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Introduction

A space P is said to be Paracompact if every open cover of a P has a locally finite
open refinement. Al-Zoubi [1] defined S-Paracompact spaces using semi open sets which are
generalization of paracompact spaces and obtained many interesting properties of S-paracompact
spaces in 2006. Pj-paracompact and Py-paracompact spaces were defined by Mashhour et al. [6].

In this paper, we introduce a new class of g*wa-paracompact spaces, characterized by the
condition that every open cover of a space P has a g*wa-locally finite g*wa-refinement. Also,
we define and investigate the properties of g*wa-locally finite collections. Further, studied,
g*wa-paracompact spaces and investigated their properties. Finally g*wa-expandable spaces are
defined by using g*wa-open sets and g*wa-locally finite collections.

1. Preliminary

Definition 1.1 ([7]). Let Ay C P. Then Ay is called
(i) g*wa-closed if cl(A1) C Uy whenever Ay C Uy and Uy is wa-open in P.

Definition 1.2 ([3]). A space P is said to be submazimal if each dense subset of P is open in P.
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Definition 1.3 ([4]). A collection Fy = {F, : a € I} of subsets of a space P is locally finite, if
for each p € P, there exists Uy, € O(P,p) such that Uy, intersects at most finitely many members
Of F1 .

Theorem 1.4 ([3]). If { U1, : a € I} is a locally finite family of P and Vy, C Uy, for each
a € I then the family { V1, : o € I} is locally finite in P.

Lemma 1.5 ([2]). The union of locally finite family of locally finite collection of sets in a space
1s locally finite family of a sets.

Lemma 1.6 ([11]). If { Uy, : « € I} is a locally finite family of a space P then {cl(Uy,): o € I'}
1s also a locally finite family of subsets of a space P.

Definition 1.7 ([5]). A space P is expandable if for every locally finite collection Fy = {Fy_: « €
I} of subsets of P, there exists locally finite collection G1 = { G1, : a € I} of open subsets of
P such that Fy, C Gy, for each o € L

Lemma 1.8. If V; € O(P) and Ay € g*wa-O(P) then Vi N Ay € g*wa-O(P).

Theorem 1.9 ([7]). The following conditions are equivalent for a space P:
(i) P is submazimal.

(ii) g*wa-cl(Ay) = Ay, where A; C P.

Theorem 1.10 ([8]). A function s: P — Q is called
(i) g*wa-irresolute if for each Vi € G*waC(P), s~ (V1) € G*walC(Q).
(ii) pre g*wa-closed if for each Vi € G*waC(P), s(V1) € G*walC(Q).

Definition 1.11 ([10]). A space P is said to be g*wa-compact if for every cover {Vi_ : a € A}
of P by g*wa-open sets, there exists a finite subset Ao of A such that P = U{Vi_ :«a € X\o}.

Example 1.12. Let P = {p1,p2,ps} and 7 = {P, ¢, {p1}, {p2}. {p1,p2}, {p1,ps}}. Here every
cover of g*wa-open sets can be expressed as a finite subcover and so (P, 7) is g*wa-compact.

2. g*wa-locally finite collection

Definition 2.1. A collection & = { Fy,, : « € I} of subsets of P is said to be g*wa-locally finite
if for each p € P, there exists Uy € g*wa-O(P,p) and Uy intersects Fy, at most finitely many
values of a.

Remark 2.2. FEvery locally finite collection is g*wa-locally finite.

Remark 2.3. In a submazimal space, every g*wa-locally finite collection of P is locally finite.
However the converse need not be true follows from the example.

Example 2.4. Let P = {p1,pa2,ps} and 7 = {P, ¢, {p1}, {p1,p2}}. Then P is not submaximal,
since the set Ay = {p1,p3} is dense in P but not open. But, P is g*wa-locally finite collection
of P.

Lemma 2.5. The following properties holds for a collection & = {Fy_, : « € I}:

(a) if € is g*wa-locally finite collection and G, C F1,, for each o € I, then G1={G1, : o €1}
18 also g*wa-locally finite.

(b) € is g*wa-locally finite if and only if {g*wa-cl(F1,) : a € I} is also g*wa-locally finite.

(c) if £ is grwa-locally finite, then U g*wa-cl(F1,) = g*wa-cl(UFy,).
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Proof. (a) Follows from Definition 2.1.

(b) Suppose ¢ is g*wa-locally finite. Then for each p € P, there exists Uy, € g*wa-O(P,p) which
meets finitely many of the sets Fy_, say Fi,,, Fi,,, ..., F1 Since F1,, C g*wa-cl(Fy, )
for each k = 1, 2, ..., n. Thus, Uy, meets g'wa-cl(F1,,), g*wa-cl(F1,,), ..., g'wa-cl(F1,,),
that is U1, meets finitely many values of g*wa-cl(F1,). Therefore, { g*wa-cl(F1,) : a €1} is
g*wa-locally finite.

Conversely, let p € P. Then, there exists U;, € g*wa-O(P,p) which meets finitely many
of the sets g*wa-cl(F1,), say g*wa-cl(Fi,,), g*wa-cl(F1,,), ..., g'wa-cl(F1,, ), implies Uy, N
gr*wa-cl(Fy,, ) # ¢ foreach k = 1,2, ..., n.

Let e Uy, and g€ g*wa-cl(Fy,, ),then for every Vi, € g*wa-O(P, q) such that Vi, N Fy,, # ¢.
But Uy, € g*wa-O(P,q), so Uy ,N Fi,, # ¢ for each k = 1, 2, ..., n. Hence § is g*wa-locally
finite.

(c) Suppose ¢ is g*wa-locally finite, then Ug*wa-cl(Fy,) C g*wa-cl(UF1, ). On the other hand,
let p € g*wa-cl(U F1,). Then every Vi € g*wa-O(P,p) such that Vi, N (UFy,) # ¢. Then
there exists Uy, € g*wa-O(P, p) which meets finitely many values of the sets F}_, that is I,
Fi,,, ..., F1,,. Thus, for every Vi € g*wa-O(P,p), such that Vi N (UFy,,) # ¢ for each
k=1,2,...,n, that is p € g*wa-cl(U F1_,) = Ug*wa-cl(Fy_, ). Thus, there exists hy such that
p € g*wa-cl(F1,, ). Thus, p € Ug*wa-cl(F,) and hence Ug*wa-cl(F1,) C g*wa-cl(U Fy,). O

an '’

3. g'wa-paracompact spaces

We recall that a space P is said to be paracompact if every open cover of P has a locally
finite open refinement.

Definition 3.1. A space P is said to be g*wa-paracompact if every open cover of P has a
grwa-locally finite g*wa-refinement.

Example 3.2. Let P = {p1,pa2,p3} and 7 = {P, &, {p1}, {p2,p3}}. Here, every open cover of P
has g*wa-locally finite g*wa-refinement. Hence P is g*wa-paracompact.

Theorem 3.3. Every paracompact space is g*wa-paracompact.
Proof. 1t follows from Remark 2.2. ]

Example 3.4. Let us consider a space P with P = N*UN~ where N1 is the set of all positive
integers and N~ is the set of all negative integers.

Consider, the topology 7={U; C P: N C U }U{¢}. Here, G*waO(P)={A1 C P: Ay N N # ¢}.
Consider, {{p} : p € N} U{{p,—p} : p € N} is a g*wa-locally finite g*wa-open covers of P.
Hence, every open cover of P has a g*wa-locally finite g*wa-open refinement. Hence (P,7) is
g*wa-paracompact.

However (P,7) is not paracompact. Since the collection {N U {p} : p € N} which is an open
cover of P, but this collection admits no locally finite open refinement.

Hence (P, ) is not paracompact.

Remark 3.5. Every compact space is g*wa-paracompact.

Lemma 3.6. Lets: P— @ be surjective. Then s is pre g*wa-closed if and only if for every ¢ € @
and every U; € G*wa-O(P,s71(q)), there exists Vi € G*wa-O(Q, q) such that s~1(Vy) C Uy.

Proof. Necessity: Let s be pre g*wa-closed. Let ¢ € @Q and U; € G*wa-O(P) with
s7Y(q) € Uy. Since U; € g*wa-O(P), then P\ U; € g*wa-C(P). As s is pre g*wa-closed,
then s(P\ U1) € g*wa-C(Q). Take V3 = Q \ s(P \ U1). Then V; € g*wa-O(Q) with ¢ € V; and
S_l(Vl) c U.
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Sufficient: Let K; € G*wa-C(P) and ¢ € Q \ s(K1). Then, s~!(¢) C P\ K;. From hypothesis,
there exists V1, € g*wa-O(Q, ¢) such that s71(V1,) € Q\s(K1). Therefore, g € Vi, CQ\ s(K1).
Thus, Q@ \ s(K1) = U{ Vi, : q € Q\ s(K1) }. Thus Q \ s(K;1) € g*wa-O(Q) and so
(K1) € g*wa-C(Q). a

Theorem 3.7. Let s : P — Q be continuous open and pre g*wa-closed surjection with s~1(q)
is g*wa-compact for each q € Q. If P is g*wa-paracompact, then @ is also g*wa-paracompact.

Proof. Let Uy = {U;,, : a € I} be an open cover of Q. As s is continuous, s~ (Uy) = {s~}(Uy,) :
a € I} is an open cover of the g*wa-paracompact space P, so it has a g*wa-open refinement say
Vi ={Vi, : @ € I}. As s is pre g*wa-closed, then the collection s(V;) = {s(V1_,) :a € I} is a
g*wa-open refinement of U;. Now, we have to prove that s(V7) is g*wa-locally finite in Q.

Let ¢ € Q, then for each ¢ € s71(q) there exists Ui, € g*wa-O(P, p) such that Uy, intersects
at most finitely many members of Vi. The collection {Uy, : p € s7'(¢)} is g*wa-open cover of
s71(q). Therefore, there exists a finite subset Ky of s7(¢) with s™'(¢q) C Uy, p€ Ki. As s is
pre g*wa-closed and by Lemma 3.6, there exists P, € g*wa-O(Q, ¢) such that s~(P;,) C UUy,
p € K;. Then s_l(qu) intersects at most finitely many members of V;. Thus, Py, intersects
at most finitely many members of s(V7) and so s(V7) is g*wa-locally finite in ). Hence @ is
g*wa-paracompact. a

Theorem 3.8. Let s : P— Q be g*wa-irresolute closed surjective function with s=1(q) is compact
for each g € Q. If Q is g*wa-paracompact then P is g*wa-paracompact.

Proof. Let Uy = {Uy,, : € I'} be an open cover of P. As s71(q) is compact, there exists a finite
subset Iy of I such that s™*(¢) C UU,,, a € Ip. As s is a closed, there exists Vi, € O(Q, q) with
s71(V1,) CUUL,, « € Iy. Therefore {Vi, : ¢ € Q} is an open cover of the g*wa-paracompact
space ). Then Vi has g*wa-locally finite g*wa-refinement say Wy = {Wy, : B € B}. As s is
g*wa-irresolute, {s~1(W1,) : B € B} is g*wa-locally finite g*wa-open cover of P. Then, for each
B € B, there exists ¢(3) € Q such that Wy, C Vq_, . Thus s (Wy,) C s’l(qu(m) C Ul :
o € Ioqpy) = Fi,p)- Let Fi = {s7'(Wi,)N Uy, : B € Band o € I(q())}. From Lemma 1.8,
F is g*wa-open subset of P. Then the family Fj is g*wa-locally finite g*wa-refinement of Us.
Thus P is g*wa-paracompact. O

Definition 3.9 ([9]). A space P is g wa-regular if for each Fy € g*wa-C(P) and each point
q ¢ Fy, there exist disjoint Uy, Vi € O(P) with p € Uy and Fy C V.

Theorem 3.10. Every g*wa-reqular submazximal space is regular.

Proof. Let P be g*wa-regular submaximal and U; € O(P,p). Since P is g*wa-regular, then
for each p € Uy, there exists V € g*wa-O(P) such that p € V; C g*wa-cl(V1) C Uy. As P is
submaximal, every g*wa-closed set is closed [7], that is ¢l(V7) C g*wa-cl(Vy). Thus p € V; C
cl(V1) C Uy and so P is regular space. O

Theorem 3.11. FEvery g*wa-paracompact Ts-space is g*wa-reqular.

Proof. Let A1 € C(P) and p ¢ A;. Then, for each ¢ € Ay, choose U; € O(Q, q) and = ¢ cl(Uy).
Thus the family V3 = {U, : ¢ € A1} U{P \ A1} is an open cover of P. Since, P is g*wa-
paracompact, Vi has g*wa-locally finite g*wa-refinement say Hy. Put Vo = U{h € H; and
hNA; # ¢}. Then Vs is g*wa-open set containing 4; and g*wa-cl(Va) = U{g*wa—cl(h) : h € Hy
and h N Ay # ¢} follows from Lemma 2.5(c). Therefore, Uy = P\ g*wa-cl(V2) is g*wa-open set
containing p such that U; NV, = ¢. Thus P is g*wa-regular. O

Theorem 3.12. Let P be a reqular space. Then M is g*wa-paracompact if and only if every
open cover V1 of P has a g*wa-locally finite g*wa-closed refinement Uy .
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Proof. Necessity: Let Vi be an open cover of M. Then, for each p € P, choose Uy, € Vj.
As P is regular, there exists V;, € O(P) such that p € Vi, C cl(V1,) € Uy,. Thus Vi =
= {V1, :p € P} is an open cover of P. Then P has a g*wa-locally finite g*wa-closed refinement
say h = {hy : a € B}. Let g*wa-cl(h) = {g*wa-cl(hy) : @ € B}, then g*wa-cl(h) is g*wa-locally
finite collection follows from Lemma 2.5(c). Thus for each o € B, g*wa-cl(ha) C g*wa-cl(Vy,) C
cl(V1,) € Uy, that is g*wa-cl(h) is a g*wa-refinement of V.

Sufficiency: Let V; be an open cover of P and U; be g*wa-locally finite g*wa-closed refinement
of V3. For each p € P, choose W, € G*wa-O(P) such that p € Wi, and W, intersects at most
finitely many members U;. Let H; be a g*wa-closed g*wa-locally finite refinement of Wy =
={Wy, :pe€ P}. Then, for each v € Uy, V! = P—{h € Hi : hnV; = ¢} and so V{! is
g*wa-open, that is {V{! : V; € U;} is g*wa-open cover of P. Finally, for each V; € Uy, choose
Uy, € Uy such that V; C Uy,. Then, the collection {U;, N V{' : v € Uy} is g*wa-locally finite
g*wa-open refinement of V7 follows from Lemma 1.8. Thus P is g*wa-paracompact. o

4. g'wa-expandable spaces in topological spaces

Definition 4.1. A space P is g*wa-expandable if for every locally finite collection Fy = {F},, :
a € I} C P, then there exists g*wa-locally finite collection G1 = {G1,, : a € I} of g*wa-open
subsets of P with F, C Gy, for each o € I.

Example 4.2. From the Example 3.4, we can observe that the space (P, 7) is g*wa-expandable
space.

Theorem 4.3. The following conditions are equivalent for a space P:

(i) P is g*wa-expandable.

(i) Every locally finite collection Fy = { F1_ : o € I} of closed subsets of P, there exists a
g wa-locally finite collection Gy = { G1, : a € 1} of g*wa-open subsets such that Fy, C G,
for each a € I

Proof. (i) — (ii) Follows from the Definition 4.1.

(ii) — (i) Let Fy ={F1, : a € I} be a locally finite collection of a space P. From Lemma 1.6,
{cl(F1,) : a € I} is also locally finite collection. From hypothesis, there exists g*wa-locally
finite collection G; = {G;1_ : a inl} of g*wa-open subsets of P with cl(F;,) C G;,. But,
Fy, Ccd(Fy,) C Gy, that is Fy_, C G7,. Thus P is g*wa-expandable. O

Theorem 4.4. Fvery g*wa-paracompact space is g*wa-expandable.

Proof. Let P be a g*wa-paracompact space and F; = {F_ : a € I'} be a locally finite collection
of closed subsets P. Let T be a collection of all finite subsets of I. Then, for each 5 € T, let
Vi, = P\U{F, : a # B}. As F} is locally finite, V;, is open and Vi, meets only finitely
many members of 1. Let ¥ = {Vi, : f € T}, then ¥ is an open cover of P. As P is
g*wa-paracompact, ¥ has a g*wa-locally finite g*wa-refinement, say w = {Wy, : 6 € A}. Let
U, =U{Wi, €w : Wi, N F1_, # ¢}. Hence Uy, is g*wa-open and so Fi, C Uy,.

Now, to show that {U;_ : « € I} is g*wa-locally finite. Since w is locally finite, then for each
p € P, there exists Uy, € g*wa-O(P,p) with Uy, intersects at most finitely many members of w.
Also Uy, NUy, # ¢ if and only if Uy, N Wi, # ¢ and Wi, N Fy, # ¢ for some 6 € A. Again, w
is a refinement of 1), then there exists a member V;, of ¥} containing W1, of w. Then Wi, meets
only finitely many members of F_ for each o € I. Thus {U;_ : « € I} is g*wa-locally finite and
so P is g*wa-expandable. O
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HoBag CTPYKTYPpPa IIapaKOMIIAKTHBIX IIPOCTPaHCTB

IMTanmasu C. Mupamkakap
Hayunwbrit kosutempk PCJabin
Bunpsanarap, Xab6asmmu, mrar Kapuaraka, Uuans

II. I ITatux

Yuusepcurer mrara Kapraraka

Bunpanarap, Ixapsasu, mrar Kapuaraka, Mumgus
Xanud Ileiimax

Texuonornueckuit yausepcurer KTE
Bunpsanarap, Xa66asmmu, mrar Kapuaraka, Uumns

AnHoTanus. B nanHO! cTaThe BBOJUTCA U U3ydaeTCs HOBBIN KJIacC HapaKOMIIAKTHBIX IIPOCTPAHCTB, Ha-
3bIBAEMBIX g  WQ-TIAPAKOMIIAKTHBIMU [TPOCTPAHCTBAMHU, KaK 0000IIEHIE TapaKOMIIAKTHBIX TPOCTPAHCTB.
ABTOpPBI XapakTepu3yoT g wa-IapakoMIaKTHbIE MPOCTPAHCTBA W M3Y4Yal0T HEKOTOPbIE MX OCHOBHBIE
CBOJCTBA.

KoarogeBble ciioBa: g wa-3aMKHYTBIE MHOXKECTBA, g wQ-JOKaJIbHO KOHEYHBIH HabOp, g wa-nmapa-
KOMIIAKT, g wa-paciupsieMble IIPOCTPAHCTBA.
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