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1. Introduction and preliminaries

Following of ( [3-5]) we define a general random censorship model in the following way:
Let Z be a real random variable (r.v.) with distribution function (d.f.) H(z) = P(Z < z),

xz € R. Let us assume that A®) ... A®) are pairwise disjoint random events for a fixed in-
teger k > 1. Let us define the subdistribution functions H(z;i) = P(Z < z,A"),i € & =
{1,...,k}. Suppose that when observing Z we are interested in the joint behaviour of the

pairs (Z,A®), i € ¥. Let {(Zj,Agl), e ,A§k)), j = 1} be a sequence of independent replicas
of (Z,AM ... A®) defined on some probability space {2, A, P}. We assume throughout that
functions H(x), H(x;1),..., H(z; k) are continuous. Let us denote the ordinary empirical d.f. of
Z1, ..., Zyn by H,(x) and introduce the empirical sub d.f. H,(z;i),i €

1 n
fz §1(Z; < x), (211) e R xS,
n

where R = [—o0; oc], 5](-Z = I(A§Z ) is the indicator of event Ag-i) and
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1 —
H,(z;1) + -+ Hy(z; k) = fZI(Zj <z)=H,(z), z €R,

is the ordinary empirical d.f.. Properties of many biometric estimates depend on the limit

behaviour of proposed empirical statistics. The following results are straightforward consequences

of the Dvoretzky—Kiefer—Wolfowitz exponential inequality with constant D=2 [8,12] :
Foralln=1,2,... and e >0

1/2
P ( sup |Hp(z) — H(z)| > ((1 +e) . 10gn> > < 2n~ (e, (1)

|| <o0 2 n
and
P(slup Halai) ~ Gz )| > 205 L ER) ) < an-rv9), )
z|<oo
Vector-valued empirical process {an(t) = (a%o)(to),agll)(tl),...,a,(zk)(tk)),t =
(to,...,tg) € Rkﬂ} plays a decisive role, where a%o)(m) = n(H,(z) — H(z)),
asli)(a:) = /n(H,(z;i) — H(z;7)), 1 € S. The following Burke-Csorgé—Horvath

theorem [3, 4] is an extended analogue of Komlés-Major-Tusnddy’s result [9-11].

3Kk >k sk ok ok ok ok ok ok ok >k sk ok ok ok sk ok k sk skosk sk sk skskoskosk sk sk ok sk sk skosk skskoskok sk ok ok skook skosk sksk skskoskoskoskoskoskoskskoskoskoskskoskokkokskokskkk Theorem

A([3,4]).  If the underlying probability space {Q, A, P} is rich enough then one can define
k + 1 sequences of Gaussian processes BY (x),Br(Ll)(a:),...,B,(lk) (z) such that for a,(t) and
Ba(t) = (B (z0), B (21), ..., B (x), t = (to, ..., ty) we have

P{ sup Han(t) - Bn(t)H(kH) > n_%(M(logn) + z)} < Kexp (—Az2), (3)
teR*T!

for all real z, where M = (2k+1)A1, K = (2k+1)A2 and A = A3/(2k + 1) with Ay, A2 and A3 are
absolute constants. Moreover, By, is (k + 1)-dimensional vector-valued Gaussian process that has
the same covariance structure as the vector a,(t), namely, EB{" (z) =0, (z,i) € RxS = SU{0}.
We have for any i,j € S, i # j, x,y € R that

BB, (2)B1 (y) = win {H(x), H(y)} = H(x) - H(y),
BBy () B (y) = min {H(x31), H(y; 1)} = H(w;d) - H(y:1), (4)
EB{(z)B|

BY (y) = —H(x;4) - H(y:J),
) = min {H(z;i), H(y; j)} — H(x) - H(y; ).

——~log n) in (3) then

P{ o Han(t) B B”(t)HUHl) > Cn™? log”} < Kn~0+e),
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Let us note that in proving Theorem A (Theorem 3.1 in [4]) the sequence of two-parametrical
Gaussian processes Q¥ (z,n), Q) (z,n),...,Q¥) (2,n) was constructed such that for a,,(t) and

Q(t;n) = (Q(O) (z;n),...,QW) (z; n)), t e R* the following approximation was used

(k+1) L
=0 (n‘? log? n> ,

where Q(t,n) is the (k + 1) dimensional vector-valued Gaussian process and Q(t; n)gn%an(t).

an(t) — n_%(@(t, n)

Hence
EQW(z;n) =0, (z,i)eRxS
and we have for any i,7 € 3, i # j, x,y € R that
EQO (2;7)Q (y;m) = min(n, m){ min{H (z), H(y)} — H(x)H(y)},
EQ) (2;1n)Q (y; m) = min(n, m){ min{H (x;4), H(y;1)} — H(z)H(y; 1)}, 5)
EQW (2;n)QW (y;m) = mm(n m){ min{H (z;4), H(y;4)} — H(z;1)H (y; )}

EQW (2;n)QY (y;m) = — min(n, m)H (x;4) - H(y; j).
Let us observe that {Q(i),i € 3} are Kiefer processes and they satisfy the distributional equality
QO (s ) ZW O (H (;);n) — H(a; i)W (1), (6)
where {W(i) (y;n),0 < y < L,n > 1,4 € %} are two-parametric Wiener processes with
EW® (y;n) =0 and
EW (y: n)WD (u;m) = min(n, m) min(y, u), i€ 3.
It is important to note that though Kiefer processes {Q(i), 1 € %} are dependent processes,

corresponding Wiener processes are independent. Indeed, it follows from the proof of Theorem
A that

QW (a;n) 2K (H(x;1);n),
Q@ (230) 2K (H (w;2) — H(+00; 1);n) — K(H (+00; 1);n),

Q) () 2K (H () + H(+00; 1) 4+ + H(001i — 1)in) —
— K(H(400;1) + -+ H(+o0;i — 1);n), i€S
where H(+o00;i) = lTlin H(z;i), H(+o00;1) + -+ H(+o0; k) = 1.
The Kiefer processes {IN( (y;m),0<y<1,n> 1} are represented in terms of two-parametrical
Wiener processes {W(y; n),0<y<L,n 2 1} by distributional equality
{f((y;n), 0<y<l,n> 1}2{W(y;n) —yW(Ln),0<y<1,n> 1}. (7)

Then, taking into account (6) and (7), the Wiener process {W (@ i € S} also admits the
following representations for all (x;7) € R x &

WO (H (2;1);0)2W (H (23 1);n),
W (H(z;2); n)gW(H(m; 2) + H(4+00;1);n) — WO (H(+00;1);n),...,
WO (H (z;4); n)QW(H(x;i) + H(+o0;i — 1);n) — W(H (+00;1) + -+ - + H(+00;5 — 1);n).

Now performing direct calculations of covariances of processes {W®), i € I}, it is easy to
show that these processes are independent.
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2. Kac processes under general censoring

Following [9] we introduce the modified empirical d.f. of Kac by the following way. Along
with sequence {Z;,j > 1} on a probability space {2, A, P} consider also a sequence {v,, n > 1}
of r.v.-s that has Poisson distribution with parameter Fv,, = n, n = 1,2,.... Let us assume
throughout that two sequences {Z;,j > 1} and {v,,n > 1} are independent. The Kac empirical
d.f. is

1 & .
(1) = { ﬁ;I(ZJ— <z) it v, 21 as.,

0 if v,=0 a.s.,
while the empirical sub-d.f. is

1 & () . .
— I(Z; <z,A7), i€ if vp21 a.s.,
H;‘L(x,z):{ n; (2; J ) ! .

0, 1€ if v,=0 a.s.,

with HY:(2;1)+- - -4 H;i(x; k) = H;;(x) for all # € R. Here we suppose that sequence {vy,, n > 1}
is independent of random vectors {(Zj,dj(-l), cee 6](»k)),j > 1}, where (Sy) = I(Ag.l)). Let us note
that statistics H(z;4) (and also H}(z)) are unbiased estimators of H(x;7), ¢ € § (and also of

H(z))

m=1 k=1
1 o0 n i
= E{ STEIN 6 1(Zk <a)fva =m
n m=1 k=1
1 e m,—n
= _lH(a:,z)mP(Vn =m) = —H(x;i) Z:lm r nj! =
m= 5o nm m B
= H(x;i)e ™ Z:OW = H(z;i), (z;9) eRxS
Consequently,
k k B
E[H}(x)] =) E[H;(x;9)] = H(x;i)=H(z), z€R
i=1 =1

Let us define the empirical Kac processes agf)*(x) = Vn(H;(z;i) — H(z;i)), i €S and
0)= %
al* (x)=/n(H;(x) — H(z)) .
Theorem 1. If the underlying probability space {2, A, P} is rich enough then one can
define k + 1 sequences of Gaussian processes W,(LO)(x),WT(Ll)(x),...,W,(lk)(x) such that for

an(t) = (a%(to),a* (t1), ..., al" (t)) and Wi(t) = (Wi (o), WS (t1), ..., WP (1)),
t = (to,t1,...,tx) we have

Pq sup
te@k+1

where v = 2 is an arbitrary integer, C* = C*(r) depends only on r, and K* is an absolute
constant. Moreover, W (t) is (k+1)-dimensional vector-valued Gaussian process with expectation

(k+1)
a, (t) = Wy (t)

n

> C*n 3 logn} < K*'n™", (8)
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EW®(2) =0, (2,i) € R x S. We have for any i,j €S, i # j, a,y € R that
EW (@)W (y) = min {H(z), H(y)},
EWS (@)W y) = min (s ), H(3:)} .
EWL) @)W (y) = min {H(a;1), H(y)}.

The basic relation between a,(t) and a}(t) is the following easily checked identity

o) =\ Zafo) + i) P

ieS. (10)

Hence, the approximating sequence have the form
W*
(n)7 ies,
Vn

where By)(x) is a Poisson indexed Brownian bridge type process of Theorem A and

&

WD () = BO(x) + H(x;1)

Vn

{W®)(z), 2 >0} is a Wiener process. It is easy to verify that {W,SZ) (7),(z;i) € R x §}£
{W* (H(.’L‘, z))7 (r,i) € R x §} The proof of Theorem 1 is similar to the proof of Theorem 1 of
Stute [6] and, it is omitted.

Since lifl H(z) = H}(+00) = % then using Stirlings formula, we obtain

k)
Pl =n) = P(H;(+00) = 1) = " = = _(140(1)), n— o,
n! Vorn
and o k —
. ne~"
P(H;(+00) > 1) = Pvy > n) = Y~ =o(l), n—co.
k=n+1 :

Thus H(x) with positive probability is greater than 1. In order to avoid these undesirable
property the following modifications of the Kac statistics is proposed

Hy(x)=1- (1-Hi(x)I(Hi(z) <1), xR, a
Hy(a;9) =1 — (1 — Hp(2;0)) 1 (HE(230) < 1), (239) e Rx Q.

The following inequalities are useful in studying the Kac processes.

Theorem 2. Let {v,,n > 1} be a sequence of Poisson r.v.-s with Ev, =mn. Then for any e > 0
such that

n €
= 5 = 1 ’ 12
logn = 8(1+ £)2 ¢ = exp(l) ()
we have .
1 6 2 —Ew
P |1/n — n| > > inlogn < 2n7°Y, (13)
1 3
P( sup |H (z31) — H(z;i)| > 2(8 Og") ) <an e S, (14)
|| <00 2n
1
_ ] 3
P< sup |Hy, (w;4) — H(w;4)| > 2<5 ;5”) ) <An~iEv e, (15)
|z]<oo

-1
where w = [16 <1 + g)} .
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Proof. Let v1,72,... be a sequence of Poisson r.v.-s with Ev, = 1 for all k = 1,2,.... Then
Spn=vp—n=> (y—1)= > & and
k=1 k=1
o (e)”
Eexp(t&r) = e "exp(ty) = exp (— (t+ 1)) Z T X {e! —(t+1)}.

k=0

Using Taylor expansion for e?, we obtain

Eexp(t&) = exp{l +t+ g +(t) — (t+ 1)} = exp{t; +¢(t)}7

/3
where (t) = 5 exp(ft), 0 < 6 < 1. Taking into account that 3 < 2 for 0 < t < 1, we obtain

t3 t? t?
the estimate for ¢ (t): ¥ () < ¢ < ee Thus, E exp(t&) = exp {2 (1 + ;) }, 0<t< 1.
The following result (from [13]) is necessary for further considerations.

Lemma 1 ([13]). Let {&,,n>1} be a sequence of independent r.v.-s with B, =0, n=1,2,....
Suppose that U, A1, ..., A, are positive real numbers such that

1
Eexp(t&) < exp (2)\kt%> for k=1,2,....n |t <U. (16)

Let A=Ay +--- 4+ Ay. Then
2

. 26Xp<—2ZA) if o< z<AU,

Uz

p(’§1+_.-+€k’>z) QeXp<f—> if z>AU
5 .

1 1/2
Let us assume that A\ = 1 + %, U=1, z= 3 (gnlog n) in Lemma 1 then we obtain

1/2
1
(13). Here 0 < z = 3 (gnlog n) < (14 £)n = AU. Consider probability in (14). Using total

probability formula, we have

P( sup |H;(x;i) — H(w; )| > 2(510”)5) _

|z|<oco 2n

elogn
2n

)é/un>n> - P(vy, > n)+

|z|<oo

, R R )
. . <
—P< sup |H,(x;1) H(x,z)—l—nkgﬂék I(Zk\x)‘>2(
=n

elogn
2n

I & 3

+P< sup ’H(:z:,z) — H(x;i) — — Z 5;?)1(21« < x)‘ > 2( )2/1/n < n) - Py, <n) <
|z <oo n k=1, +1

1 max(n,vy,) A

PR DR (¢

" k=min(n,v,)+1

1 1
gP( sup ‘Hn(x;i)—H(x;i)‘>(wl)z)—FP( sup >

|z <oo 2n || <oo

- (228 <ot
2n

where we applied (2) and (13) that proves (14). Let us define T = inf {x: H,(z3i) = 1},i€S.
If 2 > 7" and v, > n then H,(z;i) = 1 and H (2;i) — H (x;i) > H; (z;i) — H(z;4) > 0. Then

assuming v, > n, we obtain

Up — 1N

1
- (E ogn

1
o ) 2) < 2n7E foopTAvE L ypTAve . e G,
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sup |H, (1) — H(m;i)‘ = {max [ sup |Hy(x;i) — H(x;i)|, sup |P~In(x,z) —H(x,z)q} <

lz[<oo o< TP e>T

< <{max | sup ‘H (x;4) — H(x;1)|, sup ‘H (x;1) — H(x,z)‘ =
z<TV 2>T)

= sup |Hy(z;i) — H(z4)|, i€S. (17)
|| <oo
With v, < n, it is obvious that H, (z;i) = H} (2;i) for all (z;i) e R x S
Now taking into account the last two relations, total probability formula and (14), we obtain

(15). Theorem 2 is proved. a
Let G, (t) = (a;9>(t0),a;1>(t1),.. (k)(tk)), where a0 (z )—\/ﬁ(f[n(x) —H(x)) L@ (x) =

=n (f[n(l‘,l) - H(x,z)) , (7;i) € R x 3. We will prove an approximation theorem of the
vector-valued modified empirical Kac process a,(t) by the appropriate Gaussian vector-valued
process W) (t),t € R""" from Theorem 2.

Theorem 3. Let {T,,n > 1} be a numerical sequence satisfying for each n the condition
T, < Ty =inf{x: H(x) =1} < co such that

min{P(A@)) - H(Tn,i)} >1-H(T,) > 2 (”Og”)m . (18)

€S 2umn

If for any e > 0 condition (12) holds then on the probability space of Theorem 2 one can define k+

1 sequences of mean zero Gaussian processes w (z), T(Ll)(x), c ,S’“)( ) with the covariance

structure (9) such that for a,(t) and Wi(t) = (WT(LO) (to), Wy(bl)(tl), I A (tk)) we have

p{ sup  |[an(t) = Wre)|*T > Cn2 logn} < Kn", (19)

€ (—o00;Tp] v+
where K is an absolute constant, C= 5(5) and B = min (r,ew) for any e > 0.

Proof. Tt is easy to see that probability in (19) can be estimated by the sum

P{ s<u;> a0 (z) — W,(LO)(:L")‘ > Cn? log n} +

’ (20)

+ZP sup ‘ () W(l)(:r)‘ >Cn %logn = qin + Qon-
x<Ty

Taking into account that for any z < T, Hj(x) < H}:(T,), and if HX(T,) < 1 then
E%O)( )= ar (z). Using formula of total probability, we have

Gin < ( a0 (x Wé“(@‘ >t 1ogn/H;;(Tn) < 1) +P(H:(T,) >1) <
z<T),
<

g
z<Ty

“(z) — Wgo)(x)] > c*n%mgn) + P(HXT,) >1) <

(21)
< Kn "+ P(H}(T,)—H(T,) >1—H(T,)
1
1 2
<K*n "+ P ( sup |H}(z) — H(x) <T 0gn> )
|z|<oo 2wn
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where Theorem 1 and the analogue of (14) for H — H, L = K*+ 4 are used. Analogously,

a®(z) - W}j)(x)‘ > C*ni logn) +§k: P(H;; (T:i) > P (A@))) <
i=1

aﬁf)*(:c) - W(i)@)‘ > C*nz logn) +

k
+ZP < sup ‘aﬁf)*(x) - W(i)(m)‘ > C*n2 logn> +

|z|<oo

+ kP

n — 1 /4rl
|v n|>(rogn

n 2

%
) ) < kLn™" + 2kn~?7,
2un

where inequalities (13), (15) and Theorem 1 are used. Now (19) follows from (21) and (22).
Theorem 3 is proved. g
3. Estimation of exponential-hazard function

In many practical situations when we are interested in the joint behaviour of the pairs
{(2,A9) i € 3} the so-called cumulative hazard functions {S™(z) = exp (—A®(2)), i € S}

plays a crucial role. Here A((z) is the i-th hazard function ( /=7
—00 (—o0;z]
A® — el St A S
@) /_OO 1—H@’ '

where AD(z) + - + A®(z) = Az) = | %

At H(z). -

Let us consider two important special cases of the considered generalized censorship model:

is the corresponding hazard function of

1. Let {X1,Xo,...} be a sequence of independent r.v.-s with common continuous d.f. F.
They are censored on the right by a sequence {Y7,Ya,...} of independent r.v.-s. They
are independent of the X-sequence with common continuous d.f. G. One can only observe
the sequence of pairs {(Zk,dk),k :1,7}, where Z; = min (X;,Y;) and §; = 551) is the
indicator of event A; = A;l) ={Z;=X;}. Inthiscase k=2, 1 - H(z) = (1 — F(z))(1 —
G(z)), H(z;1) = [ (1-G(u))dF(u). Thus SM(z) = S(x) = 1 — F(x). The useful special

— 00

case is 1 — G(z) = (1 — F(x))?, B > 0 which corresponds to independence of r.v.-s Z; and
05,5 =2 1.

2. Let us assume that k& > 1 and consider independent sequences {Yl i), 2(1')’.”} (i =
1,...,k) of independent r.v.-s with common continuous d.f. F. Let Z; =

min (Yj(l), . ,Yj(k)). Let us observe the sequences {(Zj, 5]@) L 1= 1,7k}

" (i)
~, where 5]‘

is the indicator of the event Ag.i) =

= {Zj = Yj(i)}. This is the competing risks model with S (z) =1 — F®(z), i € 3.
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Let us define the natural Kac-type estimator

~ T dH (u:i
AD (@) :/ AH@wD) g
—o 1 — Hn(u)
of AW (z), i € 3. Let wﬁf)(m) =./n (Kgf)(a:) —A® (x)) , 1 € S, is an Kac-type hazard process,
wn(t) = (w;”(tl),...,wg’“)(tk)), t = (t1,...,t), and Y (t) = (y,i”(tl),...,yg’“)(tk)) is the

corresponding vector process with

. © WO w)dH (wi) W (x) * W (wdH@w)
i) = —Hw? 1-H@ J. O-HweZ '°°

—o0
and {W,(LO)(m),Wr(Ll)(m), O A% (x)} are Wiener processes with the covariance structure (9).
Then fori € S, EY,” =0 and

where z,y < Ty = inf {x : H(z) =1} < 0.

Theorem 4. Let {T,,n > 1} be a numerical sequence satisfying for each n the condition T,, < Tx
such that

2rb2  2eb?
i > max {32511)2, o , Eb”} , (23)
logn w w
where b, = (1 — H(T,))™ !, € >0, r > 2. Then
P ( sup lwn (t) — Y,L(t)||(k) > T(n)) < k®in b, (24)
te(—oo;T, ]k
on a probability space of Theorem 2, where r(n) = <I>0bin_% logn,
Phig = ®g(e,r), ®1— are absolute constants.
Proof. Tt is sufficient to prove that for each i € &
P <sup (w§;‘> (z) - Y, (x)) > r(n)) < Oyn P (25)
x<Ty
We have representation for each 7 € & for difference
e (70 _ 170 Y i
wd (@) =YD (z)= [ (3800 ~ W) s @@ W)
" " — 2 1—H(x)
. (1— Hw)
A 2
/x (a“) (u) — W,E”(u)) dH (u) - /, (a's?)(u)) dH (u;9) .
_ n-2 =
. (1—- Hw) oo (1 — H(u))? (1 - Hn(u))
o ~(0) (%) 4
g / I ()dan (W) _ 5 g ()
—oo (1 — H(u)) (1 - Hn(u)) m=1
Using (15) and (19), we have for sum Rgg(x) + Rég (z) + Rgg(:r)
4
P | sup Z RY) (z)| > 3Cn~%logn +en~2b3 logn | <
2T m=1 (26)

<3Kn " +2Ln~"° < 3K +2L)n %, ieS.
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Rewrite Rff,z in the form

~0),1) . ,
) () = n—3 * (a" (U)) d(H (u; i) — H(us i)
R4n( ) /_Oo (1- H(u))2 (1 B ﬁn(u)) + o

z ~(0) (4) A o
~3 an_(w)dan (v) _ 50 . =(i) N
o [m (1-H(u)?> Ry () + Ry, ().

-

Then taking into account (15), we obtain for i € &

P ( sup |B) (z)] > 2en~ 382 log n> < 2Ln~v¢ < 2Ln~". (28)

z<Ty

There exists an absolute constant A such that

P (sup Eg(x) > 3An_%bi log n) < P(HMT,) >1)+
z<Ty

1 ay’ (u)day’™ (u) _1,9 _
+P sun2/ ————— 2| >3An"2b logn | < Ln"" + py,
<m<% o (L= H(u))? n o8 bn

so that for any x < T, H;;(v) < H;(T,) and if Hj;(T,) < 1 then H}(z;i) < H};(T,) and
hence Zigf)(x) = a" (x) for i € Q. It is sufficient to estimate probability p,. According to
proof of Theorem 1 in [6], supposing Ch(/n)( ) = vn(H} (z) — H(x)), al(,Q () = on(H} (731) —

H(z;i)), i€ < and using representation (10), we have p, = p1,+ Pan+ D3n+ Pan, where

T (0)
u = (Vnsup/ M S 3An- gbzlogn>
o<ty | Jooo (1 H(u))
1
Vn |vn—n| /I ayw( VdH (u; ) €<3>_2 _1.9 )
"= Do B M su Qo TV S 2(2)  ntb2logn ),
P ( n o aetl) e 1—H@)? | 2\2 g
Ve v —nl * H(u)day, (u) s(:’))‘% )
n=2P —  ———su ——= >3l n~2b; logn |,
" (n neet|) o - H@)? | 2\2 °
2 x
p4np<‘|ljnn|sup{ W} 7771 2b%10gn>
Vo et U s (1 - H(uw)) 8

Taking into account Lemma in [5], we have

P ][ O (w)dal? (u)
sup
o<,y |[Joo (1= H(u)”
where A = A(e) and B is an absolute constant. Moreover, using (13), we have
n — 1 _ 2nw
P (IV” S > <o (31)
n

It follows from (30) and (31) that

> Ab2 log n) < Bn7E, (30)

/z aly) (u)day) (u)
—o0 (1—H(u ))

Pin=P < sup
z<T)y

_ 2nw

> Ab? log un> +2n Tesn <

/f at? (w)da® (u)
oo (1= H(u))?

z<T)y

< 2n7120%1 + P <sup
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/m agg)(u)da%)(u)
o (1= H(u))

oo
<e "+ Z P | sup
m=1 z<Ty

> Ab2 10gm> P(v, =m) + on " ToEn <
W - m nw. -~
Semom B 1 BY me Dot <ot B 4 Bt (32)

m!
m=1

Analogously, using (31) and (1), we obtain

Up |Vn — TN
pon=P /i@ sup
n n x<Ty

- 1 nw
+P ('V"n' > ) <2 TEn 42T 4 P ( sup
n

/m aly) (u)dH (u; i)
o (1= H(u))?

%
> < (3) n_%bilogn, g <y, < 3”) +

2\2 2
)<

< n"loen 1+ 2n"WE L e 4 DnE. 33
<2

Nl

a,(j(i (m)‘ > (g log yn)

2 |z|<oo

Integrating by parts and using (2), we obtain

|z|<oo

Pan < 207 En 4 2pwE 4 P ( sup a(,ff(w)( > (2¢log Vn)é> < (34)
< 2n7% +2n " +e " +2Dn"E.

Finally, using (13), we have

n 1 3
Dan < P (|V T " > 3 (%logn) 2) < 2n7WE, (35)
n2

Now combining (26)-(29) and (32)-(35), we obtain (25). Theorem 4 is proved.

Corollary 1. It follows from (24) that for suitable r > 2 and € > 0 one can obtain an approxi-
mation on (—oo; T)®) with b= =1 — H(T) >0 :

sup  |lwn(t) — Yn(t)||(k) “0 (n_% log n) , n=2. (36)
te(—o00sT](k)
Now we consider joint estimation of exponential-hazard functions

{SWz) = exp (~A®(z)), i € I}. Let us consider hazard function estimate

An(z) = / T _dHnw)

—o 1 — Hn (U)
and corresponding hazard process w(®) (x) = /n (A, (z) — A(z)). In the next Theorem 5 we
W,
approximate w'.) (x) by sequence of Gaussian processes v, (x) = = H((xx))

Theorem 5. Let {T,,,n > 1} be a numerical sequence that satisfies the condition T,, < Ty for
each n such that (23) holds. Then on a probability space of Theorem 2 we have

P <sup ‘wﬁlo) (x) —Y,©) (x)‘ > ro(n)> < Uyn P, (37)

z<Th

where ro(n) = q)ob%n_% logn and ®g = Pg(e,r), U1 are absolute constants.
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Proof. 1t is easy to verify that

(3 (@) - W )
H@ e 0 H)? (1= fu(w)

W (@) = V.0 () =

n

D=

+n

/w ) (u)day (u)
— (1= H(w) (1= Ha(w)

Now further proof of (37) is similar to the proof of Theorem 4 and hence details are omitted.
Theorem 5 is proved. O

One can obtain from Theorems 4 and 5 the following theorem on deviations of processes w,&o)

and wg), 1€ Q.

Theorem 6. Let {T,,n > 1} be a numerical sequence that satisfies for each n the condition
T, < Ty such that (23) holds. Then

P ( sup ‘wﬁlo)(x)‘ > ro(n) + 2b, (e logn)é) <Un P 4nE, (38)
z<Ty
and fori € ¥
P ( sup ‘wﬁf)(m)‘ > 1o(n) 4 6b2 (g log n)é> <Uin P +3n7". (39)
Ty,

Proof. 1t is easy to verify that for any n > 1
WO (2)2W (H(z)) and WO (@)2W (H(z;9), (231) eR xS,

where {W(y),0 < y < 1} is a standard Wiener process on [0, 1]. Then probability in (38) is not
greater than

P ( sup ‘wg‘”(x) v\ (x)‘ > To(n)) +P (sup

z<T), z<Ty

A (m)‘ > 2b,, (¢ log n)%) <
1 (40)
<Uin P+ P (|W(1)| > 2 (slognﬂ) <Uin P 4ne,

where inequality (37) and well-known exponential inequality for Wiener process (see [14],
Eq. (29.2)) are used. Analogously, (39) follows from (25) and the second estimate in (40).
Theorem 6 is proved. |

To estimate the exponential hazard functions {S®(z) = exp (—A®(z)),i € I} we use the
following exponential of Altshuler-Breslow, product-limit of Kaplan-Meier and relative risk power
estimates of Abdushukurov ([1-3]):

S’&) (x) = exp (—Agf)(x)) ,
S5 (@) = Tes (1 - 20 (@) (41)
S (z) =1 — Hy(2)]" @,

where R (z) = AV (2)(An(2))7L, i € Q.
It follows from the proof of Theorem 1.4.1 in [3] that for all (z;i) € (=00, Z(n)) X S, Z(y) =
max(Zi,...,2Zy)
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: : 1 (" dH,(u;i
0< 80w -5 < o [ _Halud)
(v (12)
A

a.s. 1
o o (]).
nJ s (1 — H,(u) n
i 7 1 r dﬁn ; ) a.s. 1
ogm@_$@<2/jug:o(>
nJ- (1 —Hn(u)) n
Hence it is sufficient to consider only estimator S&) Let us introduce vector-processes
Qult) = ( D), ..., ;“(tk)) and Q(f) = ( WD), .., Sﬁ)*(tk)), where Q%(z) =
=/n (S}Q(x) - s@)(x)) and Q7% (z) = SO (2)Y,?(z), i € &.
In the next theorem vector-valued process @, (t) is approximated by Gaussian vector-valued

process Qz (1), t € RF.

Theorem 7. Let {T,,, n > 1} be a numerical sequence that satisfies for each n the condition
T, < Ty such that inequality (23) holds. Then we have on a probability space of Theorem 2

P < sup || Qu(t) — Q)| > r*(n)) <kR*n ", (43)

te(—oo;Ty](F)
1 1 1\2 .
where r*(n) = {ro(n) + onE (r(n) + 6b2 (elogn) 2) } and R* is an absolute constant.
Proof. Using Taylor expansion for each i € &, we obtain
, , . 1 , , 2
() = SO @l (@) + 5nF exp (-6 (@) (w(2)

where 85 (z) € [mm (Aﬁj) (z), A®) (g:)) , max (Aﬁ? (z), A®) (x))] Now using (24), (38) and (39),
we obtain the required result. Theorem 7 is proved. O

4. Estimation of characteristic function under random right
censoring

Let Xi, Xs,... be independent identically distributed r.v.-s with common continuous d.f.
F. They are interpreted as an infinite sample of the random lifetime X. Another sequence of
independent and identically distributed r.v.-s Y7, Y5, ... with common continuous d.f. G censors
on the right is introduced. This sequence is independent of { X;}. Then the observations available
at the n-th stage consist of the pairs {(Z;,5;),1 < j < n} = C", where Z; = min(X;,Y;) and
d; is the indicator of the event A; = {Z; = X;} = {X; <Y;}. Let

C(t) = / et (a)

— 00

be the characteristic function of d.f. F. The problem consists in estimating of d.f. F from
censored sample C(™). In some situations it is more desirable to estimate C(t) rather then
F. We consider estimator for C(¢) in this model as Fourier-Stieltjes transform of estimator

F,(z)=1—Si,(x) =1—exp (—Agll)(x)) :

Cp(t) = / e dF,(x), teR.

—0o0
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It follows from (39) that when n — oo

sup |Fa(z) — F(a)] 20 (bi & é) , (14)

z<T),
where b1 =1 — H(T,). It also follows from (44) that when n — oo
1-F(T,)* =01 - F(T,), F.(-T,) =0 (F(-T,)). (45)

It is obvious that A, (7)“30 when n — oo for any 7 < oo, where A, (1) = sup |C,(t) — C(t)|.
ltI<r
Let us consider quantity A,,(7,) for some special numerical sequence 7,, that tends to 400 when
n — oo.
In the following theorem we prove result of uniform convergence for the empirical character-
istic function.

Theorem 8. Let {1,,n > 1} be a numerical sequence that tends to +o0o slowly when n — oco.
Then, A, (1,)%30 when n — oco.

Proof. Let us choose a sequence {7,,n > 1} such that when n — oo

%
— {1 — F(Ty), F(=T,), b2 7T}, <1°g") } 0, (46)
n

where {T},, n > 1} is a sequence that satisfies condition (23). Introducing the truncated inte-
grals

b (1) = / AR, (2), ba(t) = / 2| < T dF (z)
|2|<Thn |

and introducing d,, (t) = b, (t) — by (t), we have that

Ay (1n) < sup |dn(t)| + sup [b,(t) — Cpn(t)| + sup
[t|<Tn [t|<Tn [t|<Tn

Balt) - C(t)]. (47)

Integrating by parts, we obtain

sup [d(t)] < sup / ¢ d (Fy(x) — F(x))| <
‘tlg"—n ‘tlg"_n |t‘<Tn
< sup [|eim{ |Fy(z) — F(x)ET% ] + sup it/ e d (F,(z) — F(z))|dz < (48)
[t1<Tn T | Jlel<Tn
<21 +27,T,) sup |Fn(x)— F(2)|.
|| <Tn
On the other hand,
sup [ba () — Cu(t)] < sup / (it |dF, (r) < 1— Fy(Ty) + Fu(=T)  (49)
‘tlg"'n \t|<7’n ‘$|>Tn
and
sup |bn(t) — C(t)‘ < sup / e[ dF (z) < 1 — F(T,) + F(=T). (50)
[tI<Tn [tI<Tn J|2|>Ty
Now adding (44)—(50), we have that A, (7,)* O(y,), n — oco. Theorem 8 is proved. O

- 305 —



Abdurahim A. Abdushukurov, Gulnoz S. Saifulloeva  On Approximation of Empirical Kac Processes. ..

References

(1]

2]

13l

[4]

[5]

16]

7]

18]

19]

[10]

[11]

[12]

[13]

[14]

A.A.Abdushukurov, Nonparametric estimation of the distribution function based on relative
risk function, Commun. Statis. Th. Meth., 27(1998), no. 8, 1991-2012.
DOLI: 10.1080/03610929808832205

A.A.Abdushukurov, On nonparametric estimation of reliability indices by censored samples,
Theory Probab. Appl., 43(1999), no. 1, 3—-11.

A.A.Abdushukurov, Statistics of incomplete observations. University Press, Tashkent, 2009
(in Russian).

M.D.Burke, Csorgs, L.Horvath, Strong approximations of some biometric estimates under
random censorship, Z. Wahrschein. Verw. Gebiete, 56(1981), 87-112.

M.D.Burke, S.Cs6rgs, L.Horvath, A correction to and improvement of “Strong approxi-
mations of some biometric estimates under random censorship”, Probab. Th. Ret. Fields.,
79(1988), 51-57.

S.Csorgd, Strong approximation of empirical Kac processes, Carleton Math. Lect. Note.,
26(1980), 71-86.

S.Csorgd, L.Horvath, On random censorship from the right, Acta. Sci. Math., 44(1982),
23-34.

A .Dvoretzky, J.Kiefer, J.Wolfowitz, Asymptotic minimax character of the sample distribu-
tion function and of the multinomial estimator, Ann. Math. Statist., 27(1956), 642-669.

M.Kac, On denations between theoretical and empirical distributions, Proc. Nat. Acad. Sci.
USA, 35(1949), 252-257.

D.M.Mason, Classical empirical process theory and wighted approximation, Comunicaciones
del CIMAT, N.I-15-03/09-11-2015/ (PE/CIMAT).

D.M.Mason, Selected Definition and Results from Modern Empirical Theory, Comunica-
ciones del CIMAT, N.I-17-01, 16.03.2017 (PE),.

P.Massart, The tight constant in the Dvoretzky-Kiefer-Wolfowits inequality, Ann. Probab.,
18(1990), no. 3, 1269-1283.

W.W.Petrov, Limit theorems for sum of random variables, Moscow, Nauka, 1987 (in Rus-
sian).

A.W.Skorokhod, Random processes of independent increments, Moscow, Nauka, 1964.

- 306 —



Abdurahim A. Abdushukurov, Gulnoz S. Saifulloeva ~ On Approximation of Empirical Kac Processes. ..

O06 ammrpokcmManuu MIMpUYecKnx mmporeccos Kama B oo1meit
MOJEJN CJIYy4YaiiHOrO IeH3ypPUPOBaHMSsI

Abnypaxum A. AbaynryKyposB
Puyman MocKOBCKOro rocy1apCcTBEHHOIO YHUBEpCHTeTa B TalkeHTe
Tamkent, Y30ekucran

I'ynbnaz C. CaitdyiniioeBa
HaBowuiickuit rocyqapCTBEHHbBIN eJarornIecKuii ”HCTUTY'T
Hasowu, ¥Y3bekucran

Amnnoranusi. B crarbe paccMaTpuBaercst o0IIasi MOJIENb CIYyYalHOTO IEH3YPUPOBAHUS U JTOKA3BIBAIOT-
Csl Pe3yJIbTAThI AMMPOKCUMAIIIH JJIsT SMIMPUIECKUX MporeccoB Kara. DTa Moeab BKIIIOYAET B cebst
TaKre BayKHble CIlel[iaJIbHbIe cjIydad, KaK CilydaliHoe IeH3ypHpOBaHue CIIpaBa U MO/IeJIb KOHKYPHUPYIO-
X PpUCKOB. Hallm pe3ysbTaThl BKJIIOYAIOT B CeOsl TEOPUIO CHUJIBHOI allIpOKCUMAIIUNA, ¥ HAMHU MTOCTPO-
€Hbl ONTUMAJIBHBIE CKOPOCTHU AIITPOKCUMAIINN. TaKKe WMCCJIEIOBAHbI KyMYJISTUBHBIE IIPOIECCHI PUCKA.
OTH pe3ybTaThl UCIOJIb30BAHBI JIJIsl OIEHUBAHUS XaPAKTEPUCTUIECKON (DYHKIIMU B MOJIEJIN CJIyIaiiHOTO
[EH3YPUPOBaHUS CIIPaBa.

KuroueBrblie ciioBa: IeH3ypUPOBAHHDIE IAHHBIE, KOHKYPUPYIOIINE PUCKH, SMIIMPUIECKIE OIEHKH, OIlE€H-

ka Karma, curbHas annmpokcnMarins, rayCCOBCKUE IIPOIECCHI, XapaKTePUCTUIeCKas PyHKIH.
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