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Abstract. Centralizers of finite subgroups in the direct limit of the finite and finitary symmetric groups
via strictly diagonal embeddings is characterized in 2015 by Giiven, Kegel and Kuzucuoglu. In this
paper this idea is extended to the case of diagonal embeddings. In addition, a new class of infinite limit
monomial groups is constructed via diagonal embedding.
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The class of groups which is constructed as the direct limit of symmetric groups is widely
studied. The concept first introduced by Zaleskiy [7], after that Kegel-Wehrfritz [2] and Kroshko—
Suschansky in [3] studied these class. The classification of limit symmetric groups of diagonal
type is given in [5].

Since the centralizers played an essential role for the classification of finite simple groups, it
is natural to ask: What is the structure of centralizers of elements and finite subgroups in the
locally finite simple groups constructed as the direct limit of symmetric groups?

For the limit groups of strictly diagonal type the answer is given in [1]. In the first section of
this paper, the structure of centralizers of elements and subgroups in the symmetric groups of
diagonal type will be given.

1. Diagonal embeddings

Definition 1. An embedding ¢ of the permutation group (G,X) into the permutation group
(H,Y) is called diagonal embedding if (¢(G),A) is isomorphic to (G,X) for any orbit A of
G having more than 1 element. In addition, if all orbits of ¢(G) have more than 1 element, then
the embedding is called strictly diagonal embedding.

Consider the embedding of finite symmetric groups as follows:
d(r,k) : Sp, — Snrtk-
For any a € Sy, d(r, k)(a) € Spryk is determined as follows:
(t—Dr+ t)d(r’k)(a) =(“=1)r+t where 1 <t<r, 1<i<n.

. 1 2 - n
Hence, if a = < ; .|, then
/Ll 7’2 .. /L/’L
_ 1 2 . (n—=1)r+1 (n—=1)r42 - nr |nr4+1 .. |nr+k
d(?“, k)(a) - ((il—l)r-‘rl (i1—=1)r+2 -+ 11T‘~ |(1”71 41 (in—1)742 - dpr lnr+l 1 Inrtk
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Lemma 2. d(r, k) is a diagonal embedding.

Proof. First let us determine the forms of arbitrary orbits of d(r, k)(S,) in the set
{1,2,...,nr + k}. Since the action is trivial on the points i where nr +1 < i < nr + k,
the orbit A; = {i4"F(@) | o € §,} = {i}. The non-trivial orbits are of the form
A ={i,r+4,2r+4,--- ,(n—1)r+i} for all 1 <4 < r. Note that the length of the orbits are n.
Define a map, o : {1,2,...,n} — A; where o(j) = (j — 1)r + 1.

Now, the group (Sp,{1,2,...,n}) is permutationally isomorphic to (d(r,k)(S,),A;) as fol-
lows:

For any j € {1,2,...,n} and a € S,,,

()@ = ((G = Dr + )P = (5%~ Dr +i = 0(5).
Hence, the embedding d(r, k) is a diagonal embedding. O

For an infinite sequence of integer tuples x = ((1, ko), (n1, k1), . . .), the sequences of diagonal
maps,

d(nl,kl d(’ng,k}g

) ) d(ns,ks3)
Sko — Sn1ku+k1 — S(n1k0+k1)n2+k2

will define a direct limit group S, .

The construction and the classification of the groups S, are done in [5]. Nowadays, these
groups are called limit symmetric groups of diagonal type.

Assume the sequence x is given. Then for ¢ > 0 set A(0) := ko, A(1) = koni + k1 and
A(@) := A(i — 1)n; + k;. Then the group Sy is the direct limit of the finite symmetric groups S
and if the image of Sy(;) in the direct limit group is denoted by S(x, ), then S, = J S(x,1).

i=0
Remark 3. Note that if each k; = 0 for all i@ > 0 the embeddings will be strictly diag-
onal. Hence the group Sy will be isomorphic to limit symmetric group S(€) of [1, 3] where
& =<ko,n1,n9,...>.

1.1. Centralizers of elements in S,

In this section, our aim is to obtain the structure of centralizers of arbitrary elements in the
locally finite group Sy. It turns out that the centralizer contains limit monomial groups.

Finite monomial groups are studied by Ore in [6]. He investigated some properties of mono-
mial groups and determine all finite dimensional normal subgroups of the class. Starting with
the finite monomial groups and using the strictly diagonal embeddings, one can find the limit
monomial groups, which is constructed by Kuzucuoglu, Oliynyk and Suschansky in [4]. They
classified all the limit monomial groups by using the lattice of Steinitz numbers and find the
structure of centralizer of elements in limit monomial groups.

The monomial group of degree n over a group H is denoted by X,,(H). By [6], the monomial
group is isomorphic to S, x (H X ... x H) or in the wreath product notation, ¥,,(H) & H.S,.

~———
For any sequence £ consisting of pri;neesb, by taking strictly diagonal embeddings of finite monomial
groups 3, (H) we have the limit monomial groups which is denoted by ¥¢(H). For the notations
and definitions see [4]. If we take H to be the identity group, then X¢(1) will be the limit
symmetric group S(£). The centralizers of elements in the limit monomial groups are studied
in [4, Theorem 2.6].

Let x = ((1, ko), (n1, k1), (n2, k2),...) and Sy, = |J S(x, ). For any element « in S, we have
=0

a smallest integer n such that oo € S(x,n).
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Definition 4. For o € S, = | S(x, 1), let n be the smallest integer such that oo € S(x,n).
i=0

Then the principal beginning o of « is the element in the finite symmetric group Sy of
which the image in the group S, is o

Note that the definition of principal beginning is similar to the case of limit symmetric groups,
see [1, p.1922].

Definition 5. The short cycle type of an element ag € S,, is t(ag) = (r1,...,7:) where r;
is the number of i-cycles appearing in the cycle decomposition of ag for 1 < i<t <n andt is
taken to be the biggest cycle length that appears in the decomposition.

Theorem 6. Leta € Sy, x = ((1, ko), (n1,k1),...) and let ag € Sy—1y be the principal beginning
of a and t(ag) = (r1,72,...,7%) be the short cycle type of og. Then the centralizer of o in Sy;

k
Cs, (0) 2Dr ¢, () x Sy
where & = (ri,ng,nyy1,...), for alli > 2, x' = {(1,m),(n, k;),...) and C; is the cyclic group
of order i.

Proof. Let ag € Sy—1) be the principal beginning of a. Now we know the cycle type of o and
there are r; many i cycles and r; many fixed points.

Note that, since g = 21,022, ...2%,0 Where z;( is the product of i-cycles in the cycle de-
composition of o, and a = x5 ...z, where the principal beginning of z; is z; ¢ for 1 <3 <k,
by using the same method as in [1], we have

k
Cs, (o) 21271" Cs, ().

Therefore, it is enough to find the centralizer of an element with a fixed cycle type.

Observe that for any element 2 with principal beginning z¢ € S(x,l — 1) which is a product
of i-cycles ¢ > 2, the embedding of z¢ into S(x,!) is strictly diagonal. So by [1, Theorem 3|
and [4, Corollary 2.7], we have Cg (x;) = X¢, (C;) where & = (ri,ny,ni41 ...) and X¢, (Cy) is the
limit monomial group over the cyclic group C; of order 3.

For the centralizer of 21 which is identity but is formed with the fixed points of o in level [, we
have r; many fixed points and any element in symmetric group, Sy,, on 71 points will commute
with ag. The embedding of S;, into S(x,!) is diagonal and the image is isomorphic to a subgroup
of the symmetric group, Sy, n,+k,. Continuing like that we will have the diagonal embeddings of
finite symmetric groups which is isomorphic to Sy where x’ =< (1,71), (g, ki), ... > . Hence,

k
Cs,(0) =Dr %, (C;) x Sy

where & = (r;,n;,nit1,...), foralli > 2, x" = ((1,r1), (ng, kp), - . ). O

Corollary 7. If ko =1,k; =0 for all i > 0, then as S, = S(§) we get
k
Cs(e)(@) =Dr 3¢, (Ci)

where & = (ri,ny, Nyy1,-..), for alli > 1.

For a finite group F' < Sy, with a similar argument conducted in [1, Theorem 6|, one may
obtain the structure of the centralizer Cs, (F).
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2. Construction of an infinite group via diagonal
embeddings of monomial groups

In this section we will construct a new class of infinite groups by embedding monomial groups
via diagonal embeddings of previous section. This new type is a generalization of limit monomial
groups of strictly diagonal type, see [4].

Let H be an arbitrary subgroup. Consider the general linear group GL(n,Z[H|) over the
integral group ring Z[H|. A monomial substitution corresponds to a matrix such that it has
only one non-zero component from the group H in each row and column. In other words, if
{x1,...2,} are basis elements, then a monomial substitution over H is represented as

. xr1 To e T
P hizi,  howsy, -+ hpwi, )
T o s In . . . . RT .
Ifn= is another substitution, then with the multiplication
/411.1‘]‘1 kQ.sz cee knxjn
. xr1 T2 e Tn
=\ kiyxj,,  hokixj, -+ hnki,xj,
and the inverse
P_l _ Liy Liy T Lip,
hl_lxl h2_1$2 e h;lxn

monomial substitutions forms a subgroup which is isomorphic to the wreath product H1S,, where

Sy, is the symmetric group on n letters. This subgroup H S, is called complete monomial

group, see [4]. Since H 1S, &2 H x H ... x H xS, every monomial substitution can be written
| Sy —

n-times
uniquely as a product

T To e T Ty X2 o T
= == h/ 5 h, P h
p (hlxil hgxiQ o hnl‘in) [ 1 2 n] (Ih €T, e xZ; )

2 bn

where [h, ha, ... h,] is called multiplication and
Wﬁl?-.-nixlxg---mn
Z'l 22 e %TL xil ‘riz e xin
is called permutation.

Let H S, be the complete monomial group. Consider the embedding
d(T, k) : E"(H) =H!S, — En7-+k(H) =H) Sn'r-‘,-k

which sends any element of the form [hy, ha, ... hy]7 in H 1S, to the element in H .S, yk,

M1y ey hayee s by by, 1,oo o 1]d(r, k) ()
——— ——— ——
r-times r-times  k-times

where d(r, k)(7) is the diagonal embedding used in Section 1 for constructing S,.

We will show the map is also a homomorphism from ¥, (H) to X+, (H). Let u = [hy, ... hy|7

and v = [ky,...k,]o be two elements of ,,(H). The image equals to
d(r,k)(uwv) = d(r, k) ([hikir, ..., hpky=|mo) =
= [hkin, ... hakie, ooy hpkpr, oo hnkes, 1,000 1]d(r, k) (o). (%)
——
r-times r-times k-times
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On the other hand,

=1[ht, s hiyee sy Ry Lo 1]d(r k) () [kt o ke Ry e ey 1,0, 1]d(r, E) (0) =
r-times r-times  k-times r-times r-times  k-times
= [Rikyatrmyos - s hakyaem )y - ooy hnkpaea oo s - oo Bnkpae @, 1o, 1]d(r, k) (o). (#%)
——
r-times r-times k-times

To show d(r, k) is a homomorphism on the wreath products, it is enough to show the equality
of components of multiplication parts. Note that when we write k;ac-x)(x) We mean the action of
d(r,k)(m) on the indicies of the multiplication i.e.

[P T S R DU I 1 0 R A D |
N——— N— e N——
r-times r-times  k-times

where for all 1 < ¢ < n when ¢ runs through the set {1,...r}, the equality kéiil)rﬂ = k; holds.

For 1 < i < n the ((i — 1)r +t)*" component of the multiplication part of v is the same as k;
where t runs through {1,...7}. Since ((i — 1)r 4 )™ = (i7 — 1)r + ¢, we get

ké(i71)r+t)d(hk)(ﬂ = kziﬂfl)ﬂrt = Kir.

Hence (%) and (**) equals.
Lemma 8. d(?"l, kl)d(T'Q, kz) = d(?"lrg, k17'2 —+ kz)
Proof. Together with [5, Lemma 2.5], an elementary computation will show the equality. O

Let x =< (1, ko), (n1,k1),... > be an infinite sequence of positive numbers. Set A(0) = ko
and for ¢ > 1 set A(i) = konina...n;+kina...n;+...+k;i_1n; +k;. Starting with the complete
monomial group H ! Sk, consider the direct limit of the groups as follows,

d(nl,kl) d(n2=k2)
—5 -5

o) (H) = H 1 Sx0) Ea(H) = H S\ Ea@)(H) =H1S\@)---

From the direct limit, we obtain the group X, (H) = Ej Yx@)(H) which is called limit
monomial group of diagonal type. The group X, (H) is ;:s,?lbgroup of the infinite monomial
group HS,. Since we have X, (H) = G @) (H), for any element one can define principal
beginning as in the same way it is deﬁgzed in Definition 4.

Lemma 9. If all k; =0 for all i > 0 the group X, (H) will be isomorphic to the limit monomial
group of strictly diagonal type X¢(H) where & = (ko,n1,n2,...), see [4].

Since all elements of the monomial substitutions can be written uniquely as the product of a
multiplication and a permutation when we take the image of an element [hq, ..., h,|m € H1 S,
inside the group H ! S+ we see the embedding sends permutation parts to permutation parts
and multiplication parts to multiplication parts via the diagonal embedding. Hence from the
diagonal embeddings of symmetric groups we get the infinite direct limit group Sy and from the
embeddings of multiplication parts we obtain a subgroup B, of the infinite Cartesian product
of H.

Then the group can be written as ¥, (H) = B, xS, where B, consists of periodic components
of elements from the group H followed by 1’s.
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2.1. Centralizers of elements

In this section the centralizer of elements in the groups X, (H) is investigated.

Before the result, for a finite monomial group ¥,,(H) one may see the following definitions.

A monomial substitution is called a cycle if the permutation part is a cycle. Obviously, every
monomial substitution can be written as a product of disjoint cycles.

Let u = [h1, ha, ... hpl(i1,i2,43 .. . im). If we take m-th power of u, we get a multiplication

u™ = [hlhg N hm, h2h3 N hmhh ey hmhl ce hmfl].

The elements A; = h;hiy1...hghy .. hy—1 € H for all 1 < ¢ < m are called determinants
of u.

One may observe that Ai” = A;41 for all 1 < i < m and upto conjugacy every cycle have a
unique determinant class in H.

Let u = [hy, ha, ... hy](i1, 02,03 . .. iy). With a suitable element inside the group %, (H), by
taking conjugate, one can find an element of the form [1,1,...,1,a](i1,2,...,%y,) where a is an
element of H and a is a determinant class. This conjugate is called a normal form of w.

Since centralizers of conjugate elements are conjugate, it is enough to work on centralizers of
normalized form of elements.

Recall that for an element 7 € S,,, the type of 7 is the number sequence (rq,r9,...,r:) where
each r; is the number of i-cycles in the cycle decomposition of 7. Similar to this, one can define
the type of a monomial substitution as the number sequence

(a11T117 127125+« -, alklrlkl y oo s Q1T AE2TE2,5 - - - 7atktrtkt>'

This sequence means that for a fixed ¢, the monomial substitution has r;; many i-cycles of
determinant class a;;.
r1 X2

For a cycle of normal form p = [1,1,...,1,q] (x .
2 T3

Zm> if we get conjugate of p
1

with an arbitrary element

x ':E ... m‘
U:[bl,bg,...7bn]( ! 2 ")wehave
J1 J2 In
-1 _ 3—1 —1 -1 Lj Ljp 0 g,
upu~* = [by “ba, by b3, ..., b bial <£ R B
J2 J3 J1

Hence one may observe that conjugacy preserves the type of an element.

1'1 1’2 P xm
ro X3z -+ ATy
Then the image of p under d(r,k) in X,,.+1(H) consists of cycles with the same determinant
class.

Lemma 10. Let p = < ) be a cycle in ¥, (H) with determinant class a € H.

Proof. The result follows when we write the image

x Ly v Tm—1)r Ly  T2r 0 T
k() == (1) e ) (e )

Tr41 Tp42 - ary Tor T3p aZy

note that the fixed symbols are not written to avoid the confusion. Hence embedding does not
alter the determinant class, it only increases the cycle numbers. O

Centralizers in monomial groups are given by Ore.

Let p be a monomial substitution in 3, (H) with determinant class a. Then by [6, p.20], the
centralizer of p is isomorphic to the cyclic extension of Cy(a) by < p >.

an(H)(p) >~ Cyhl(a) < p>=C,.

Theorem 11. Let p be a normal form of an element in 3, (H). Assume the principal beginning
po is in Xy (H). Write p as the product p = pips...py where for each i, the substitutions
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p; consist of cycles with the same length and same determinant class a;. Assume also that p;
consists of r; many cycles of the same type. Without loss of generality assume p; is the element
consisting of one cycles with determinant class 1. Then the centralizer is

CEX(H)(p) = 251 (Cm) X 252 (Ca2) - X 25171(011171) X SXZ

where & = (T4, Met1, Net2, - --) and x, =< (1,77), (Net1, k1), (Reg2, kiga), ... > .

Proof. Since conjugation does not change the type, the centralizer can be written as the direct
product of centralizers of the cycles of different cycle type and length. Hence it is enough to find
the centralizer for an arbitrary p;.

(o)
Since the principal beginning pg is in ¥ (;) we may assume Cyx, (i) = U Cs, ., (pi)-
j=1
For p; the element is nothing but the identity element formed with the fixed points. There-
fore, Cx, ,, (m) = Sy, With the embedding d(n¢41, kt+1) the image will be again identity with
ring+1 + k41 many fixed points and permutation formed with those rini41 + ki1 points will
centralize the image. Hence Cs,,,, (p1) = Srin, 1 +k,,,- Continuing the embedding we will have
Sy, as the centrlizer of p; where x, =< (L,7), (g1, kev1), (Nega, kega), ..o > .
As for the other parts, by [6, p.20], since p; has r; many cycles of the same type we get

CE/\(t) (pi) = CH(ai) <pi >1 STi = Cai ZSTi = EW (Ca'i)'

By Lemma 10, the embedding d(n¢41, kt41) only increases the cycle number and does not
affect the type. Hence with the embedding d(ns41, kt+1), we have

CEA(t+1) (pt) = Cai { STinz+1 = Zrint+1 (Cai)'

Continuing the embeddings, monomial groups will be embedded into the monomial groups
so we will have

Cs, (pi) = e, (Ca,)

where & = (74, 41, Nig2, - - -)-
Therefore,

OEX(H)(p) = 251 (Cal) X 252 (Ca2) oo X 2&71(0@[71) X SXl
where & = (’I“i, Nt1, Nty - - ) and X, =< (1,77), (TLH_l, k‘t+1), (TLH_Q, kt+2), A O

Corollary 12. If all k; = 0 except for ko, then the group ¥, (H) will be isomorphic to the limit
monomial group of [4]. Hence, Theorem 11 also gives the centralizer of an element in limit
monomzial groups.

Corollary 13. If the group H is the identity group, then X, (H) will become S,. Hence Theo-
rem 11 gives also the results obtained by Theorem 6.
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HeHTpa.TII/IBaTOpLI B JAAaroHaJIbHbBIX IIPAMBIX IIpeJeJjiaXxX
CUMMETPUYECKHUX I'PYIIII 1 MOHOMMAJIBHBIX I'DYIIIL

YasBue B.I'toBen

Kadempa maremarukn

BanxHEeBOCTOYHBIN TeXHUYECKUN YHUBEPCUTET
Ankapa, Typrus

Awnnoranusi. [leHTpaan3aTopbl KOHEYHBIX MOATPYII B IPSIMOM IpeJesie KOHEUHBIX U (PUHUTAPHBIX CAM-
METPUYIECKUX TPYII Uepe3 CTPOro JUArOHAJbHBIE BJIOXKEeHHs oxapakTepm3oBanbl B 2015 r. I'toBenowm,
Keresem u Kysykyorny. B crarbe sTa maess pacupocTpaHsieTCss Ha CJIydail JUArOHAJIBHBIX BJIOXKEHUM.
Kpowme Toro, mocpeacTBoM IuaroHaJILHOTO BJIOXKEHUsT CTPOUTCS HOBBIN KJIacC OECKOHETHBIX TPEIETbHBIX
MOHOMHUAJIBHBIX TPYIIIL.

KurodeBrie ciioBa: neHTpaIN3aTop, IPOCTOE JOKAJIBHO KOHEYHOE JUArOHAJIBHOE BJIOYKEHUE, COXPAHI-
IOIllee YPOBEHB.

— 544 —



