed while parameter s is variable. Then, it is formed a scale
of Banach spaces A4(r), s > 0 of analytic functions. The following property is obvious: if
o(y) € As(r) then ¢(y) € Ay (r) for all s’ € (0,s). Consequently, As(r) C Ay (r) if s € (0,s)
and the following inequality is valid

Do, < o, Lela0)
s (s—s’)‘al

for any a with constant ¢, which depends only on a.
Solution of problem (1), (2) is considered in the form

1
7g(y)5(t - tO - ‘ID + v(t7x7yat0)'

u(t7x7yat0) = 9

Substituting this expression into (1) and taking into account that (1/2)g(y)d(t —to — |x|) satisfies

(in a general meaning) equation uy — Uz, = g(y)d(2)d’ (¢t — to), we obtain the following problem
for function v:
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1
Vgt — Vgg = DV + §Ag(y)6(t —to — |z])+
(4)

1
+ a(t,.’b,y) ig(y)(s(t - tO - |LE|) +’U(t’x7yvt0) ) (t7x7y) € R2+m7 tO > 07

v |t<0= 0. ®)

In the next section inverse problem (4), (5) and (2) is replaced with the equivalent integro-
differential equations. In what follows, we assume that function a is even in x.

2. Reduction of the problem to integro-differential
equations

According to the d’Alembert formula the solution of problem (4)—(5) satisfies the integral
equation

oltpnte) = 5 [[{ B0t €m o)+ 5200050 — 10 - 16D+
A(t,x) (6)

1
+Q(T,f,y) |:29(y)5(7— - tO - |£|) +’U(Ta£vyvt0):| }déd’r, (taxay) € R2+ma tO > 07
where
A(If,l‘):{(T,f)‘ 0<T<t—|l‘—§|, $—t<§<$+t}
Let
QT = {(t7t0)| 0 < tO < t < T}; T > 07
Or = {(t,2)] 0 < Ja| <t < T — o},

Tr:= {(t,x,to)

Domain Y7 in the space of variables x, t, ty is the pyramid with the base (7 and vertex
(0,7,7).
It follows from (6) that function v(t,x,y, o) satisfies the integral equation

[+t <t < T — o], 0<to <t < T

z+(t—tg)
otpto) = 22 )+ L [t +lel gy
st )

+% // [AU(77£7ya tO) + a(T,@y)v(T,@y’to)] de§7 (t7x7t0) € TT’ ye Rm’

a(t,z,to)

where 0(t) =1, t > 0, 6(t) =0, ¢t <0, and O(z,¢,ty) is domain in the form of a rectangle in
the plane of variables (7, £) for each fixed ¢ formed by characteristics passing through the points
(0,t9) and (x,t) of the differential operator 92/9t? — 92 /0x?

r—(t—t r+t—t
< <tlomg) T2 g ¥t

O(z, t,to) := {(5,7)

70<1§0<1§}.

Obviously, the equalities f(¢,y,t0) = u(t,0,y,t0) = v(t,0,y,t0), t > to are true. Besides,
f(tO + anvtO) = U(ta 0?y7t0)|t:t0+02 0.
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First note that if a(t, —z,y) = a(t, x, y) then v(t, —x,y,t9) = v(t, x,y,to). Taking the deriva-
tive with respect to t of the both sides of equation (7), we obtain

,Ut(tvxvyvto) =
_Dgly)  9y) [ (rtttte x4ttt —x4t+ty x—t+to
R U R A U R S
J:+(t2—tQ)
1
+§ / [A’U(t_|$_£|’£5y7t0)+a(t_|$_£|a§7y)v(t_|$_£|7§5y7t0)]d€7
z—(t—tg)

2

(t,z,t0) € Tp, y € R™.

Setting z = 0 in this relation and using evenness of functions a(t, z,y), v(t,x,y,to) with respect
to x, we obtain the equality

_Agly) | gly) (t—to t+to
ft(t7y7t0)_ 9 + 4 a 2 ) 2 Y +

t—tg

+/O i [Av(t_§7§7yat0)+a’(t_€7§ay)v(t_fvgvyatO)]dga (tvtO) eQTv yERm

Substituting |x| for (¢t —1¢)/2 and t for (t+to)/2 and solving with respect to a(t, z,y), we rewrite
this equation in the form

_289) 4 x — |z _ . v x| — — |z
aftzy) =20 (ol = o) = s [ Ao+ el €6yt e+

Falt+lz)— & &y v+ |z —& &y t— |m|)}d§7 (t,z) € Qp, y € R™,

Thus, in order to find the value of function a at the point (¢, x,y) it is necessary to integrate
function a(t,z,y) itself over the segment with boundaries (¢ + |z|,0, y, 0), (¢, |z|, y, 0) and
function v(t, x,y,to) over the segment with boundaries (¢ + |z|,0,y, t — |z|), (¢, |z|,y, t — |z|)
which belong to domain T, x R™.

Note that function v, even with respect to = 0, satisfies the condition dv/9z|,—o. Taking
into account this fact and considering equations (4), (5), (3) for v in the domain > 0, we obtain

v 0%

ﬁ—w—Av—a(t,x,y)vzo,O<x<t—t0, yeR™,
dv m

o) _o=fltyte), -] =0,0<t—t<T, yeR
or|,_,

. Then in accordance with the d’Alembert formula which gives the Cauchy problem solution
with an initial data at x = 0 we find

otato) =wltmte) + 5 [[ [Bo@en) valmenomen i ©
AN (t,x)
where 1
vo(t, z,y,t0) = B} [f(t+m,y,t0) + f(t — 7,9,%0)]

- 568 —



Durdimurod K. Durdiev, Zhanna D. Totieva Determination of Non-stationary Potential Analytical. ..

AN(tz)={(r&|0<é<z|r—t|<zx—¢}, O<z<t—to<T—z, yeR™
Considering (8) for x > 0, we have
a’(tax7y) zao(t,x,y)—
v (10)
77/ [Av(thxf{,g,y,tfx)+a(t+xf§,§,y)v(t+xff,f,y,tfz)}df,
0

4 2
a tamay :7.](. t+xay7t_x +
olte) =gy I )

, 0<e<t<T -2, yeR™.

The system of equations (9), (10) is a closed integro-differential equations for functions a, v.
Note that operator A for function v appears in the system only under the integral sign.
Next we consider system (9), (10) in domain

Dr =YL xR™, Yh={(tx,t) 0<x+to<t<T—1z}.

3. The main results and proofs

Let Ciy ) (Y73 As,) denote the class of functions with values in Ay, (sg > 0) which are
continuous with respect to variables (¢, x,%p) in domain Y/.. For fixed (¢, x,%¢) the norm of func-
tion v(t, x,y,to) in A, is denoted by ||v||s, (£, 2, t0). The norm of function v in C(; 4,40 (Y73 Asy)
is defined by the equality

||v‘|c(tvmvt0)(T,T;A50) = (t@’sttl)i’r% [v]lso (8, 2, t0)-

Let C ) (Gr; As,) be a class of functions with values in A, which are continuous with
respect to variables (¢,z) in domain Gp = {(¢t,z)| 0 < x <t < T — z}. For fixed (¢,x) the norm
of function a(t,z,y) in Ay, is denoted by ||al|s,(,2). The norm of function a in Cy ,) (Gr; As,)
is defined as

lalle,, . (Gr:an) = Lo lallso (£, 7).

Let us also denote the class of functions with values in A, which are continuous with respect
to t, to in domain Q7 by C (Qr; As,).

Theorem 3.1. Let f (+to,y,t0) =0, |g(y)| = go > 0, go is a known number and

{ 1 Agy)

9y) gy

} € Aui {f(ty.to), filtiy,t)} € C(Qrs Au),

} R
<7

2
So

are valid for some fized s9 > 0, R. Then there is such a number b € (0,7/(2s0)),
b = b(so,R,T) that for each s € (0,s0) in domain Dr N {(t,z,y,t0) : 0 <z +to < b(so— )}
there exists the unique solution of equations (9), (10) and v(t,z,y,t0) € Ctar) (Por; Aso) s

i addition, the relations

max{2 HAQ(Z’)

4fi(t,y,to)
9(v)

,  max t,y,t ,
so (Bto)E€QT 17y O)HSO (t;t0)€QT

9(y)
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a(t,z,y) € Cu ) (Ker; Asy), where Pop = Yo N {(t,2,t0) : 0 <z +to <b(sog—8)}, Kep =
GrN{(t,z,t0) : 0 <z +tyg <b(so—s)}, moreover

||’U - UOHS (t71‘7t0) < Ra (t71‘7t0) S PsTa

la = aoll, (¢,2) <

y (t,.’IJ) S K5T~

Proof. Under the conditions of Theorem 1 we have
v0 € Clrato) (T3 Asy), a0 € Cruwy (Gr; Asy)

llvolls(t, @, t0) < R, (t,x,t0) € Yoy aolls(t,z) < R, (t,x) € Gy, 0< s < sq.
Let b,, be the member of the monotone decreasing sequence that is defined by the equalities
bpt1 = b—", n=0,1,2,....
1+1/(n+1)2
Let

b= lim b, = by [Ta+ym+1?).

n=0

The number by € (0,7'/(2s)) is chosen in an appropriate way. For the system of equations (9),
(10) the process of successive approximations is constructed according to the following scheme

Un—l—l(tv x,Y, tO) = UO(tv x,Yy, t0)+

1
+ 5 // [Avn (Ta§7y7t0) +an (Tagay)vn (T7§7yat0):| degv 0 g x g t _tO < T — x,
A (t,x)

a’n+1(ta$?y) = ao(t,l',y)—
4 T
[, A _ _ _ _ B
g(y)/o [Bva b+ 7= 6yt —a) +anlt +2 = EEYalt+7— 6t — )| dg,

0<e<<t<T — 2.

Function s, () is defined by the formula

n
sh(x) = w, v (x) =59 — x (11)
2 bn
Let us introduce the following notations: p, = vp41 — Uy, ¢ = Gpa1 —an, n =0, 1, 2,.... Then

Pn, qn satisfy the relations

pO(t7I7yvt0) = % // [AUO (Ta€7yat0) +ao (Ta€7y) Vo (TagvyatO)}defa (t,ll?,y,lfo) € DTa
A (t,x)
Q()(t,l',y) = _i/w {AUO (t+CE _fagvyat_x)—i_
9() Jo
+ap(t+x—&&y)vo(t+x —E,g,y,t—x)}df, (t,z,y) € Gpr x R™;
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Pry1(t,z,y,t0) = / Apn (7,&,y,t0)+

+ an (Tagvy) vn+1(7—7£a y,to) +an (Tvgay) Pn (Tvguy»tO) }dega (t»%yﬂfo) € DTa

4 x

N A n T 66 Yt T

g(y)/o { pn(t+o—&.&y,t —x)+
—l—qn(t—l—x—E,g,y)vnﬂ(t—l-x—f,g,y,t—x)—|—an(t+ﬂc—§,£,y)pn(t+x—§,€,y,t—x)}d§,

(t,z,y) € Gpr x R™.

qn-‘rl(ta z, y) = -

Let us show that by € <O, ) can be chosen so that the following inequalities be valid for

50
alln=0,1,2,--:
v'(z) —s v (z) — s)?
An = max{ sup {Hpnns(t,x,to)()} sup {Ilqnlls(t,:c)(())]} < oo, (12)
(tw,s)EF, € (t,xz,s)EFy, T
o R
o1 = volls (8,2, t0) < Ry llan+1 = aolls(t,2) < =, (13)
where

Fn:{(t,x,to,sﬂ (t,x,to) € Xy 0Lz +tg <bp(so—s), 0<s<so},
F,={(t,z,s)| (t,z) € Gr, 0 <z <by(sop—s), 0<s<sp}.

Indeed, using the relations for p,,, ¢,, one can find

1pol(t, 2, 0) < // | Avolls (€, to) + llaolls (7€) ool (7, &, to) | drde <

A (t,z)

// [ 7 | drde.

A (t,z)

Here ¢ is a positive constant such that

||Av0|5<co(”/0”5)2, sh>s5>0,n=0,1,2,.
s —

n

. It is easy to check that ¢y = 4m.

Taking function s},(£) from (11) for n = 0, we have

1 “ 4RCO
ool o) < 5 [0 = 9| gy g + 2 <

9 T (x—8&)d
R[4CO+SOR}/O Wg

€T ~
b()R [400 + S(Q)R] m, (t,.’L',S) € Fo.

N~ N~
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In a similar way we obtain
r 4RCO 2
s(t,r) <4 ——————— + R°| d¢ <
loll(t0) < o [ | g 72

<4goR (4c0 + S(Q)R) (t,x,s) € Fp.

_r
(v0(x) = 5)*’
These estimates imply that inequality (12) is valid for n = 0. Moreover,we find

L AoT Aobi ~
- s ta 7t = s ta at < < = boA s t, ,t s e I} y
|01 = Dolls(t, z,t0) = [lpolls(t, z, to) 0(x) —s S 1— by /bo oo, (t, @, to,5) 1

)\ol‘ 4b0 )\0

llar — aol|s(t, ) = ||aglls(t, z) < ((2) —5)? < , (t,x,s8) € F.

So— S

Choosing by so that 4bgAg < R, one can conclude that inequalities (13) are satisfied for n = 0.

By way of induction, one can show that inequalities (12) and (13) are also valid for other
values of n if by is chosen suitably. Let us assume that inequalities (12) and (13) hold for
n=0,1,2,...,4. Then (t,,t0,s) € Fi+1 and we have

[pia (8.2 t0) // 1Al (.. 10) +

A (t,x)
Fllaills (7,8 visrlls (7. €, to) + llaills (7,€) [pills (7. €, to) }de£ <
N// G TR A T e G R er N
Ai ‘ —§)€dg
< E (460 + 3Rsg +RS(2))/O (I/(f"l(f))—s):a <
Ai
< 508 (4co +3Rso + Rs}) #w)_s

Here function s} is defined by equality (11) with n = ¢ and the inequalities

14 s
Sgp— S

||UiHs(t,$L’,t0) < 2R, HaiHS(tvx) SR

are used. The latter is valid by the induction hypothesis together with the obvious inequalities
b; < by and vt (z) < vi(z). Similar arguments for ;11 lead to inequalities

| ) @ coNiE 2RNE  NR(1+50)€
o s0:9) < a0 | {<s;<g>s>2<w‘<s>s> RS ErI G

‘ £dg
< 4Xigo [4 G — = <
Aigo [ co—i—SRsO—i—Rso] /0 i(g) —5)3

T

< 4X\;90bo [460 + 3RS% + RSO] (t, x, S) e Fiy.

The obtained estimates yield

Air1 S AP, Aipr < 00,
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1
p = bp max [2 (460 + 3Rsg + RS%) ;490 (460 + 3R88 + RSO):| .

Moreover, we have

1+1 +1 1+1

~ )\nx Anbi+2
2 ll(,:10) € 3 It to) < 3 o™ <32 2 <
i+1 i+1
< Z)\nbn(n—i—l) )\obOZp (n+1)2, (t,x,ty,s) € Fi+2,
= n=0
i+l it1 Ay | it Anbisa
llai+2 — aolls(t, ) Z lanls(t, ) z% (v (z) — 5)2 S S0 — 8 7;) (1 = biga/bn)?
)\Obo i+1
éso—sz (n+1)* (t,2,8) € Fipo.
n=0

Now we choose by € (O, %) so as to obtain

p <1, Xobg Zp”(n + 1)4 < R.
n=0
Then
lviga —volls(t,z,to) < R, (t,2,t0,5) € Fijo,
R
S0 —

laive — aols(t, x) < 3’ (t,z,s) € Fipa.

Since the choice of by is independent of the number of approximations, all successive approxima-
tions vy, a, belong to

Fn

EDL:

Cltz,t0) (F;As) [ =

n=0

and

Cita) (F3As), F = ﬂ F,,

respectively. Moreover,

R, (t,x,tg,s) € F,
R
So —

||Un - UO”s(tvxvtO) g

Ha’n7[10”5(15753)< s’ (t,x,s)GF.

For s € (0, sg) the series

n=0 n=0

converge uniformly in the norm of the spaces
C(t,x,to) (PsT; As) , Psp = TIT n {(t,x,to) 0+t < b(SO — S)},

Clrwy (Ko As) s Kor = Gr N {(t,z,t0) : 0 <z 419 < b(so — s)}.
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Therefore v, — v, a, — a and the limit functions v, a are elements of C , ¢,) (Psr; As),
Clt,2) (Ks7; Ag) respectively and they satisfy equations (9), (10).

Now we prove that this solution is unique. Let us assume that (v, a) and (v, @) are any two
solutions that satisfy the inequalities

||’U - UO||s(t>x7tO) < ) (t,$7t078) S Fa

R
R

o = aglls(t2) €

, (t,z,s) € F.

~

Let us denote p =v — 0, ¢ = a — 4,

O T L e B R

(t,z,t0,s)EF (t,z,s)EF x

o0

, where v(z) = so — /b, b =1by [] (14+1/(n+ 1)2)71. Then the following relations can be
n=0

obtained for functions p, ¢

p(t,x,y,to) = / Ap(T,€,y,t0) + 4 (1,&,9) 0(T,&, 9, t0) +a(7,6,y) D (T&y,to)}de&
A(tz)
(t7$7y7t0) € DT>

it =5 [ {opra-gent-a
Fi(t T §E YTt + 7~ €&yt — o) +alt + o~ EE YR+ — €&yt — ) fds,
Gr x R™.
Let us show that by e { 0, 2T> can be chosen so that the following inequalities are valid for all
n=20,1,2,.... Applying tfl?e estimates given above to these equations, we find the inequality

AN,

p = bmax [2 (400 + 3Rsg + Rso) (400 + 3RSO + Rso) <p<l.

llglls ||s
.

Consequently A = 0. Therefore v = 0, a = a. Theorem 1 is proved. O

Let us consider the set I' of functions f(t, y, to) representing the elements of C(Qr; As,), so >
0 for which conditions of Theorem 1 are valid with R, T, sg. Then we have the stability theorem

Theorem 3.2. Let f, f € . For the corresponding solutions (v,a) and (v,a) of (9), (10), we
have

M
lv—2|ls < M, (t,x,t0) € Psr, |la—als < — (t,x) € Ksp, 0 <5< 50, (14)

where - -
M = max [maXHf - sto(tatU)v max”ft - ftHsO(t;tO) ) (tvt()) € QT?

and constant ¢ depends on R, T, sg.
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Proof. Taking into account (9)—(10), we obtain the following equalities for the differences v —7 =
b, a—a=aand f—f=f

. . 1 .
U(t»%.%to) ZUO(taxay7t0)+§ // {AU (T7§7y7t0)+
A (t,x) (15)
+a (Ta 67 y) U(T’ 67 Y, tO) +a (Tvé.v y) 0 (T7 fa Y, tO) } deé.a (t7 z,Y, to) € DT7

4 T
@(t,%y):%(t’x,y)—@/o {A?}(t+$—f7f,y,t—l‘)+

+d(t+:v—f,g,y)v(t—ka:—£,§7y,t—x)+d(t+x—§,§7y)f;(t+x—§,§7y,t—m)}d§, (16)
(t,z,y) € Gpr x R™,
where
Vo(t,x,y,t0) = %[f(t—l—x,y,to) + f(t—z,y,t0)], ao(t,z,y) = ﬁft(t—kx,y,t — ).
It is obvious that
10050 (8, 2, t0) < M, (t,z,t0) € Psr,
(17)

||d()||30(t,$) < M, (t,l‘) e Kyr.

g (W) lso
We have from Theorem 1 that

R(1+ sg
folls < 2R, < PEE2)
Sop— S
Applying the method of successive approximations used for the proof of Theorem 1 to the
system of equations (15)—(16) (it is linear with respect to © and a), we find that the following

inequalities are valid for solution of (15)—(16)

H6 - ’L~)0Hs(t,$,t0) < Cle (t,.’ﬂ,to) S PsTv

M
& — aol|s(t, ) < Scl —. (t2) € Kor, 0< s < 50,
-

where ¢; depends on R, T, so. Hence, taking into account (17), we find that inequalities (14)
are true. Theorem 2 is proved. O
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OnpenenieHne HeCTAITMOHAPHOTO MOTEHIINAJIA,
AHAJIMTUYECKOTI'O IT0 HPOCTPAHCTBEHHBIM IIepeMeHHbIM

Hypmumypon, K. lypaues

FOxxnb1it Mmaremarnvecknit macruryr BHIL PAH

Bukhara, Uzbekistan

2Kanna /1. TorueBa

FOxkub1it MaTemaTuueckuit uacruryt BHIT PAH

Bnanukaska3z, Poccuiickas ®eneparust

Cesepo-Kaskasckuit nienTp Maremarudeckux uccienosannii BHI PAH
Bnanukaska3z, Poccuiickas ®eneparust

Amnnoranusi. Isyuena obparHas 3amada ompeseseHusi KoddduUinenTa 3aBUCAMOCTH BPEMEHHBIX U 1
IIPOCTPAHCTBEHHBIX IIEPEMEHHBIX JJIsI MJIAJIIIIETO YJIeHa FUIIEPOOINYECKOr0 yPaBHEHUS BTOPOrO IOPSIKA.
IIpemnosaraercsi, 9T0 3TOT KO3(DDUINEHT HEMPEPHIBEH IO OTHOIIEHUIO K TMEPEMEHHBIM t, & W aAHAJUTU-
YeH 1O JPYTUM I[POCTPAHCTBEHHBIM IIEPEMEHHBIM. 3aJiava CBOJUTCH K IKBUBAJIEHTHON CHCTEME HeJu-
HEWHBIX UHTerpo-IuddepeHnnaIbHbIX YPABHEHUI OTHOCUTEIBHO HEN3BECTHBIX MYHKIMH. [[1a pemenns
9TUX ypaBHEHUIN MPUMEHSIETCS METOJ, ITKaJl OaHAXOBBIX MPOCTPAHCTB aHAIUTHIecKnX (pyHkiunit. Jloka-
3aHbI TEOPEMBI JIOKAJIHLHOM PAa3PEIIMMOCTH U €IMHCTBEHHOCTH B rito0ajbHOM cMmbicie. [lorydena orenka
YCTOMYINUBOCTU OOpATHOM 3a/1a4u.

KuaroueBsbie ciioBa: obparHas 3amada, GyHIAMEHTAIbHOE perenne, 3amada Kormm, mokaabHast paspe-
MIUMOCTh, YCTOWIUBOCTb.
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