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Introduction
In computational hydrodynamics, the MacCormack method [1, 2] is a widely used discretiza-

tion scheme for numerical solution of hyperbolic partial differential equations.This 2-nd order
finite difference approximation method was first introduced by Robert W. MacCormack in 1969.
D.Gottlieb and E.Turkel proposed a modification [3] of the MacCormack scheme, known as
scheme 2–4. It has a 2-nd order of accuracy in time and 4-th order in space. This scheme has
been successfully used for solving a wide range of gas-dynamic and acoustic problems. Fur-
ther improvements of the MacCormack method in literature [4–17] were aimed at increasing the
approximation order on the base of explicit or implicit stencils for derivative approximations.
The implicit stencils are used in the so called compact schemes, which have a particular ad-
vantage that do not require a significant extension of the stencil size with an increase in the
order of approximation. A new series of compact MacCormack-type schemes with one-sided
implicit templates is presented in [14], where explicit boundary stencils are given, boundary con-
ditions are described and the results of test calculations are shown. The authors conclude that
the compact methodology provides a significant performance advantage over previous explicit
MacCormack-type schemes.

Previously, the classical MacCormack scheme was used in [19, 20] to simulate the hydrody-
namic outflow of planetary atmospheres caused by the absorption of extreme ultraviolet (EUV)
radiation from the Sun in the upper atmosphere. This process plays a very important role in
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the evolution of planets. However, application of the original MacCormack scheme for this task
was limited to a rather narrow range of parameters for which the scheme worked steadily. This
is because of large gradients of density> pressure and especially temperature in vicinity of plan-
ets, where the original MacCormack scheme produces growing non-physical oscillations. In this
regard, our paper considers the advantages of using a modification of the MacCormack scheme
of the 4th order with a compact approximation.

1. Description of the compact schemes

We consider two modified MacCormack-type schemes (4/2 and 4/4) described by R. Hixon
and E.Turkel [14]. The peculiarity of this method is that the derivative operator splits into two
finite difference operators

D =
DF +DB

2
, (1)

where DF, DB are the forward and backward derivative operators, respectively. In 4/2 compact
scheme, the spatial derivatives of a function f(x) are determined by the following equations

ADB
i−1 + (1−A)DB

i =
1

∆x
(fi − fi−1),

ADF
i+1 + (1−A)DF

i =
1

∆x
(fi+1 − fi),

(2)

were A =
1

2

(
1 ± 1√

3

)
and the sign selection depends on the choice of the boundary stencils.

We choose sign "minus" according to [14].
Taylor series expansion of the forward and backward operators gives:
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(3)

Hence this scheme provides the 4th order accuracy for derivative approximation (2).
The 4/4 compact scheme implies larger stencil size as follows:
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(4)

The Taylor series expansion of these operators also shows a 4th order of accuracy:

DB = f ′
x +

(∆x)3

36
f
(IV )
x +O(∆x)4,

DF = f ′
x − (∆x)3

36
f
(IV )
x +O(∆x)4.

(5)

We consider unsteady conservative hyperbolic system of equations written in the vector form
as follows

Ut + {G(U)}x = Q(U), (6)

where U is the vector of unknown functions, G(U) is the given vector function of U , and Q is
the source function depending generally on U , x. To solve this equation, we apply the four-stage
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Runge-Kutta time marching method (RK4) using the compact MacCormack schemes

h(1) = −∆tDF [G(Un)] + ∆tQ(Un),

h(2) = −∆tDB [G(Un + α2h
(1))] + ∆tQ(Un + α2h

(1)),

h(3) = −∆tDF [G(Un + α3h
(2))] + ∆tQ(Un + α3h

(2)),

h(4) = −∆tDB [G(Un + α4h
(3))] + ∆tQ(Un + α4h

(3)).

(7)

Here, ∆t is the time step, α2 =
1

2
, α3 =

1

2
, α4 = 1 are the coefficients for the RK4. DF and DB

are the forward and backward spatial derivative approximations determined by equations (2) or
(4). The function on the next time step is calculated as follows

Un+1 = Un + δ1h
(1) + δ2h

(2) + δ3h
(3) + δ4h

(4), (8)

were δ1 =
1

6
, δ2 =

1

3
, δ3 =

1

3
, δ4 =

1

6
are also the coefficients for the RK4 method.

R. Hixon and E. Turkel [14] noted that the 4/2 compact scheme using the RK4 time marching
scheme has 4-th order of accuracy in space, and the time accuracy would depend on nonlinear
accuracy of the time advancement algorithm. Earlier R. Hixon [12] mentioned that the RK4
method would have a 4-th order of accuracy in linear problems, and in nonlinear problems an
order less than the 4-th.

Each compact scheme requires an appropriate choice of the boundary stencils. In particular,
explicit five-point boundary stencils for the 4/2 compact scheme derived in [14] are given by
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Also the boundary stencils for the 4/4 compact scheme are given by
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R.Hixon noted [21] that the numerical realization of the boundary stencils for compact scheme
might have a great effect on stability and accuracy of the scheme, since the error can propagate
from the boundaries into the computational domain.

2. Statement the problem of atmospheric loss

We consider a 1-D unsteady hydrodynamic equations in spherical coordinates which were
applied in [19] for simulation of upper atmosphere of planets exposed by EUV solar radiation.
Numerical solution of this problem was obtained on a base of the original two-stage MacCormack
scheme, which is of 2-nd order accuracy in both space and time,

∂[ρr2]

∂t
+

∂[ρvr2]

∂r
= 0,

∂[ρvr2]

∂t
+

∂[r2(ρv2 + P )]

∂r
= −ρβ + 2Pr,

∂

[
r2
(
ρv2

2
+

P

γ − 1

)]
∂t

+

∂

[
vr2

(
ρv2

2
+

γP

γ − 1

)]
∂r

= −ρvβ + qr2.

(11)

Here, t and r are the dimensionless time and radial distance, respectively; β is the constant
parameter equal to the ratio of the gravitational and thermal energies of a gas particle at the lower
boundary of the computational domain which is near the planetary surface. In the astrophysical
literature, β is called as "Jeans parameter", characterizing ability of particles to overcome the
planetary gravitation. The gas parameters ρ, v, P, γ, q are the dimensionless mass density, radial
velocity, pressure, adiabatic index and normalized EUV heating rate, respectively. Here the
radial distance, density and pressure are normalized to their values at the lower boundary R0,
ρ0 and P0, respectively; the velocity is normalized to

√
P0/ρ0

According to [19], the heating rate can be approximated by the analytical function depending
on the density distribution in the atmosphere

q(r) = 0.767Bρ(r) exp

(
−
∫ ∞

r

0.6as(s
1
3 + 1)ρ(s)ds

)
. (12)

Here a = σρ0R0/m, where σ is the cross section of EUV absorbtion by the atmospheric atom,
and m is the mass of atom; B = 0.096 IEUV , where IEUV is the intensity of the EUV radiation
at the upper boundary far away from the planetary surface.

Initial conditions with isothermal density distribution are given by

ρinit = exp

[
β

(
1

r
− 1

)]
,

vinit = 0.1(r − 1),
Pinit/ρinit = 1,

(13)

where ρinit, vinit, Pinit are the mass density, radial velocity and pressure at the initial time.
At the lower boundary (r=1) we set conditions for the density and pressure,

ρ = 1, P = 1. (14)

The velocity at this boundary is determined by the solution.
The upper boundary (r = rm) has to be chosen at sufficiently large distance rm, where the

flow becomes supersonic. In such case, physical quantities at this boundary are determined by the
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solution in the interior region. In our numerical scheme, we calculate the upper boundary velocity,
density and pressure at each time step, using relations along three outgoing characteristics:

dv

dt±
ρc± dP

dt±
= 0,

dP

dt0
− c2

dρ

dt0
= 0,

dr

dt±
= v ± c,

dr

dt0
= v,

(15)

where d/dt+,− = ∂/∂t+ (v ± c)∂/∂r, and d/dt0 = ∂/∂t+ v∂/∂r.
Intensity of atmospheric loss can be written as

L = ρ(rm)v(rm)r2m, (16)

where ρ(rm) and v(rm) are the mass density and radial velocity at the upper boundary of
the computational domain, and rm is the radial distance to the boundary. When solving the
problem, we are interested in evolution of the loss rate L, as well as radial profiles of the velocity
(v), pressure (P ), density (ρ) and temperature (T = P/ρ) for various parameters β. During
time relaxation, radial distributions of the atmospheric parameters evolve to a stationary flow
structure with supersonic velocity at the upper boundary. An existence of such supersonic outflow
regime is directly related to the EUV heating source.

3. Calculation algorithm
For computational convenience, we redefine the variables and introduce new functions:

ρ′ = ρr2, P ′ = Pr2 = ρ′T,

S = ρ′v, G = Sv + P ′, E =
Sv

2
+

P ′

γ − 1
,

W =
Sv2

2
+

γvP ′

γ − 1
.

(17)

Using new notations (17), we transform hydrodynamic equations (11) to those with respect
to three unknown functions ρ′, E,W :

∂ρ′

∂t
+

∂S

∂r
= 0,

∂S

∂t
+

∂G(E,S, ρ′)

∂r
= −ρ′

β
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+

2(γ − 1)

r
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2ρ′

)
,

∂E

∂t
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∂r
= −S

β

r2
+ q′ +H,

G(E,S, ρ′) = (γ − 1)E +
(3− γ)

2ρ′
S2,

W (E,S, ρ′) =
S

ρ′

[
γE − (γ − 1)

S2

2ρ′

]
,

q′(r) = 0.767Bρ′(r) exp(−
∫ rm

r

0.6a(s
1
3 + 1)

ρ′(s)

s
ds),

(18)

where H is the additional stabilization term specified below. As mentioned by [14], stability of
the scheme is provided by the Courant–Friedrichs–Lewy (CFL) condition, which yields the upper
limit for time step ∆t

∆t = K
∆r

max(|v|+ c)
, c =

√
γ
P

ρ
, K < 1. (19)
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To solve equations (18), we apply two compact MacCormack-type schemes RK4-4/2 and
RK4-4/4. The first one is described above by formulas (2), (7) with boundary stencils (9), and
the second one is related to (4), (7) with boundary stencil (10).

In cases of large parameters β, the heating source term has typically a very steep enhancement
for increasing radial distance just prior its maximum point. This leads to the corresponding very
large gradient of the temperature before its maximum. This temperature behaviour might cause
growing oscillations of solution in the region of enhanced gradient. These oscillations can be
suppressed by a stabilizing additive inserted in the right hand side of the energy equation. We
use the stabilizing term defined as

H = λh2 ∂

∂r

(
ρ′
∂T

∂r

)
. (20)

where λ is a constant coefficient, and h is the grid size.

4. Results
In our simulations, we apply the basic parameters similar to those used in [19]

IEUV = 10, r ∈ [1, 20], γ =
5

3
, a = 1.593e4.

The criterion for choosing the upper boundary is the supersonic velocity condition. This condition
will be satisfied if the upper boundary is set at the distance rm = 20. The calculations were
performed on five uniform grids (3000, 4000, 8000, 16000, 20000 points) for different parameters
β (30, 40, 50, 60) and the CFL number K = 0.5.

For the stabilizing term we use the following grid approximation

Hn
i = λh

[
Tn
i+1 − Tn

i

ri+1 − ri
·
ρni + ρni+1

2
−

Tn
i − Tn

i−1

ri − ri−1
·
ρni + ρni−1

2

]
, (21)

where λ = 2, n is the number of time step, and i is the number of spatial grid point.
In each case, calculations were performed during sufficiently long time to obtain a stationary

solution with constant value of the loss rate L. A stationary state of the solution is characterized
also by the integral energy conservation∫ rm

r0

qρ′dr = Lβ + L

(
v(rm)2 − v(r0)

2

2
+

γ

γ − 1
(T (rm)− T (r0))

)
(22)

We have to note about restrictions of usage initial conditions (13), which can provide a stable
calculations only for moderate β parameters (β < 50). Taking this into account, we used results
for smaller β as initial conditions when calculated for larger β. For example, the final results for
β = 50 were used as initial conditions to calculate case β = 60, and so on.

Fig. 1 shows variations of the loss rate L as function of time for different values of the param-
eter β in the range from 30 to 60. This parameter would be very large in cases of giant planets,
heavy gas particles or low temperature of the atmosphere. One can see that the stationary loss
rate is larger, when the beta parameter is smaller.

The computational complexity of the problem of the hydrodynamic atmospheric outflow is
associated with a certain radial dependence of the heating rate, the gradient of which increases
rather sharply as we approach the planet. This yields a consequent sharp increase in temperature,
the maximum of which is substantially higher for larger values of the main parameter β, as can
be seen in Fig. 2. Radial gradients of the density, pressure and temperature become as stronger
as larger the parameter β.
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Fig. 1. Time dependence of the atmospheric loss rate for different parameters β

Fig. 2. The atmospheric temperature as function of the radial distance

Fig. 3 shows the radial velocity as the increasing function of the radial distance. Contrary to
temperature, the velocity maximum, reached at the upper boundary, somewhat decreases with
an increase in the parameter β.

Fig. 4 at the top panel (a) demonstrates the stationary velocity maximum reached at the
upper boundary in dependence on the grid step. In addition, at the bottom panel (b) it shows

– 506 –



Kseniya D.Gorbunova, Nikolai V. Erkaev Compact MacCormac-type Schemes Applied . . .

Fig. 3. The radial velocity profiles

the approximation errors δ (for the grid step h = 0.004) corresponding to the original MacCormac
scheme and the modified compact scheme described above.,draft

δ =

(
v
∂v

∂r
+

1

ρ

∂P

∂r

)
r2

β
+ 1. (23)

For the exact stationary solution, expression (23) must vanish. Fig. 4 indicates clearly that the
compact MacCormac scheme provides much better accuracy compared to the original scheme.
Moreover, applying the original MacCormac scheme for the same problem we get numerical
instability for β > 40, while the compact MacCormac-type scheme used in our work allows us to
obtain stable solutions in wide range of the β parameter.

Conclusions

We analyzed an application of the compact MacCormack-type scheme for solving the hy-
drodynamic problem of atmospheric escape due to absorption of the extreme solar radiation,
which is important for planetary evolution models. The gradients of the physical quantities
(temperature, density, pressure) increase crucially with increasing Jeans parameter β, which
makes computational difficulties. In particular, a stabilizing additive was introduced to suppress
possible oscillations appeared in the region of the very steep rise in temperature in front of its
peak. The results were compared with those presented in [19, 20], which were obtained using
the original MacCormack scheme. Our study reveals a significant advantage of the compact
MacCormack scheme RK4-4/2, which allows one to solve the problem considered above for large
values of the Jeans parameter (β > 40), while the scheme used in [19, 20] becomes unstable in
this range of the parameter.

In this work we used the compact scheme on a uniform spatial grid, and an extension of the
method on non-uniform grids would make further substantial improvement.
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Fig. 4. a) The stationary velocity maximum as function of the grid step; b) Approximation
error δ defined by formula (23) in cases of the original MacCormac and the modified compact
MacCormac-type schemes, β =30
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Аннотация. В этой статье рассматриваются преимущества компактной схемы типа МакКормака
над ее оригинальной версией при моделировании гидродинамического истечения атмосфер планет,
обусловленного поглощением ультрафиолетового излучения Солнца в верхних слоях атмосферы.
Приведены результаты расчетов с разными параметрами задачи.
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