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Abstract. We investigate the well-known hypothesis of D. R. Hughes that the full collineation group of
a non-Desarguesian semifield projective plane of a finite order is solvable (the question 11.76 in Kourovka
notebook was written down by N. D.Podufalov). The spread set method allows us to prove that any non-
Desarguesian semifield plane of order pN , where p ≡ 1 (mod 4) is prime, does not admit an autotopism
subgroup isomorphic to the dihedral group of order 8. As a corollary, we obtain the extensive list of
simple non-Abelian groups which cannot be the autotopism subgroups.
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Introduction

A projective plane is called a semifield plane if its points and lines are coordinatized by a
semifield, that is a non-associative ring Q = (Q,+, ·) with identity where the equations ax = b

and ya = b are uniquely solved for any a, b ∈ Q\{0}. The study of finite semifields and semifield
planes started more than a century ago with the first examples constructed by L.E. Dickson [1].

By the mid-1950s, some classes of finite semifield planes had been found. All of them
had the common property that the collineation group (automorphism group) is solvable. So
D.R. Hughes conjectured in 1959 in his report that any finite projective plane coordinatized by
a non-associative semifield has the solvable collineation group. This hypothesis is presented in
the monography [2, Ch. VIII, Sec. 6]; it is proved also that the hypothesis is reduced to the
solvability of an autotopism group as a group fixing a triangle. In 1990 the problem was written
down by N. D. Podufalov in the Kourovka notebook ( [3], the question 11.76).

We represent the approach to study Hughes’ problem based on the classification of finite
simple groups and the theorem of J.G. Thompson on minimal simple groups. The spread set
method allows us to identify the conditions when the semifield plane with certain autotopism
subgroup exists. This method can be used also to construct examples, including computer
calculations. The elimination of some simple groups as autotopism subgroups follows to the
progress in solving the problem.

It is shown by the author in [4,5], that an autotopism of order two has the matrix represen-
tation convenient for calculations and reasoning. These marices are used further to represent the
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elementary abelian 2-subgroups and 2-elements in the autotopism group [6,7]. Also it was proved
that any non-Desarguesian semifield plane of odd order cannot admit an autotopism subgroup
isomorphic to the alternating group A5 [8].

Here we use the spread set method to prove that any semifield plane of order pN , p is prime
and p − 1 is divisible by 4, cannot admit an autotopism subgroup isomorphic to the dihedral
group D8 of order 8, see Theorem 2.1. The proof is based on a concretization of a geometric
sense of autotopisms of order 2 and 4, it uses also the matrix representation of autotopisms of
order 4. Obviously, the presence of this group in almost all simple non-Abelian groups allows us
to exclude an extensive list from possible autotopism subgroups.

1. Definitions and preliminary results

We use main definitions, according [2, 9], see also [6], for notifications.
Consider a linear space W , n-dimensional over the finite field GF (ps) (p be prime) and the

subset of linear transformations R ⊂ GLn(p
s) ∪ {0} such that:

1) R consists of pns square (n× n)-matrices over GF (ps);
2) R contains the zero matrix 0 and the identity matrix E;
3) for any A,B ∈ R, A ̸= B, the difference A−B is a non-singular matrix.

The set R is called a spread set [2]; it is an image of an injective mapping θ from W :
R = {θ(y) | y ∈W}. Determine the multiplication on W by the rule x ∗ y = x · θ(y) (x, y ∈W ).
Then ⟨W,+, ∗⟩ is a right quasifield of order pns [9, 10]. Moreover, if R is closed under addition
then ⟨W,+, ∗⟩ is a semifield. This semifield coordinatizes the projective plane π of order pns such
that:

1) the affine points are the elements (x, y) of the space W ⊕W ;
2) the affine lines are the cosets to subgroups

V (∞) = {(0, y) | y ∈W}, V (m) = {(x, xθ(m)) | x ∈W} (m ∈W );

3) the set of all cosets to the subgroup is the singular point;
4) the set of all singular points is the singular line;
5) the incidence is set-theoretical.

To construct and study finite semifields, we use a prime field Zp as a basic field. In this case
the mapping θ is presented using linear functions only; it greatly simplifies the reasoning and
calculations (also computer).

The solvability of a collineation group Aut π for a semifield plane is reduced [2] to the solv-
ability of an autotopism group Λ (collineations fixing a triangle). Without loss of generality, we
can assume that autotopisms are determined by linear transformations of the space W ⊕W :

λ : (x, y) → (x, y)

(
A 0

0 B

)
,

here the matrices A and B satisfy the condition (for instance, see [11])

A−1θ(m)B ∈ R ∀θ(m) ∈ R. (1)

The collineations fixing a closed configuration have special properties. It is well-known [2],
that any involutory collineation is a central collineation or a Baer collineation.
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A collineation of a projective plane is called central, or perspectivity, if it fixes a line pointwise
(the axis) and a point linewise (the center). If the center is incident to the axis then a collineation
is called an elation, and a homology in another case. The order of any elation is a factor of the
order |π| of a projective plane, and the order of any homology is a factor of |π| − 1. All the
perspectivities in an autotopism group are homologies in the case when a semifield plane is
of odd order. They form the cyclic subgroups [12] which are normal in Λ, and contain three
involution homologies:

h1 =

(
−E 0

0 E

)
, h2 =

(
E 0

0 −E

)
, h3 =

(
−E 0

0 −E

)
.

Obviously these homologies are all in the center of Λ.
A collineation of a finite projective plane π is called a Baer collineation if it fixes pointwise a

subplane of order
√

|π| (Baer subplane). We use the following results on the matrix representation
of a Baer involution τ ∈ Λ and of a spread set obtained earlier in [5].

Let π be a non-Desarguesian semifield plane of order pN (p > 2 be prime). If its autotopism
group Λ contains the Baer involution τ then N = 2n is even and we can choose the base of
4n-dimensional linear space over Zp such that

τ =

(
L 0

0 L

)
, (2)

where L =

(
−E 0

0 E

)
and the Baer subplane πτ fixed by τ is the set of points

πτ = {(0, . . . , 0, x1, . . . , xn, 0, . . . , 0, y1, . . . , yn) | xi, yi ∈ Zp}.

In this base the spread set R ⊂ GL2n(p) ∪ {0} consists of matrices

θ(V,U) =

(
m(U) f(V )

V U

)
, (3)

where V ∈ Q, U ∈ K; Q,K are the spread sets in GLn(p) ∪ {0}, m, f are additive injective
functions from K and Q into GLn(p) ∪ {0}, m(E) = E. Note that throughout the article, the
blocks-submatrices have the same dimension by default.

It is shown by author in [6,7], that the order of a semifield plane provides a natural restriction
to the order of an elementary abelian 2-subgroup and to the order of 2-element in an autotopism
group. We will use some results and so we state it here in the more convenient form.

Theorem 1.1. Let π be a semifield plane of order pN , p be prime, p ≡ 1 (mod 4), τ ∈ Λ is a
Baer involution.

1. If α is an autotopism of order 4 and α2 = τ then the restriction of α onto the Baer
subplane πτ is a Baer involution.

2. If σ ̸= τ is a Baer involution in CΛ(τ) then the restriction of σ onto the Baer subplane
πτ is a homology if σ = hiτ (i = 1, 2, 3) or a Baer involution.

Theorem 1.2. Let π be a semifield plane of order pN , p be prime, p ≡ 1 (mod 4), α is an
autotopism of order 4, τ = α2 is a Baer involution. Then N is divisible by 4, and the base of
the linear space can be chosen such that τ is (2) and

α =


iL 0 0 0
0 L 0 0
0 0 iL 0
0 0 0 L

 , (4)
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where i ∈ Zp, i2 = −1. The spread set R of the plane π is formed by matrices

θ(V1, U1, V2, U2) =


m1(U2) m2(V2) f1(V1) f2(U1)
m3(V2) m4(U2) f3(U1) f4(V1)
ν(U1) ψ(V1) µ(U2) φ(V2)
V1 U1 V2 U2

 , (5)

where any block-submatrix is (N/4 ×N/4)-dimensional, V1 ∈ Q1, U1 ∈ K1, V2 ∈ Q2, U2 ∈ K2,
the matrix sets Q1, K1, Q2, K2 are the spread sets of semifield planes of order pN/4, all the
functions are additive.

Note, that α is determined up to multiplying to involution homologies hi from the center of Λ
(see the proof in [7]). If we consider certain subgroup of Λ then we can ignore these homologies.

The second statement of the theorem 1.2 is missed in [7] because obviously but here we must
reconstruct it due to the importance for the main result.

Indeed, we consider the condition (1) for the autotopism α and the matrix θ(V,U) (3):(
−iL 0

0 L

)(
m(U) f(V )

V U

)(
iL 0

0 L

)
=

(
Lm(U)L −iLf(V )L

iLV L LUL

)
.

Then we conclude that

LV L ∈ Q, LUL ∈ K, m(LUL) = Lm(U)L, f(LV L) = −Lf(V )L, ∀V ∈ Q, ∀U ∈ K.

So the semifield planes of order pN/2 with the spreads Q and K admit the Baer involution (2)
and the matrices V ∈ Q, U ∈ K are of the same form as (3):

V =

(
ν(U1) ψ(V1)

V1 U1

)
, U =

(
µ(U2) φ(V2)

V2 U2

)
.

If we suppose that

m(U) = m(V2, U2) =

(
m1(V2, U2) m2(V2, U2)

m3(V2, U2) m4(V2, U2)

)
,

then from m(−V2, U2) = Lm(V2, U2)L we obtain that the functions m1, m4 depend on the
block U2 and other functions on V2. For the function f(V ) we use the condition f(−V1, U1) =

= −Lf(V1, U1)L and complete the proof.

2. Main result
Theorem 2.1. Any non-Desarguesian semifield plane π of order pN , where p > 2 is prime and
p ≡ 1 (mod 4), does not admit an autotopism subgroup isomorphic to the dihedral group of order
8 without homologies.

Proof. Let H ≃ D8 be a subgroup of Λ, H = ⟨α⟩ h ⟨σ⟩, |α| = 4, |σ| = 2, σασ = α−1. The
autotopism α2 = τ is a Baer involution, so we can choose the base of 2N -dimensional linear space
such that τ is the matrix (2), α is the matrix (4) and the spread set consists of matrices (5).

Further, σ is a Baer involution commuting with τ , and then we have

σ =


A1 0 0 0

0 A2 0 0

0 0 B1 0

0 0 0 B2

 , A2
1 = A2

2 = B2
1 = B2

2 = E.
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According the Theorem 1.1, the restriction of σ onto the Baer subplane πτ is a Baer involution,
so A2 ̸= ±E, B2 ̸= ±E. From the condition σασ = α−1, we have

A1LA1 = B1LB1 = −L, A2LA2 = B2LB2 = L,

A1 =

(
0 A11

A12 0

)
, A2 =

(
A21 0

0 A22

)
, B1 =

(
0 B11

B12 0

)
, B2 =

(
B21 0

0 B22

)
.

The restrictions of α and σ onto the Baer subplane πτ are commuting Baer involutions and, once
more from the Theorem 1.1 and [6], we can choose the base of πτ such that A21 = A22 = B21 =

B22 = L and

σ =



0 S 0 0 0 0 0 0

S−1 0 0 0 0 0 0 0

0 0 L 0 0 0 0 0

0 0 0 L 0 0 0 0

0 0 0 0 0 S 0 0

0 0 0 0 S−1 0 0 0

0 0 0 0 0 0 L 0

0 0 0 0 0 0 0 L


.

Here, for compactness, S = A11, and A2
1 = E follows A12 = S−1. The equality B1 = A1 we

obtain from the condition (1) for σ and θ(V,U) = E ∈ R:(
A1 0

0 A2

)(
B1 0

0 B2

)
=

(
A1B1 0

0 E

)
∈ R⇒ A1B1 = E.

Now we simplify the matrix σ changing the base by the block-diagonal transition matrix

T = diag (E,S,E,E,E, S,E,E).

This modification preserves the matrices τ and α, but allows us to write σ in the more convenient
form:

σ =



0 E 0 0 0 0 0 0

E 0 0 0 0 0 0 0

0 0 L 0 0 0 0 0

0 0 0 L 0 0 0 0

0 0 0 0 0 E 0 0

0 0 0 0 E 0 0 0

0 0 0 0 0 0 L 0

0 0 0 0 0 0 0 L


.

Consider the condition (1) for the spread set (5) and the Baer involution σ. For V2 = U2 = 0

we have: 
0 E 0 0

E 0 0 0

0 0 L 0

0 0 0 L




0 0 f1(V1) f2(U1)

0 0 f3(U1) f4(V1)

ν(U1) ψ(V1) 0 0

V1 U1 0 0




0 E 0 0

E 0 0 0

0 0 L 0

0 0 0 L

 =

=


0 0 f3(U1)L f4(V1)L

0 0 f1(V1)L f2(U1)L

Lψ(V1) Lν(U1) 0 0

LU1 LV1 0 0

 ∈ R.
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So, the matrices LU1 and LV1 belong to the spread sets Q1 and K1 for all V1 ∈ Q1, U1 ∈ K1.
For instance, we have L ∈ K1 if V1 = E. The spread set K1 of a semifield plane is closed
under addition, so the non-zero degenerate matrix L+E belongs to K1, that is impossible. This
contradiction proves the theorem.

Note that the absence of homologies inH is the natural condition for us because we investigate
the existence problem for simple non-Abelian subgroups in the autotopism group Λ (for instance,
minimal simple non-Abelian groups from the Thompson’s list). Indeed, the homologies generate
the normal subgroup of Λ; moreover, the involution homlogies are in the center of Λ.

Let G be a subgroup of Λ and S be the Sylow 2-subgroup of G. If two involutions in S

does not commute then they generate the dihedral subgroup in S. Further, using the results
of D. Goldschmidth [13] on strongly closed subgroups (see also D.Gorenstein [14, th. 4.128]),
we conclude that D8 is contained almost in all finite simple non-Abelian groups and list the
exceptions.

Theorem 2.2. Let π be a non-Desarguesian semifield plane of order pN , where p > 2 is prime
and p ≡ 1 (mod 4). Then its autotopism group Λ does not contain a simple non-Abelian subgroup,
except probably the following: PSL(2, 2n), n > 2, PSU(3, 2n), n > 2, Sz(2n), n is odd, n > 1,
PSL(2, q), q ≡ ±3 (mod 8), J1 or 2G2(3

n), n is odd, n > 1.

Referring to the Thompson’s list, we clarify also that the autotopism group Λ under the order
condition above does not contain PSL(2, 3n), n > 2 is prime, PSL(2, n), n ≡ ±1 (mod 8) is
prime, and PSL(3, 3).

Conclusion

In order to study Hughes’ problem on the solvability of the full collineation group of a finite
non-Desarguesian semifield plane, the author considers it possible to use the obtained results
to further investigations. The method applied will probably be useful to study other small
autotopism subgroups under the conditions on the plane order.

This work is supported by the Krasnoyarsk Mathematical Center and financed by the Ministry
of Science and Higher Education of the Russian Federation (Agreement no. 075-02-2022-876).
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Группа диэдра порядка 8 в группе автотопизмов
полуполевой проективной плоскости нечетного порядка

Ольга В.Кравцова
Сибирский федеральный университет

Красноярск, Российская Федерация

Аннотация. Изучается известная гипотеза Д. Хьюза о разрешимости полной группы автомор-
физмов конечной недезарговой полуполевой проективной плоскости (также вопрос 11.76
Н.Д.Подуфалова в Коуровской тетради). Метод регулярного множества позволяет доказать, что
недезаргова полуполевая плоскость порядка pN , где p — простое, p− 1 делится на 4, не допускает
подгрупп автотопизмов, изоморфных диэдральной группе порядка 8. В качестве следствия выде-
ляется обширный список простых неабелевых групп, не являющихся подгруппами автотопизмов.

Ключевые слова: полуполевая плоскость, регулярное множество, бэровская инволюция, гомоло-
гия, автотопизм.
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