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Introduction

It is known that a phase diagram of Gibbs measures for a Hamiltonian is close to the phase
diagram of isolated (stable) ground states of this Hamiltonian. At low temperatures, a periodic
ground state corresponds to a periodic Gibbs measure, (see [1, 2]). It leads us to investigate
the problem of description of periodic and weakly periodic ground states. For the Potts model
with competing interactions on the Cayley tree of order k = 2 periodic ground states are studied
in [3] (see also [4]). The notion of a weakly periodic ground state is introduced in [5]. For the
Ising model with competing interactions, weakly periodic ground states are described in [1, 5].
Such states for the Potts model for normal subgroups of index 2 are studied in [6, 7]. For the
Potts model with competing interactions, such states for normal subgroups of index 4 are studied
in [8] and in this work also studied periodic ground states for normal subgroups of index 4 (see
also [9]). In [10] for the Potts model, with competing interactions and countable spin values, on
a Cayley tree of order three periodic ground states are studied.

In [11] finite-range lattice models on Cayley trees with two basic properties: the existence of
only a finite number of ground states and with a Peierls type condition are considered and the
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notion of a contour for the model on the Cayley tree is defined. Also using a contour argument
the existence of different Gibbs measures is shown.

A q-component models on a Cayley tree is investigated in [12] and using a contour argument
the existence of q different Gibbs measures for several q-component models is shown.

In [13] for the SOS model with m = 2 on the Cayley tree order of k = a+ b+2 the existence
of at least two non periodic Gibbs measures is proved. In [14] an infinite system of functional
equations for the Ising model with competing interactions and countable spin values 0, 1, . . .

and non zero field on a Cayley tree of order two is investigated. In [15] the authors proved the
existence of weakly periodic Gibbs measures for the Ising model on the Cayley tree of order k = 2

with respect to a normal divisor of index 4.
In this paper, we study periodic and weakly periodic ground states for the SOS model with

competing interactions on a Cayley tree of order k = 2 and k = 3. Moreover, in the case k = 2

the existence of a countable set of non periodic ground states is proved.

1. Preliminaries

Let Γk = (V, L) be the Cayley tree of order k, i.e., an infinite tree such that exactly k + 1

edges are incident to each vertex. Here V is the set of vertices and L is the set of edges of
Γk. Let Gk denote the free product of k + 1 cyclic groups {e; ai} of order 2 with generators
a1, a2, a3, . . . ak+1, i.e., let a2i = e (see [4]).

The group of all left (right) shifts on Gk is isomorphic to the group Gk. Each transformation
S on the group Gk induces a transformation S̃ on the vertex set V of the Cayley tree Γk. In the
sequel, we identify V with Gk.

The following assertion is quite obvious (see also [4]).

Theorem 1.1. The group of left (right) shifts on the right (left) representation of the Cayley
tree is the group of translations.

By the group of translations we mean the automorphism group of the Cayley tree regarded as
a graph. Recall (see, for example, [4]) that a mapping ψ on the vertex set of a graph G is called
an automorphism of G if ψ preserves the adjacency relation, i.e., the images ψ(u) and ψ(v) of
vertices u and v are adjacent if and only if u and v are adjacent.

For an arbitrary vertex x0 ∈ V, we put

Wn = {x ∈ V |d(x, x0) = n}, Vn = {x ∈ V |d(x, x0) 6 n},

where d(x, y) is the distance between x and y in the Cayley tree, i.e., the number of edges of the
path between x and y.

For each x ∈ Gk, let S(x) denote the set of immediate successors of x, i.e., if x ∈Wn then

S(x) = {y ∈Wn+1 : d(x, y) = 1}.

For each x ∈ Gk, let S1(x) denote the set of all neighbors of x, i.e., S1(x) = {y ∈ Gk :

⟨x, y⟩ ∈ L}. The set S1(x) \ S(x) is a singleton. Let x↓ denote the (unique) element of this set.
Let us assume that the spin values belong to the set Φ = {0, 1, 2, . . .m}. A function σ :

x ∈ V → σ(x) ∈ Φ is called configuration on V. The set of all configurations coincides with the
set Ω = ΦV .

Consider the quotient group Gk/G
∗
k = {H1,H2, . . . , Hr}, where G∗

k is a normal subgroup of
index r with r > 1.

– 161 –



Muzaffar M.Rahmatullaev, Bunyod U.Abraev On Ground States for . . .

Definition 1.1. A configuration σ(x) is called G∗
k-periodic, if σ(x) = σi for all x ∈ Gk with

x ∈ Hi. A Gk-periodic configuration is called translation invariant.

The period of a periodic configuration is the index of the corresponding normal subgroup.

Definition 1.2. A configuration σ(x) is called G∗
k-weakly periodic, if σ(x) = σij for all x ∈ Gk

with x↓ ∈ Hi and x ∈ Hj .

The Hamiltonian of the model SOS model with competing interactions has a form:

H(σ) = −J1
∑

⟨x,y⟩∈L

|σ(x)− σ(y)| − J2
∑

x,y∈V :
d(x,y)=2

|σ(x)− σ(y)|, (1)

where (J1, J2) ∈ R2.

2. Ground states

In this section, we study ground states for the SOS model on a Cayley tree. For a pair of
configurations σ and φ which coincide almost everywhere, i.e., everywhere except finitely many
points, we consider the relative Hamiltonian H(σ, φ) describing the energy differences of the two
configurations σ and φ :

H(σ, φ) =− J1
∑

⟨x,y⟩∈L

(|σ(x)− σ(y)| − |φ(x)− φ(y)|)−

− J2
∑

x,y∈V :
d(x,y)=2

(|σ(x)− σ(y)| − |φ(x)− φ(y)|),
(2)

where (J1, J2) ∈ R2.

Let M be the set of all unit balls with vertices in V, i.e. M = {{x} ∪ S1(x) : ∀x ∈ V }. A
restriction of a configuration σ to the ball b ∈ M is a bounded configuration and it is denoted
by σb.

We define the energy of the configuration σb on b by the following formula

U(σb) ≡ U(σb, J1, J2) = −1

2
J1

∑
⟨x,y⟩:
x,y∈b

|σ(x)− σ(y)| − J2
∑

x,y∈b:
d(x,y)=2

|σ(x)− σ(y)|, (3)

where (J1, J2) ∈ R2.

The following assertion is known (see [4]).

Lemma 2.1. Relative Hamiltonian (2) has the form:

H(σ, φ) =
∑
b∈M

(U(σb)− U(φb)).

The existence of a countable set of non periodic ground states on the Cayley tree
of order two

We consider the case k = 2.

Let m = 2. It is easy to see that U(σb) ∈ {Ui : i = 1, . . . , 10} for σb, where

U1 = 0, U2 = −1

2
J1 − 2J2, U3 = −J1 − 2J2, U4 = −3

2
J1, U5 = −J1 − 4J2,

U6 = −2J1 − 4J2, U7 = −3J1, U8 = −3

2
J1 − 4J2, U9 = −2J1 − 2J2, U10 = −5

2
J1 − 2J2.
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Definition 2.1. The configuration φ is called the ground state for the Hamiltonian (1) if
U(φb) = min{U1, U2, U3, . . . , U10} for any b ∈M .

Let
Am = {(J1, J2) ∈ R2 | Um = min

16k610
{Uk}}.

It is easy to check that

A1 = {(J1, J2) ∈ R2 | J1 6 0; J2 6 −1

4
J1},

A2 = {(J1, J2) ∈ R2 | J1 6 0; J2 = −1

4
J1},

A3 = {(J1, J2) ∈ R2 | J1 = 0; J2 = 0},

A4 = {(J1, J2) ∈ R2 | J1 = 0; J2 6 0},

A5 = {(J1, J2) ∈ R2 | J1 6 0; J2 > −1

4
J1},

A6 = {(J1, J2) ∈ R2 | J1 > 0; J2 > 1

4
J1},

A7 = {(J1, J2) ∈ R2 | J1 > 0; J2 6 1

4
J1},

A8 = {(J1, J2) ∈ R2 | J1 = 0; J2 > 0},

A9 = {(J1, J2) ∈ R2 | J1 = 0; J2 = 0}},

A10 = {(J1, J2) ∈ R2 | J1 > 0; J2 =
1

4
J1}

and
10∪
i=1

Ai = R2.

In [16] periodic ground states are studied for SOS model on Cayley tree order of 2. In this
subsection we shall prove the existence of a countable set of non periodic ground states on the
Cayley tree of order two. The next subsection we study periodic and weakly periodic ground
states for the model (1) on the Cayley tree of order three.

Let cb denote the center of a unit ball b. We put

Ci = {σb : U(σb) = Ui}, i = 1, 10,

B(i) =| {x ∈ S1(cb) : φb(x) = i} |, for i = 0, 1, 2

and Di = Ωi ∪ Ω̃i, where

Ωi = {σb : σb(cb) = 0, |x ∈ b\{cb} : σb(x) = 2| = i; |x ∈ b\{cb} : σb(x) = 1| = 0},

Ω̃i = {σ̃b : |σ̃(x)− σ(x)| = 2, |x ∈ b\{cb} : σ̃b(x) = 1| = 0, x ∈ b}, i = 0, 1, 2, 3, i.e.,

σ̃(x) =

{
2, if σ(x) = 0

0, if σ(x) = 2
.

For Ai, Aj , i ̸= j we have

Ai ∩Aj =


A2 if i = 1, j = 5,

A4 if i = 1, j = 7,

A8 if i = 5, j = 6,

A10 if i = 6, j = 7.

(4)
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Fix J = (J1, J2) ∈ R2 and denote

NJ (σb) = |{j : σb ∈ Cj}|.

Using (4) one can prove

Lemma 2.2. For any b ∈M and σb we have

NJ(σb) =

 10, if J = (0; 0)
3, if J ∈ Ai \ {(0, 0)}, i = 2, 4, 8, 10
1, otherwise

. (5)

Let GS(H) be the set of all ground states of the Hamiltonian (1).

Theorem 2.1. (i) If J = (0; 0) then GS(H) = Ω.
(ii) If J ∈ Ai \ {(0, 0)}, i = 2, 8, 10 then there exists a countable set of non periodic ground

states.

Proof. The assertion (i) is trivial.
Prove (ii):

a) if J ∈ A2 \ {(0, 0)} then the minimum points of U(σb) would belong to the classes C1, C2

and C5;

b) if J ∈ A8 \ {(0, 0)} then the minimum points of U(σb) would belong to the classes C5, C6

and C8;

c) if J ∈ A10 \ {(0, 0)} then the minimum points of U(σb) would belong to the classes C6, C7

and C10.

Below we define the configurations of classes C1, C5, C6 and C7 which satisfying the condition
|x ∈ b\{cb} : σb(x) = 1| = 0,

σ
(0)
b (cb) = 0, |x ∈ b\{cb} : σ

(0)
b (x) = 2| = 0 and

σ̃
(0)
b (cb) = 2, |x ∈ b\{cb} : σ̃

(0)
b (x) = 0| = 0, σ(0), σ̃(0) ∈ C1,

σ
(1)
b (cb) = 0, |x ∈ b\{cb} : σ

(1)
b (x) = 2| = 1 and

σ̃
(1)
b (cb) = 2, |x ∈ b\{cb} : σ̃

(1)
b (x) = 0| = 1, σ(1), σ̃(1) ∈ C5,

σ
(2)
b (cb) = 0, |x ∈ b\{cb} : σ

(2)
b (x) = 2| = 2 and

σ̃
(2)
b (cb) = 2, |x ∈ b\{cb} : σ̃

(2)
b (x) = 0| = 2, σ(2), σ̃(2) ∈ C6,

σ
(3)
b (cb) = 0, |x ∈ b\{cb} : σ

(3)
b (x) = 2| = 3 and

σ̃
(3)
b (cb) = 2, |x ∈ b\{cb} : σ̃

(2)
b (x) = 0| = 3, σ(3), σ̃(3) ∈ C7

. (6)

Thus any ground state φ ∈ Di must satisfy

φb ∈ {σ(i)
b , σ̃

(i)
b , σ

(i+1)
b , σ̃

(i+1)
b }, i = 0, 1, 2, b ∈M. (7)

Now we shall construct ground states φ ∈ Di which satisfying (7).
Note that the configurations σb and σb′ (b, b′ ∈M) are the same up to a motion in Gk so we

shall omit b. Thus configuration σ(i) is the configuration such that on any unit ball b ∈ M the
condition (6) is satisfied.
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Suppose two unit balls b and b′ are neighbors, i.e., they have a common edge. We shall
then say that the two bounded configurations σb and σb′ are compatible if they coincide on the
common edge of the balls b and b′. Denote by B(b) the set of all neighbor balls of b.

Denote Ω̄i = {σ(i), σ̃(i), σ(i+1), σ̃(i+1)}, i = 0, 1, 2. For any ω, ν ∈ Ω̄i denote by n(ω, ν) the
number of possibilities to set up the configuration ν as a compatible configuration (with ω)
around (i.e., on neighboring balls of the ball on which ω is given ) the configuration ω. Clearly
n(ω, ν) ∈ {0, 1, 2, 3}, for any ω, ν ∈ Ω̄i, i = 0, 1, 2.

Denote

Ni =


n(σ(i), σ(i)) n(σ(i), σ̃(i)) n(σ(i), σ(i+1)) n(σ(i), σ̃(i+1))

n(σ̃(i), σ(i)) n(σ̃(i), σ̃(i)) n(σ̃(i), σ(i+1)) n(σ̃(i), σ̃(i+1))

n(σ(i+1), σ(i)) n(σ(i+1), σ̃(i)) n(σ(i+1), σ(i+1)) n(σ(i+1), σ̃(i+1))

n(σ̃(i+1), σ(i)) n(σ̃(i+1), σ̃(i)) n(σ̃(i+1), σ(i+1)) n(σ̃(i+1), σ̃(i+1))

 .

It is easy to see that

N0 =


3 0 3 0

0 3 0 3

2 0 2 1

0 2 1 2

 , N1 =


2 1 2 1

1 2 1 2

1 2 1 2

2 1 2 1

 ,

N2 =


1 2 0 2

2 1 2 0

0 3 0 3

3 0 3 0

 .

Consider 3 sets Qi = {Q}, (i = 0, 1, 2) of matrices Q = {q(u, v)}u,v∈Ω̄i
such that

q(u, v) ∈ {0, 1, . . . , n(u, v)},
∑
v∈Ω̄i

q(u, v) = 3, ∀u ∈ Ω̄i.

q(u, σ(i)) + q(u, σ(j)) = n(u, σ(i)), q(u, σ̃(i)) + q(u, σ̃(j)) = n(u, σ̃(i)), and q(u, v) = 0 if and only
if q(v, u) = 0, u, v ∈ Ω̄i.

Using matrices Ni we have

Q0 =

Q =


a 0 3− a 0

0 b 0 3− b

c 0 2− c 1

0 d 1 2− d


 ,

here a, b ∈ {0, 1, 2, 3}; c, d ∈ {0, 1, 2}; a = 3 iff c = 0; b = 3 iff d = 0.

For i = 1 we get

Q1 =

Q =


a1 b1 2− a1 1− b1
b2 a2 1− b2 2− a2
c1 d1 1− c1 2− d1
d2 c2 2− d2 1− c2


 ,

here a1, a2, d1, d2 ∈ {0, 1, 2}; b1, b2, c1, c2 ∈ {0, 1}; a1 = 2 iff c1 = 0; a2 = 2 iff c2 = 0; b1 = 0 iff
b2 = 0; b1 = 1 iff d2 = 0; b2 = 1 iff d1 = 0; d1 = 2 iff d2 = 2.
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For i = 2 we obtain

Q2 =

Q =


1 a 0 2− a

b 1 2− b 0

0 c 0 3− c

d 0 3− d 0


 ,

here a, b ∈ {0, 1, 2}; c, d ∈ {0, 1, 2, 3}; a = 0 iff b = 0; a = 2 iff d = 0; b = 2 iff c = 0; c = 3 iff
d = 3.

For a given ξ ∈ Ω̄i and Q = {q(u, v)}u,v∈Ω̄i
∈ Qi we recurrently construct a ground state

φQ,ξ by the following way: fix a ball b ∈ M and put on b the configuration φQ,ξ := ξ. On
balls taken from B(b) we set exactly q(ξ, ω) copies of ω for any ω ∈ Ω̄i. Thus configurations
φQ,ξ
b′ , b′ ∈ B(b) are defined. Using these configurations, we define configurations on the balls

B(b′) \ {b}, (b′ ∈ B(b)) putting q(φQ,ξ
b′ , v) copies of v ∈ Ω̄i \ ξ and q(φQ,ξ

b′ , ξ) − 1 copies of ξ
which are compatible with φQ,ξ

b′ . Further, on the balls B(b′′) \ {b′}, (b′′ ∈ B(b)), b′ ∈ B(b) we set
q(φQ,ξ

b′′ , τ) copies of τ ∈ Ω̄i \ {φQ,ξ
b′ } and q(φQ,ξ

b′′ , φ
Q,ξ
b′ ) − 1 copies of φQ,ξ

b′ which are compatible
with φQ,ξ

b′′ . Repeating this construction one can obtain a ground state φQ,ξ such that

φQ,ξ
b ∈ Ω̄i, |{b′ ∈ B(b) : φQ,ξ

b = ω, φQ,ξ
b′ = ν}| = q(ω, ν),

for any b ∈M and ω, ν ∈ Ω̄i.

In general, the ground state φQ,ξ is non periodic (see example below). It is easy to see that

φQi,σ
(j)

b ≡ σ(j), φQi,σ̃
(j)

b ≡ σ̃(j), j = i, i+ 1, i = 0, 1, 2,

where

Qi =


3− i i 0 0

i 3− i 0 0

0 0 2− i i+ 1

0 0 i+ 1 2− i

 . (8)

Now using the ground states φQ,ξ we shall construct an infinite set of ground states by the
following way: one can choose ξ ̸= η, ξ, η ∈ Ω̄i and Q1, Q2 ∈ Q1 such that for configurations
φQ1,ξ, φQ2,η there are infinitely many b ∈M on which φQ1,ξ

b and φQ2,η
b′ are compatible for some

b′ ∈ B(b). Indeed it is sufficient to take ξ ̸= η such that q1(ξ, η)q2(ξ, η) ̸= 0 (see example below).
Denote

M1 ≡M ξη
1 (Q1, Q2) = {b ∈M : φQ1,ξ

b

is compatible φQ2,η
b′ for some b′ ∈ B(b)};

ℵ1 = {n ∈ {0, 1, 2, . . . } : ∃b ∈M1 such that |cb| = n};

V (y) = {z ∈ V : y < z}.

Fix m ∈ ℵ1 and denote

W̃m = {x ∈Wm : ∃b ∈M1 such that cb = x}.

Consider the configuration

φQ1,Q2,ξ,η
m (x) =

{
φQ1,ξ(x) if x ∈ Vm ∪ {V (y), y ∈Wm\W̃m}
φQ2,η(x) if x ∈ V (y), y ∈ W̃m

.
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Clearly φQ1,Q2,ξ,η
m ,m ∈ ℵ1 is a ground state and the number of such ground states is infinite,

since |ℵ1| = ∞. This finishes the proof of Theorem 2.1. 2

Remark 2.1 Let J ∈ A4\(0, 0). Ω̄3 = {σ(0)
b , σ̃

(0)
b , σ

(3)
b , σ̃

(3)
b } are periodic ground states such that

on any b ∈ M the bounded configurations σ(0)
b , σ̃

(0)
b ∈ C1 and σ

(3)
b , σ̃

(3)
b ∈ C7, i.e., σ(0)

b , σ̃
(0)
b are

translation-invariant and σ
(3)
b , σ̃

(3)
b are periodic with period 2. Ω̄3 = {σ(0)

b , σ̃
(0)
b , σ

(3)
b , σ̃

(3)
b } and

Q3 contains the unique matrix

Q3 =


3 0 0 0

0 3 0 0

0 0 0 3

0 0 3 0

 .

Example. Take matrices

Q′
2 =


1 1 0 1

1 1 1 0

0 1 0 2

1 0 2 0

 , Q′′
2 =


1 2 0 0

1 1 1 0

0 1 0 2

0 0 3 0


and ξ = σ(2), η = σ(3). The configurations φQ

′
2,ξ, φQ

′′
2 ,η and φQ

′
2,Q

′′
2 ξ,η are represented in Fig. 1

a), b) and c), respectively.

Fig. 1. Ground states
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Periodic and weakly periodic ground states on the Cayley tree of order three
We consider the case k = 3.

Let m = 2. By (3) for any σb we have U(σb) ∈ {U1, U2, U3, . . . , U15}, where

U1 = 0, U2 = −1

2
J1 − 3J2, U3 = −J1 − 4J2, U4 = −J1 − 6J2,

U5 = −3

2
J1 − 3J2, U6 = −2J1 − 8J2, U7 = −3J1 − 6J2, U8 = −2J1 − 6J2,

U9 = −5

2
J1 − 7J2, U10 = −3

2
J1 − 7J2, U11 = −2J1, U12 = −4J1,

U13 = −7

2
J1 − 3J2, U14 = −5

2
J1 − 3J2, U15 = −3J1 − 4J2.

Definition 2.2. The configuration φ is called the ground state for the Hamiltonian (1), if
U(φb) = min{U1, U2, U3, . . . , U15} for ∀b ∈M .

Let Am = {(J1, J2) ∈ R2 | Um = min
16k615

{Uk}}. It is easy to check that

A1 = {(J1, J2) ∈ R2 | J1 6 0; J2 6 −1

6
J1},

A2 = {(J1, J2) ∈ R2 | J1 6 0; J2 = −1

6
J1},

A3 = {(J1, J2) ∈ R2 | J1 = 0; J2 = 0},

A4 = {(J1, J2) ∈ R2 | J1 6 0;−1

6
J1 6 J2 6 −1

2
J1},

A5 = {(J1, J2) ∈ R2 | J1 = 0; J2 = 0},

A6 = {(J1, J2) ∈ R2 | J2 > 1

2
|J1|},

A7 = {(J1, J2) ∈ R2 | J1 > 0;
1

6
J1 6 J2 6 1

2
J1},

A8 = {(J1, J2) ∈ R2 | J1 = 0; J2 = 0},

A9 = {(J1, J2) ∈ R2 | J1 > 0; J2 =
1

2
J1},

A10 = {(J1, J2) ∈ R2 | J1 6 0; J2 = −1

2
J1},

A11 = {(J1, J2) ∈ R2 | J1 = 0; J2 6 0},

A12 = {(J1, J2) ∈ R2 | J1 > 0; J2 6 1

6
J1},

A13 = {(J1, J2) ∈ R2 | J1 > 0, J2 =
1

6
J1},

A14 = {(J1, J2) ∈ R2 | J1 = 0; J2 = 0},
A15 = {(J1, J2) ∈ R2 | J1 = 0; J2 = 0}

and
15∪
i=1

Ai = R2.

Let cb be the center of a unit ball b. We put

Ci = {σb : U(σb) = Ui}, i = 1, 15
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and
B(i) =| {x ∈ S1(cb) : φb(x) = i} |,

for i = 0, 1, 2.

Let HA = {x ∈ Gk :
∑

i∈A ωx(ai)− even}, where ωx(ai) is the number of ai in the word x.
Note, that HA is a normal subgroup of index two (see [4]). Let Gk/HA = {HA, Gk\HA} be

the quotient group. Denote H0 = HA, H1 = Gk\HA.

Periodic Ground States for the case k = 3

In this section, we shall study H0-periodic ground states. We note that each H0 periodic
configuration has the following form:

σ(x) =

{
σ1, if x ∈ H0

σ2, if x ∈ H1
, (9)

where σi ∈ Φ = {0, 1, 2}, i = 1, 2.

Theorem 2.2. Let k = 3. The configuration (9) is H0-periodic ground state iff one of the
following conditions holds:
a) |A| = 1.

i) | σ1 − σ2 |= 0, and (J1, J2) ∈ A1.

ii) | σ1 − σ2 |= 1, and (J1, J2) ∈ A2.

iii) | σ1 − σ2 |= 2, and (J1, J2) ∈ A4.

b) |A| = 2.

i) If | σ1 − σ2 |= 1,then there is not a H0-periodic ground state;
ii) | σ1 − σ2 |= 2, and (J1, J2) ∈ A6.

c) |A| = 3.

i) If | σ1 − σ2 |= 1, then there is not a H0-periodic ground state;
ii) | σ1 − σ2 |= 2, and (J1, J2) ∈ A7.

d) |A| = 4.

i) | σ1 − σ2 |= 1, and (J1, J2) ∈ A11.

ii) | σ1 − σ2 |= 2, and (J1, J2) ∈ A12.

Proof: a) i) Let us consider the following configuration

φ(x) =

{
i, if x ∈ H0

i, if x ∈ H1
,

where i = 0, 1, 2. We denote the center of b ∈M by cb. Let cb ∈ H0, then we have

φb(cb) = i, B(i) = 4.

Hence, φb(x) ∈ C1, i.e. if (J1, J2) ∈ A1 then the corresponding configuration is a ground state.
ii) Now we consider the following configuration

φ(x) =

{
i, if x ∈ H0

j, if x ∈ H1
,

where | i− j |= 1.
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1) Assume that cb ∈ H0

φb(cb) = i, B(i) = 3, B(j) = 1.

Hence, φb(x) ∈ C2.

2) Let cb ∈ H1, then one has

φb(cb) = i, B(i) = 3, B(j) = 1.

Hence, φb(x) ∈ C2.

We conclude that, if (J1, J2) ∈ A2 then the corresponding periodic configuration φ(x) is a
H0-periodic ground state.

iii) Let us consider the following configuration

φ(x) =

{
i, if x ∈ H0

j, if x ∈ H1
,

where | i− j |= 2.

1) Assume that cb ∈ H0

φb(cb) = i, B(i) = 3, B(j) = 1.

Hence, φb(x) ∈ C4.

2) Let cb ∈ H1, then one has

φb(cb) = j, B(j) = 3, B(i) = 1.

Hence, φb(x) ∈ C4.

We conclude that if (J1, J2) ∈ A4 then the corresponding periodic configuration φ(x) is a
H0-periodic ground state.

The proofs of assertions b), c) and d) of Theorem 2.2 are similar to the proof of assertion a).
This finishes the proof of Theorem 2.2. 2

Remark 2.2 In the case c), the H0 periodic ground states coincides with the G
(2)
k -periodic

ground states, where G(2)
k = {x ∈ Gk : |x| is even}.

Weakly Periodic Ground States for the k = 3

In this section, we describeHA-weakly periodic ground states, whereHA is a normal subgroup
of index two. Due to the definition of weakly periodic configuration, we infer that eachHA-weakly
periodic configuration has the following form:

σ(x) =


σ00, if x↓ ∈ H0, x ∈ H0

σ01, if x↓ ∈ H0, x ∈ H1

σ10, if x↓ ∈ H1, x ∈ H0

σ11, if x↓ ∈ H1, x ∈ H1

, (10)

where σij ∈ Φ, i, j = 0, 1.
In the sequel, we write σ = (σ00, σ01, σ10, σ11) for such a weakly periodic configuration

σ(x), x ∈ Gk.

Theorem 2.3. Let k = 3 and |A| = 1. Then for the SOS model there is no HA-weakly periodic
(non periodic) ground state.
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Proof. Consider (10). If σ00 = σ01 = σ10 = σ11, then corresponding configurations are
translation-invariant. Translation-invariant ground states for this case are studied in Theo-
rem 2.2. It is easy to see that in the case σ00 = σ10 and σ01 = σ11 the HA-weakly periodic
configurations (10) are periodic configurations which are studied in Theorem 2.2.

Now we consider the cases σ00 ̸= σ10 or σ01 ̸= σ11.

Let

φ(x) =


0, if x↓ ∈ H0, x ∈ H0

0, if x↓ ∈ H0, x ∈ H1

1, if x↓ ∈ H1, x ∈ H0

0, if x↓ ∈ H1, x ∈ H1

.

Let cb ∈ H0, we have the following possible cases:

a) cb↓ ∈ H0 and φb(cb↓) = 0, then φb(cb) = 0, B(0) = 4, φb(cb) ∈ C1,

b) cb↓ ∈ H0 and φb(cb↓) = 1, then φb(cb) = 0, B(0) = 3, B(1) = 1, φb(cb) ∈ C2,

c) cb↓ ∈ H1 and φb(cb↓) = 1, then there is not any HA-weakly periodic ground state,

d) cb↓ ∈ H1 and φb(cb↓) = 0, then φb(cb) = 1, B(0) = 4, φb(cb) ∈ C11.

Let cb ∈ H1, we have the following possible cases:

a) cb↓ ∈ H0 and φb(cb↓) = 0, then φb(cb) = 0, B(0) = 4, φb(cb) ∈ C1,

b) cb↓ ∈ H0 and φb(cb↓) = 1, then there is not any HA-weakly periodic ground state,

c) cb↓ ∈ H1 and φb(cb↓) = 0, then φb(cb) = 0, B(0) = 3, B(1) = 1, φb(cb) ∈ C2.

We conclude that the configuration φ is a ground state on the set

A1 ∩A2 ∩A11 = {(J1, J2) ∈ R2 : J1 = J2 = 0}.

Therefore, if J1 ̸= 0 and J2 ̸= 0 then the weakly periodic configuration φ is not a weakly
periodic ground state.

By similar way we can prove that all HA-weakly periodic (non periodic) configurations are
not ground states.

This finishes the proof of Theorem 2.3. 2

Remark 2.3. 1) Theorem 2.3 shows that for the SOS model with competing interactions, every
HA-weakly periodic ground state is either HA-periodic or translation-invariant.

2) The fact that for k = 3 there exists a set of countable non-periodic ground states can be
proved in the same manner as in Theorem 2.1.

3) For the k > 3 by the same manner as in Theorem 2.1 periodic (and weakly periodic)
ground states could be studied.

The authors thank Professor U.A.Rozikov for useful discussions. The authors are grateful to
the referee’s helpful suggestions.
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Основные состояния для модели SOS c конкурирующими
взаимодействиями

Музаффар М. Рахматуллаев
Институт Математики АН РУз

Ташкент, Узбекистан
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Аннотация. В работе для нормального делителя индекса 2 изучены слабо-периодические основ-
ные состояния для модели SOS с конкурирующими взаимодействиями на дереве Кэли порядка 2
и порядка 3. Далее изучены непериодические основные состояния для модели SOS с конкурирую-
щими взаимодействиями на дереве Кэли второго порядка.

Ключевые слова: дерево Кэли, SOS-модель, периодические и слабо-периодические основные со-
стояния.
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