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Abstract. A general polynomial in one variable is considered and the explicit factorization formulas for
the truncations of the discriminant with respect to coordinate faces of the polynomial Newton polytope
are presented. As a result, the extension of the formulas presented by Gelfand–Kapranov–Zelevinsky is
obtained.

Keywords: discriminant, Newton polytope, Horn–Kapranov parametrization.

Citation: E.N. Mikhalkin, M. Nikzad, V.A. Stepanenko, Detailed Factorization Identities for Classical
Discriminant, J. Sib. Fed. Univ. Math. Phys., 2022, 15(1), 23–28.
DOI: 10.17516/1997-1397-2022-15-1-23-28.

1. Introduction and preliminaries

We consider a general polynomial of degree n:

f(y) = a0 + a1y + . . .+ any
n. (1)

It is known that discriminant of this polynomial is an irreducible polynomial ∆n =

= ∆n(a0, a1, . . . , an) with integer coefficients that vanishes if and only if f has multiple roots.
Discriminants play a crucial role in mathematics ( [1, 2]).

Let us recall that the Newton polytope N (∆n) for the discriminant of polynomial (1) is
the convex hull in Rn+1 of the exponents set (t0, t1, . . . tn) of the monomials involved in ∆n.
The Newton polytope N (∆n) ⊂ Rn+1 is known to be combinatorially equivalent to an (n− 1)-
dimensional cube [1]. Since such a cube has 2n−1 vertices, it is natural to encode vertices N (∆n)

with all possible subsets from the set {1, . . . , n− 1}. The polytope N (∆n) has n− 1 hyperfaces
{h0

k} located in the coordinate hyperplanes {tk = 0}, k = 1, . . . , n − 1 (assuming that we chose
the coordinates t = (t0, t1, . . . , tn−1, tn) within the ambient space Rn+1). Each face h0

k has 2n−2

vertices defined by subsets I ⊂ {1, . . . , n − 1} that do not contain k. Let us denote by hk the
face that is opposite to h0

k with vertices encoded by subsets of I containing k. The formulas for
the coordinates of the vertices N (∆n) are given in Section 2.

We consider the truncations of the discriminant ∆n with respect to the faces (including
coordinate ones) of its polytope N (∆n). Let us remind that truncation of a polynomial ∆ with
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respect to the face h of its polytope N (∆) is the sum of all monomials from ∆ with indices
belonging to h. Let us denote such truncation by ∆

∣∣
h
.

The formulas for the truncations ∆n on noncoordinate hyperfaces

hK := hk1
∩ . . . ∩ hkp

were proved [4]. They were obtained by the intersection of p non-coordinate hyperfaces ([5]).
Here the multi-index K = = {k1, . . . , kp} defines a partition of the set {0, 1, . . . , n} into p + 1

subsets (segments)
Ki = {ki, ki + 1, . . . , ki+1}, i = 0, 1, . . . , p ,

where k0 = 0, kp+1 = n. Let us denote the length of Ki by li := ki+1 − ki. Then

fKi
:= aki

+ aki+1y + . . .+ aki+1
yli .

The result proved in [5] is the following:
The truncation of ∆n on the face hk is

∆n

∣∣
hK

= a2K

p∏
i=0

∆li(fKi), (2)

where a2K = a2k1
. . . a2kp

, and ∆li are the discriminants of polynomials fKi
of degree li.

The generalization of formula (2) is presented in this paper. The truncations ∆n are obtained
by intersecting both non-coordinate and coordinate faces N (∆n). To formulate the main result
of this paper we denote the face of ∆n obtained by the intersection of p noncoordinate faces
hk1

, . . . hkp
and q coordinate faces h0

j1
, . . . , h0

jq
by

hK,J0 := hk1
∩ . . . ∩ hkp

∩ h0
j1 ∩ . . . ∩ h0

jq .

The elements of the set J := {j1, . . . , jq} that define the coordinate faces are grouped as
follows: Ji := J∩(ki, ki+1). Now we define polynomials fKi,J0(z), i = 1, . . . , p of the factorization
of the truncations. We omit the monomials with indices from Ji for each of fKi

and change the
variable z = ydi , where di is the greatest common divisor of the exponents of the monomials
remaining in fKi .

Theorem 1.1. Using given above notations, the truncation ∆n with respect to the face hK,J0 is

∆n

∣∣
hK,J0

= a2K

p∏
i=0

(−1)
li(di−1)

2 dlii (aki
aki+1

)di−1

(
∆li/di

(
fKi,J0(z)

))di

, (3)

where a2K = a2k1
. . . a2kp

, and ∆li/di
are the discriminants of fKi,J0 of polynomials of degree li/di.

Thus, Theorem 1.1 gives complete information on the factorability of the truncations of the
discriminant with respect to any faces of its Newton polytope.

Note that when set {h0
k1
, . . . , h0

kq
} is empty, which means we consider only the truncation of

the discriminant with respect to noncoordinate faces when all di in formula (3) are equal to 1,
the discriminants of each of the polynomials fKi,J0 and fKi

coincide, and we obtain formula (2).
As an example, we calculate the truncation of the polynomial ∆7(a0, . . . , a7)

∣∣
hK,J0

, where

hK,J0 = h3∩h0
1∩h0

2∩h0
4∩h0

6. In our case p = 1 then there are two discriminants of polynomials

in the product
p∏

i=0

from Theorem 1.1

fK0 = a0 + a1y + a2y
2 + a3y

3 and fK1 = a3 + a4y + a5y
2 + a6y

3 + a7y
4.
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Because there is one value k1 = 3 among ki then there are two segments (0, 3) and (3, 7) among
segments (ki, ki+1). Then sets J0 and J1 are J0 = {1, 2} and J1 = {4, 6}, respectively. Hence
polynomials fK0,J0(z) and fK1,J0(z) are

fK0,J0 = a0 + a3z
3, fK1,J0 = a3 + a5z + a7z

2.

Using Theorem 1.1, we obtain the following factorization formula for the truncation

∆7(a0, . . . , a7)
∣∣
hK,J0

= a23∆3(fK0,J0) · 16a3a7(∆2(fK1,J0))2 = −432a20a
5
3a7(a

2
5 − 4a3a7)

2.

2. Newton polytope for the discriminant

The theorem on the structure the Newton polytope of the discriminant is as follows.

Theorem 2.1 ( [1], Ch. 12). The Newton polytope of the discriminant of polynomial (1) is
combinatorially equivalent to an (n − 1)-dimensional cube. It contains 2n−1 vertices which are
in bijective correspondence with all possible subsets I ⊂ {1, 2, . . . , n− 1}.

The vertex v(I) corresponding to a subset I = {i1 < i2 < . . . < is} has the following
coordinates

v0 = i1 − 1, vn = n− is − 1,

viν = iν+1 − iν−1 for iν ∈ I,

vi = 0, for i /∈ I ∪ {0, n}.

Let lν = iν+1 − iν (0 6 ν 6 s), i0 = 0, is+1 = n. Then the monomial av(I) appears in ∆n with
the coefficient

Cv(I) = C(I) =

s∏
ν=0

(−1)
lν (lν−1)

2 llνν .

Thus, each vertex of the Newton polytope N (∆n) for the discriminant of the polynomial (1) is
determined by an appropriate partition of the segment [0, n].

Considering the well-known fact that discriminants are bihomogeneous, the polytope N (∆n)

lies in the plane of Rn+1 of codimension 2 defined by the following of equations

n∑
j=0

tj = 2(n− 1),

n∑
j=1

jtj = n(n− 1).

Formulas defining n− 1 noncoordinate hyperfaces of the polytope N (∆) were proved [5, 6]:
In this plane, the polytope N (∆) is defined by the following inequalities:

tk > 0, k = 1, . . . , n− 1,

k∑
j=1

(n− k)jtj +

n−1∑
j=k+1

k(n− j)tj 6 nk(n− k), k = 1, . . . , n− 1.

Thus, the hyperface hk is determined for each value of k.
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3. Proof of the main result

To determine the truncation ∆n

∣∣
hK,J0

, one need to determine the restrictions of each of the

factors ∆li(fKi) from (2) to the coordinate faces from the set Ji ⊂ J . Each such restriction
is obtained with all monomials from ∆li(fKi

) that do not contain factors with indices from Ji.
Thus, we need to calculate the discriminant of the so-called thinned polynomial.

Lemma 1. The discriminant of the polynomial

x0 + x1y
n1 + . . .+ xsy

ns + xs+1y
n (4)

can be written in the form

(−1)
n(d−1)

2 dn · (x0xs+1)
d−1

[
∆(x0 + x1z

m1 + . . .+ xsz
ms + xs+1z

m)
]d
, (5)

where mk :=
nk

d
, m =

n

d
, d = GCD(n1, . . . , ns, n).

To prove Lemma 1 we need the following formula for factorization of the difference a− b into
linear factors with respect to a

1
n :

a− b =

n−1∏
ν=0

(a
1
n − b

1
n e

2πi
n k). (6)

This formula is obtained in the following way. Consider g(a) := a − b as a polynomial with
respect to a

1
n : g(a) = (a

1
n )n − b. Since

a
1
n = b

1
n e

2πi
n k, k = 0, 1, . . . , n− 1

are n roots of polynomial g(a), we obtain (6).

Proof of Lemma 1. The discriminant of a polynomial is defined in terms of its roots. Let us
remind that discriminant ∆n(a0, . . . , an) of polynomial (1) is defined by the formula [7]

a2n−2
n

∏
i<j

(yi − yj)
2, (7)

where y1, . . . , yn are the roots of the polynomial.
Considering z = yd in (4), we obtain the polynomial

x0 + x1z
m1 + . . .+ xsz

ms + xs+1z
m. (8)

Let us assume that zp and zq, 0 6 p < q 6 m− 1 are arbitrary roots of polynomial (8). Let us
compose two groups of primitive roots from them:

zp,k = z
1
d
p e

2πi
d k and zq,k = z

1
d
q e

2πi
d k, k = 0, 1, . . . , d− 1. (9)

Since they are the roots of the equation z = yd then y = z
1
d are d roots of polynomial (4). Thus,

the number of roots of form (9) is equal to m · d = n. Hence, expressions (9) present the whole
set of roots from (4). Then, according to (7), to determine the discriminant of polynomial (4),
one need to find the squares of the products of the following differences:

∏
p<q

d−1∏
k=0

(yp,k − yq,k)(yp,k − yq,k+1) . . . (yp,k − yq,k+d−1), (10)
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where the second index at yq,t is considered with respect to the absolute value of d: 0 6 t 6 d−1.
These are the differences that are made up of the roots obtained from both zp and zq, p ̸= q. We
also need to find the products of the differences obtained from each root zν :

m−1∏
ν=0

∏
i<j

(yν,i − yν,j), (11)

and then to find the product of their squares multiplied by (xs+1)
2n−2.

Let us find the product
d−1∏
k=0

in (10). It is easy to check that for each fixed v the product

d−1∏
k=0

(yp,k − yq,k+v) = (−1)d−1(z
1
d
p − z

1
d
q e

2πi
d v)d.

Then, using formula (6), we obtain that
d−1∏
k=0

(yp,k − yq,k)(yp,k − yq,k+1) . . . (yp,k − yq,k+d−1) = (zp − zq)
d. (12)

Let us find the square of the inner product in (11), i.e.
∏
i<j

(yν,i − yν,j)
2. Let us take into

account that yν,0, . . . , yν,d−1 are the roots of the equation yd−zν = 0, where ν = 0, . . . ,m−1 are
the roots of equation (8). Therefore,

∏
i<j

(yν,i−yν,j)
2 is the discriminant of this binomial equation

and it has the form (−1)
d(d−1)

2 dd(−zν)
d−1 (see. [8]). Then the product

m−1∏
ν=0

∏
i<j

(yν,i − yν,j)
2 can

be written as
m−1∏
ν=0

∏
i<j

(yν,i − yν,j)
2 = (−1)

md(d−1)
2 +m(d−1)dmd(z0 · . . . · zm−1)

d−1.

Let us note that z0, . . . , zm−1 are the roots of equation (8). According to Vieta’s formulas, their
product is (−1)m

x0

xs+1
. Taking this and relation m · d = n into account, we obtain the final

representation for the product
m−1∏
ν=0

∏
i<j

(yν,i − yν,j)
2 = (−1)

n(d−1)
2 dn

(
x0

xs+1

)d−1

.

Now, using formula (7), namely, multiplying x2n−2
s+1 = x

(2m−2)d
s+1 x2d−2

s+1 , the above obtained
expression and the square of expression (12), we obtain the following representation for the
discriminant of polynomial (8):

(−1)
n(d−1)

2 dn · (x0xs+1)
d−1

(
x2m−2
s+1

∏
p<q

(zp − zq)
2
)d

.

This is equality (5). The Lemma 1 is proved. 2

Now we can apply proved formula (5) to each factor from (2) to obtain formula (3). Thus,
Theorem 1.1 is proved.
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Детализация факторизационных тождеств
для классического дискриминанта

Евгений Н. Михалкин
Меараюддин Никзад

Виталий А. Степаненко
Сибирский федеральный университет

Красноярск, Российская Федерация

Аннотация. Рассматривается дискриминант многочлена одного переменного. Приводятся яв-
ные факторизационные формулы для срезок дискриминанта на координатные грани его много-
гранника Ньютона. Полученные формулы детализируют результаты известной книги Гельфанда–
Капранова–Зелевинского.

Ключевые слова: дискриминант, многогранник Ньютона, параметризация Горна–Капранова.
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