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Abstract. In this paper, we are concerned with local linear nonparametric estimation of the regression
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1. Introduction and preliminaries

The nonparametric estimation in the functional data is an important subject in modern
statistical literatures. This research field is motivated by the fact that several data collected
in practice, are given in the form of curves. The monograph of [7] is a pioneer work in the
nonparametric setting, where the authors established the pointwise almost-complete convergence
for different kernel type estimators.

However, lot of works show that the performance of the local linear method is better than that
of the kernel one. Such in [2], where they obtained the rate of the pointwise almost-complete
convergence for local linear estimator of the regression function. The uniform convergence of
other nonparametric local linear estimators has been investigated in some papers as [6, 13, 17],
in the independent and identically distributed (i.i.d.) data case.

Unfortunately, in many practical applications such as reliability and survival time studies, the
interest response variable may be incompletely observed, which make the study of censored data
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more useful in practice. We can see this for example in the works of [1], where the authors gave
a family of robust nonparametric estimators for which consistency and asymptotic normality
results are established under independent data. For the same data, [10,11] investigated the rates
of the pointwise and the uniform almost-complete convergence of a local linear estimator of the
conditional quantile and the regression function. She improved that the local linear method
outperforms the kernel method even for censored data.

All the above mentioned works concerned the independent functional data case. Nevertheless,
in many cases, we face a dependent data. A large studied example is the case of the α-mixing
dependence. We refer to [15] for the kernel nonparametric regression estimation under random
censorship. [16] examined the almost-complete consistency and the asymptotic normality of the
estimator of the relative error regression for the strictly stationary data. Furthermore, [3] used
the local linear approach to estimate the conditional density and established its pointwise almost
sure convergence, in the censored and functional α-mixing case.

By combining ideas from the two previous works of [11, 12] for the local linear estimation of
the regression function in the complete dependent and the independent censored, respectively,
functional data cases, we propose a novel estimation procedure for the regression function in the
case of dependent functional and incomplete data. Among incomplete data models we are here
interested in right censoring, which is frequently present in practice.

To our knowledge, the local linear estimation of the regression function combining censored
and functional dependent data has not been studied in statistical literature. So, in this work, we
address this problem. More precisely, we first present in Section 2 of our paper, a local linear
estimator of the regression function. Then, in Section 3, we establish the rate of its pointwise
almost-complete convergence under standard conditions. A simulation study is carried out to
show the good behaviour of our estimator in Section 4. Finally, the proofs of the main results
are evoked in the Appendix.

Throughout this paper the following notations will be adopted. Let TU = sup{t ∈ R;FU (t) <

1} denote the upper endpoint of the support of FU , where FU (t) = P (U 6 t) denote the
distribution of a real random variable (r.r.v.) U . Furthermore, F is an infinite-dimensional
space equipped with a semimetric d, X is a random variable valued in F , for any x ∈ F , h > 0,
B(x, h) := {y ∈ F/ d(x, y) 6 h} denotes a closed ball in F of center x and radius h. We also
define Φx(r1, r2) := P (r1 6 d(x,X) 6 r2), where r1 and r2 are two real numbers.

For the sake of clarity, we feel welcome to recall some definitions.
• Let {Zi, i = 1, 2, . . . } be a strictly stationary sequence of random variables, F k

i (Z) denotes the
σ-algebra generated by {Zj , i 6 j 6 k}. Given a positive integer n, set

α(n) = sup{|P (A ∩B)− P (A)P (B)| : A ∈ F k
1 (Z) and B ∈ F∞

k+n(Z), k ∈ N∗}

The sequence is said to be α- mixing (strong mixing) if the mixing coefficient α(n) → 0 as
n→ ∞.

Many processes do satisfy the strong mixing property, see [14] for more details and examples.
• Let (zn)n∈N∗ be a sequence of real random variables. We say that (zn)n∈N∗ converge almost-

completely (a.co.) toward zero if, and only if, ∀ϵ > 0,
∞∑

n=1
P (|zn| > ϵ) < ∞. Moreover, let

(un)n∈N∗ be a sequence of positive real numbers; we say that zn = O(un) a.co. if, and only if,

∃ϵ > 0,
∞∑

n=1
P (|zn| > ϵun) <∞.

It is clear, from Borel Cantelli lemma, that this convergence is stronger than the almost sure
one.
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2. Definition of the estimator

Consider n pairs of random variables (Xi, Yi)i=1,...,n identically distributed as the pair (X,Y )

which is valued in F × R.
We report that in the complete case, the local linear estimator of the regression function m(x) =

= E(Y |X = x) is presented in [2] as follows

m(x) =

n∑
i,j=1

Wij(x)Yj

n∑
i,j=1

Wij(x)
,

(
0

0
= 0

)
,

with
Wij(x) = β(Xi, x) (β(Xi, x)− β(Xj , x))K(h−1d(Xi, x))K(h−1d(Xj , x)), (1)

where β(., .) is a known function from F ×F into R such that, ∀ξ ∈ F , β(ξ, ξ) = 0, the function
K is a kernel and h := hn is a sequence of strictly positive real numbers which plays a smoothing
parameter role.

As Yi is not disponible in practice, we can only observe a sample (Xi, Zi, δi)16i6n of i.d. ob-
servations of (X,Z = Y ∧R, δ) where R is nonnegative censoring random variable with unknown
continuous survival function G (∀t, G(t) = P (R > t)) and δ = 1{Y6R} (where 1A denotes the
indicator function of the set A) and Y is a nonnegative random variable.

All over this paper, we will assume that the sequences (Xi)16i6n, (Yi)16i6n and (Ri)16i6n

are stationary and α-mixing with mixing coefficients α1(n), α2(n) and α3(n) respectively.
Notice that, in view of Lemma 2 in [5], we can show that, the sequences (Xi, Yi)16i6n,
(Zi)16i6n and then (Xi, Zi, δi)16i6n are α-mixing with coefficients a(n) = 4max(α1(n), α2(n)),
b(n) = 4max(α2(n), α3(n)) and α(n) = 4max(α1(n), b(n)) = 4max (α1(n), 4max(α2(n), α3(n)))

respectively.
Furthermore, the dependence assumption of (Xi)16i6n, (Yi)16i6n and (Ri)16i6n, seems to be

more general and one can think to replace it by a classical dependence assumption of (Xi, Yi)16i6n

and the sequence (Ri)16i6n is i.i.d. censoring random variable, see for example [3]. Because,
since (Xi, Yi)16i6n is stationary and α-mixing, it is straightforward that the sequences (Xi)16i6n

and (Yi)16i6n are also stationary and α-mixing. This can be deduced from the fact that the
later can be seen as a projection-image of the former. On other hand, the α-mixing condition of
(Ri)16i6n is more comprehensive than the independence assumption, we put α3 = 0.

Let (A1) be the following assumptions.

• R and (X,Y ) are independent and TY < TR <∞.

• ∃T < TY such that ∀i, 1 6 i 6 n; Zi 6 T .

This assumption is a standard condition in nonparametric censoring estimation which permits us
to obtain an unbiased estimator. Like so, the independence assumption between R and (X,Y ) is
plausible whenever the censoring is independent of the patients modality, TY < TR implies that
G(T ) > 0 because T < TY .
A feasible local linear nonparametric estimator of m(x), constructed in [11], is defined by

m̂(x) =

n∑
i,j=1

Wij(x)
δjZj

Gn(Zj)

n∑
i,j=1

Wij(x)
,

(
0

0
= 0

)
, (2)
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where Wij(x) is defined in (1) and Gn is the well known [9] estimator of G, which given by

Gn(t) =


n∏

i=1

(
1−

1− δ(i)

n− i+ 1

)1{Z(i)6t}

if t < Z(n)

0 if t > Z(n),

(3)

where Z(1) < Z(2) < · · · < Z(n) are the order statistics of Zi and δ(i) the noncensoring indicator
corresponding to Z(i). Notice that for all 1 6 j 6 n, Gn(Zj) = 0 implies that δj = 0.
From now on, we have that (Xi, Zi, δi)16i6n is strongly mixing with mixing’s coefficient α(n).
Now we are in position to give our assumptions and main result.

3. Main results

The aim of this section is to establish the pointwise almost-complete convergence of m̂. For
this purpose, we need the following assumptions.

(H1) For any h > 0, Φx(h) := Φx(0, h) > 0.

(H2) There exists b > 0 such that

∀x1, x2 ∈ B(x, h); | m(x1)−m(x2)| 6 Cxd
b(x1, x2),

where Cx is a positive constant depending on x.

(H3) The function β(., .) is such that

∃ 0 < M1 < M2,∀x′ ∈ F ; M1d(x, x
′) 6 |β(x, x′)| 6M2d(x, x

′).

(H4) The kernel K is a positive and differentiable function on its support [0, 1] and

∃ C,C ′ > 0; 0 < C1[0,1](t) 6 K(t) 6 C ′1[0,1](t) <∞.

(H5) This condition is devided into the two following conditions (H5a) and (H5b).

(H5a) There exist C > 0, a > sup
(
4,

1 + u

ud

)
satisfying

∀n ∈ N; α(n) 6 Cn−a,

where d and u are defined in (H5b) and (H8) respectively.

(H5b) There exist 0 < d 6 1, C > 0, C ′ > 0 such that

C ′ [Φx(h)]
1+d

< ψx(h) 6 C [Φx(h)]
1+d

,

where ψx(h) := ψx(0, h) and

ψx(h1, h2) := P (h1 6 d(X1, x) 6 h2, 0 6 d(X2, x) 6 h2) .

(H6) For all m > 2, δm : x 7→ E(|Y |m|X = x) is a continuous operator at x and

∃C > 0; sup
i ̸=j

E (|YiYj ||(Xi, Xj)) 6 C <∞.
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(H7)

∃ n0 ∈ N, ∀n > n0,
1

ψx(h)

∫ 1

0

ψx(zh, h)
d

dz

(
z2K(z)

)
dz > C > 0

and

h2
∫

B(x,h)

∫
B(x,h)

β(u, x)β(t, x)dP(X1,X2)(u, t)= o

 ∫
B(x,h)

∫
B(x,h)

β2(u, x)β2(t, x)dP(X1,X2)(u, t)

,
where dP(X1,X2) is the joint distribution of (X1, X2).

(H8) The bandwidth h satisfies limn→∞ h = 0 and ∃ η0 > 0, u > 0, C1 > 0, C2 > 0 such that

C1n
3−a
a+1+η0 6 Φx(h) 6 C2n

−u,

with η0 <
a− 3

a+ 1
and u < 1.

Remark that these conditions are standard in this context, the hypotheses (H1)–(H5) and
(H7)–(H8) are the same conditions assumed in [12]. The condition (H6) is the same condition
(H6) in [12] with φ(t) = t.

Now, we are in position to state the almost-complete convergence of m̂(x).

Theorem 3.1. Assume that assumptions (A1) and (H1)–(H8) are satisfied, then

m̂(x)−m(x) = O(hb) +Oa.co.

(√
lnn

nΦx(h)

)
.

One of the main features of the present paper is studding the local linear estimation under
the dependent and censored case, which is generalizes several usual situations. In particular,
we consider the independent case (see [11]), the complete case(see [12]) and the kernel method
(see [15]).

Proof 3.1. Let us set

m̃(x) =

n∑
i,j=1

Wij(x)
δjZj

G(Zj)

n∑
i,j=1

Wij(x)
,

(
0

0
= 0

)
, (4)

with Wij(x) is defined in (1) and which will play a prominent part in the proof of the Theorem 3.1
thanks to the following decomposition, for all x ∈ F .

m̂(x)−m(x) =
1

m̂0(x)
[(m̂1(x)− m̃1(x)) + (m̃1(x)− Em̃1(x)) + (Em̃1(m)−m(x))]+

+
m(x)

m̂0(x)
(1− m̂0(x)) ,

(5)

where

m̂1(x) =
1

n(n− 1)E [W12(x)]

∑
i̸=j

Wij(x)
δjZj

Gn(Zj)
, m̂0(x) =

1

n(n− 1)E [W12(x)]

∑
i ̸=j

Wij(x) (6)
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and
m̃1(x) =

1

n(n− 1)E [W12(x)]

∑
i̸=j

Wij(x)
δjZj

G(Zj)
. (7)

To treat the pointwise almost-complete convergence of m̂(x), we need Lemma A1 introduced
in [12] and the preliminary tecnical Lemma 3.1 Then, the proof of the Theorem 3.1 is a direct
consequence of the following Lemmas. 2

In what follows, let C be some strictly positive generic constant and for any x ∈ F , and for
all i = 1, . . . , n, Ki(x) := K(h−1d(Xi, x)) and βi(x) := β(Xi, x).
As the dependence assumption reveals covariances terms, let us define for k ∈ {0, 2} and l ∈ {0, 1}

S2
n,l,k(x) =

n∑
i=1

n∑
j=1

|Cov(∆(k,l)
i (x),∆

(k,l)
j (x))|, (8)

where, for i ∈ {1, . . . , n}

∆
(k,l)
i (x) =

1

hk
{
Ki(x)β

k
i (x)δ

l
iZ

l
iG

−l(Zi)− E[Ki(x)β
k
i (x)δ

l
iZ

l
iG

−l(Zi)]
}
. (9)

We now focus on these covariances terms in the following result.

Lemma 3.1. Under assumptions (A1) and (H1)-(H7), we have

S2
n,l,k(x) = O(nΦx(h)). (10)

Proof 3.2. By following the same steps as the proof of Lemma A.2 in [12] we get our result. 2

Lemma 3.2. Assume that hypotheses (A1), (H1)-(H5) and (H7) hold, then

m(x)− E(m̃1(x)) = O
(
hb
)
.

Proof 3.3. The bias term is not affected by the dependence condition. Therefore, by the equiprob-
ability of the couples (Xi, Zi, δi), we get

Em̃1(x)−m(x) =
1

E[W12(x)]
E
{
W12(x)

[
E
(
Z2G

−1(Z2)δ2|X2

)
−m(x)

]}
.

Hypothesis (H4), combining with the facts that E(δ2|X2, Y2) = G(Y2) and δ2Z2 = δ2Y2, give
that

E
[
Z2G

−1(Z2)δ2|X2

]
= E

[
Y2G

−1(Y2)E (δ2|X2, Y2) |X2

]
= m(X2).

Then, we have

Em̃1(x)−m(x) =
1

E[W12(x)]
E [W12(x) (m(X2)−m(x))] . (11)

The claimed result is obtained by using the last relation and the condition (H2). 2

Lemma 3.3. Under assumptions of Theorem 3.1, we get

m̃1(x)− E(m̃1(x)) = Oa.co.

(√
lnn

nΦx(h)

)
.
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Proof 3.4. Inspiring by the proof of Lemma 4.4 in [2], we consider the following decomposition

m̃1(x) =
1

n(n− 1)E [W12(x)]

n∑
i,j=1

Wij(x)δjZjG
−1(Zj) =

=
n2h2Φ2

x(h)

n(n− 1)E [W12(x)]

[(
1

nΦx(h)

n∑
j=1

Kj(x)ZjδjG
−1(Zj)

)(
1

nΦx(h)

n∑
j=1

Kj(x)β
2
j (x)

h2

)
−

−
(

1

nΦx(h)

n∑
j=1

Kj(x)βj(x)ZjδjG
−1(Zj)

h

)(
1

nΦx(h)

n∑
j=1

Kj(x)βj(x)

h

)]
=

= Q(x)[D2,1(x)D4,0(x)−D3,1(x)D3,0(x)], (12)

where, for p ∈ {2, 3, 4} and l ∈ {0, 1},

Dp,l(x) =
1

nΦx(h)

n∑
j=1

Kj(x)β
p−2
j (x)Zl

jδ
l
jG

−l(Zj)

hp−2
and Q(x) =

n2h2Φ2
x(h)

n(n− 1)E [W12(x)]
.

Notice that, Q(x) = O(1) (see the proof of Lemma 2 in [12]), so, we have to show that, for
p ∈ {2, 3, 4} and l ∈ {0, 1}

∑
n

P

(
|Dp,l(x)− E(Dp,l(x))| > ϵ

√
lnn

nΦx(h)

)
<∞, E[Dp,l(x)] = O(1),

and that almost surely

Cov [D2,1(x), D4,0(x)] = O

(√
lnn

nΦx(h)

)
and

Cov [D3,1(x), D3,0(x)] = O

(√
lnn

nΦx(h)

)
.

• Firstly we have

Dp,l(x)− EDp,l(x) =
1

nΦx(h)

n∑
i=1

∆
(p−2,l)
i (x),

with ∆
(k,l)
i (x) is defined in (9).

Note that, because E(∆
(k,l)
1 (x)) = 0, E|∆(k,l)

1 (x)|q = O(Φx(h)) for q > 2 and using Tcheby-
chev’s inequality, we can apply Proposition A.11-i in [7], to get for any q > 2, ε > 0, r > 1 and
for some 0 < C <∞

P (|Dp,l(x)− E [Dp,l(x)] | > ε) = P

(
|

n∑
i=1

∆
(p,l)
i (x)| > nεΦx(h)

)
6

6 C [A1(x) +A2(x)] ,

(13)

where

A1(x) =

(
1 +

ε2n2(Φx(h))
2

rS2
n,l,k(x)

)−r/2

and A2(x) = nr−1

(
r

εnΦx(h)

)(a+1)q/(q+a)

.
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Now, choosing for η > 0

ε = η

√
lnn

nΦx(h)
and r = (lnn)2.

In view of Lemma 3.1, we have S2
n,l,k(x) = O(nΦx(h)). So, we obtain

A2(x) 6 Cn1− (a+1)q
2(q+a) (lnn)−2+

3(a+1)q
2(q+a) (Φx(h))

− (a+1)q
2(q+a) .

Next, using (H8), it exists some real number ν > 0 such that

A2(x) = O(n−1−ν). (14)

Moreover, in view of equation (10) and the fact that ln(x + 1) = x − x2/2 + o(x2/2) where x
tends to zero, we can write

A1(x) 6 Cn−η2/2, (15)

which shows that A1(x) is the general term of a convergent series for an appropriate choice of η.
Hence, by combining relations (13), (14) and (15), we derive

Dp,l(x)− EDp,l(x) = Oa.co.

(√
lnn

nΦx(h)

)
.

• It is easy to see that under (H1), (H3), (H4) and (A1), we get, for p ∈ {2, 3, 4} and l ∈ {0, 1},

E[Dp,l(x)] = h2−pΦx(h)
−1E

[
K1(x)β

p−2
1 (x)Zl

1δ
l
1G

−l(Z1)
]
6 C, (16)

the last inequality is obtained by using the Lemma A1(i) in [12] and the condition (A1).
• Finally, by following similar arguments used to prove (10), we obtain

Cov [D2,1(x), D4,0(x)] = O

(
1

nΦx(h)

)
and

Cov [D3,1(x), D3,0(x)] = O

(
1

nΦx(h)

)
.

In view of (H8), this last rate is negligible with respect to O
(√

lnn

nΦx(h)

)
. The proof is then

completed. 2

Lemma 3.4 (see [12]). If assumptions (H1),(H3), (H4), (H5a), (H5b), (H7) and (H8) are
satisfied, we obtain

m̂0(x)− 1 = Oa.co.

(√
lnn

nΦx(h)

)
and

∞∑
n=1

P

(
m̂0(x) <

1

2

)
<∞.

Lemma 3.5. Under assumptions (A1), (H1),(H3), (H4), (H5a), (H5b) and (H7), we have

m̂1(x)− m̃1(x) = Oa.co.

(√
lnn

nΦx(h)

)
.
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Proof 3.5. Because the assumption (A1) and the definitions of m̂1(x) and m̃1(x) in (6) and (7),
we can write

|m̂1(x)− m̃1(x)| =

∣∣∣∣∣ 1

n(n− 1)E [W12(x)]

∑
i̸=j

Wij(x)δjZj

(
1

Gn(Zj)
− 1

G(Zj)

) ∣∣∣∣∣ 6
6

|T | sup
t6T

|Gn(t)−G(t)|

Gn(T )G(T )

∣∣∣∣∣ 1

n(n− 1)E [W12(x)]

∑
i ̸=j

Wij(x)

∣∣∣∣∣ 6
6

|T | sup
t6T

|Gn(t)−G(t)|

Gn(T )G(T )
|m̂0(x)|, (17)

where m̂0(x) is defined in (6).
In order hands, following [5] and [18], we obtain

sup
t6T

|Gn(t)−G(t)| = Oa.co.

(√
lnn

n

)
, (18)

which is equals to Oa.co.

(√
lnn

nΦx(h)

)
. The proof is completed by using Lemma 3.4. 2

4. Simulation study

In this section, two examples of simulation are presented to illustrate the performance of
the proposed estimator (LLR). More precisely, we compare the LLR estimator to the kernel
regression estimator (KR) studied in [15].

For the computation of the (LLR) and the (KR) estimators, we use the quadratic kernel

K(x) =
3

2

(
1 − x2

)
1[0,1](x) and the bandwith h is chosen by the 2-fold cross-validation method.

Take into account of the smoothness of the curves Xi(t) (see Figs. 1 and 4.), we choose the
semi-metric d based on the derivative (for the first example) and the PCA (for the second
example) described in [7] (see routines "semimetric.deriv" and "semimetric.pca" in the website
http://www.lsp.ups-tlse.fr/staph/npfda) and we take β = d (for the LLR estimator).

Example 1. Let us consider the following nonparametric regression model

Y = m(X) + ϵ,

where

m(X) =
1

4
exp

{
2− 1( ∫ 1

0
X ′(t)dt

)2
}

and ϵ is the error supposed to be generated by an autoregressive model defined by

ϵi =
1√
2
(ϵi−1 + ξi), i = 1, · · · , n

with ξi are centered random variables normally distributed (i.i.d.) with a variance equal to 0.1

(ξi ; N (0, 0.1)). The functional covariate X(t) is defined, for t ∈ [0, π/3] by

X(t) = 2− cos

(
W

(
t− 2π

3

))
, t ∈

[
0,

2π

3

]
,
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where W is an α-mixing process generated by Wi =
2

9
Wi−1 + ηi with ηi are i.i.d N (0, 1) and

are independent from Wi, which is generated independently by W0 ; N (0, 1) (see Fig. 1 for
a sample of these curves). Notice that the conditional mean function will coincide and will be
equal to m(x).

For this model, we adopt the censored mechanism (Xi, Zi, δi)16i6n, where Zi = min(Yi, Ri),
δi = 1{Yi6Ri} and the censoring random variable Ri = aiRi−1+ζi with ai ; N (0, 0.1) and ζi are
i.i.d. exp(1.5) and are independent from Ri, which is generated independently by R0 ; exp(1.5).

In this simulation, to illustrate the performance of our estimator, we proceed as follows:

• Step 1. For a different sample sizes n = 100, 200, 300, 500, we split our data into two subsets:
– (Xi, Yi)16i6n1 : The learning sample used to build the estimators, where n1 = n/2.
– (Xi, Yi)n26i6n: The testing sample used to make a comparison, with n2 = n1 + 1 .

• Step 2. We calculate the two estimators by using the learning sample and we find the LLR
and KR estimators of the conditional expectation (m̂ and m̂KR), for a different sample sizes
n = 100, 200, 300, 500.

• Step 3. We plot the true values m(Xi) for all i (n2 6 i 6 n) against the predicted ones by
means of the two estimators, one in each graph (for a fixed sample size n = 300, see Fig. 1).

Fig. 1. From left to right the curves Xi, the LLR and KR estimators (n = 300)

• Step 4. To be more precise, we measure the prediction accuracy, for different values of n, by
using the mean absolute errors (MAE), given by

MAE(LLR) :=
1

n2 + 1

n∑
j=n2

|m̂(Xj)−m(Xj)|

MAE(KR) := 1
n2+1

n∑
j=n2

|m̂KR(Xj)−m(Xj)|
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and the prediction errors (MSE) such that
MSE(LLR) :=

1

n2 + 1

n∑
j=n2

(m̂(Xj)−m(Xj))
2

MSE(KR) :=
1

n2 + 1

n∑
j=n2

(m̂KR(Xj)−m(Xj))
2

.

The obtained results are in the Tab. 1.

Table 1. MSE and MAE comparaison for LLR and KR methods according to sample sizes

n = 100 n = 200 n = 300 n = 500
MSE MAE MSE MAE MSE MAE MSE MAE

LLR 0.0896 0.2008 0.0775 0.1796 0.0641 0.1529 0.0396 0.1062
KR 0.1190 0.2338 0.0867 0.1933 0.0796 0.1590 0.0471 0.1529

From Tab. 1 and Fig. 1, we observe that the quality of the two estimators perform better
when the sample size n increase. Also, we can be seen that our predictor has a good behavior
than the kernel one.
We preffer to give a second example to make a better decision.

Example 2. We fixe n = 200 and we generated the functional explanatory variables X(t) as
follows

Xi(t) = ai sin (4(bi − t)) + ci, i = 1, · · · , 200,

where ai ; N (4, 3), ci ; N (0, 0.01) and bi is an α-mixing process generated by bi =
1

3
ai−1 + ηi

with ηi are i.i.d. N (0, 1) and are independent from bi, which is generated independently by
b0 ; N (0, 3). We carried out the simulation with a 300-sample of the curve X(t) (see Fig. 2).

The scalar response variable is defined as

Y = m(X) + ϵ,

where

m(X) =

∫ 1

0

1

1 + |X(t)|
dt

and ϵ is the error generated by an autoregressive model defined by

ϵi =
1√
2
ϵi−1 + ξi, i = 1, · · · , 200

with ξi ; N (0, 0.1). Notice that the conditional median function will coincide and will be equal
to m(x).

We also simulate n i.i.d. rondom (Ri) exponentially distributed with parameter λ which
is adapted in order to get different censoring rates (CR). We compute our estimator with the
observed data (Xi, Zi, δi)16i6n, where Zi = min(Yi, Ri) and δi = 1{Yi6Ri}. Next, we split our
data into a learning sample with size 135 and a test sample with size 65. The true values are
plotted against the predicted ones by means of our estimator m̂(x) and the kernel estimator
m̂KR(x) (CR = 1.48%). To be more precise, we measure the prediction accuracy, for different
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Fig. 2. From left to right the curves Xi, the LLR and KR estimators (CR = 1.48%)

values of CR, by using the mean absolute errors (MAE), given by
MAE(LLR) :=

1

65

200∑
j=136

|m̂(Xj)−m(Xj)|

MAE(KR) :=
1

65

200∑
j=136

|m̂KR(Xj)−m(Xj)|

and the prediction errors (MSE) such that
MSE(LLR) :=

1

65

200∑
j=136

(m̂(Xj)−m(Xj))
2

MSE(KR) :=
1

65

200∑
j=136

(m̂KR(Xj)−m(Xj))
2

The obtained results arein the Tab. 2.
Fig. 4. and Tab. 2 show that, our estimator performs better than the kernel estimator. It

Table 2. MSE and MAE comparaison for LLR and KR methods according to CR.

CR = 1.48% CR = 28.67% CR = 48.15% CR = 73.33%
MSE MAE MSE MAE MSE MAE MSE MAE

LLR 0.0019 0.0331 0.0182 0.1044 0.0260 0.1271 0.05458 0.2106
KR 0.0037 0.0353 0.0220 0.1098 0.0295 0.1474 0.0610 0.2314

is also clear that, the quality of the both estimators become slightly worse when we have high
percentage of censoring, however it remains acceptable.
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Conclusion and comments

In conclusion, our Our theoretical and practical studies confirmed without surprise that the
quality of the LLR and the KR estimators are better for a bigger sample size n and a weak rate
of censoring CR. Furthermore, as for independent and censored data, the LLR estimator stay
more accurate than the KR one in all cases.
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О непараметрической оценке функциональной регрессии
на основе цензурированных данных в условиях сильного
перемешивания

Фарид Леулми
Сара Леулми

Университет Фререс Ментури
Константин, Алжир

Сумия Харфучи
Университет Салах Бубнидер

Константин, Алжир

Аннотация. В этой статье мы занимаемся локальной линейной непараметрической оценкой функ-
ции регрессии в модели цензуры, когда ковариаты принимают значения в полуметрическом про-
странстве. Затем мы устанавливаем поточечную почти полную сходимость со скоростью предло-
женной оценки, когда выборка представляет собой последовательность сильного перемешивания.
Для дальнейшего подтверждения наших теоретических результатов было проведено имитационное
исследование, иллюстрирующее хорошую точность изучаемого метода.

Ключевые слова: функциональные данные, подвергнутые цензуре данные, локально смоделиро-
ванная регрессия, почти полная конвергенция, сильное перемешивание.
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