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Introduction

Let Z> be a set of integer non-negative numbers, Zn
> = Z> × . . .× Z>︸ ︷︷ ︸

n

, t = (t1, . . . , tn) ∈

Rn and ∆(x) = {t : t1 + · · ·+ tn = x, tj > 0, j = 1, 2, . . . , n} is a simplex in the n-dimensional
space Rn.

Find the sum
S (x) =

∑
t∈∆(x)∩Zn

>

φ (t) (1)

for a given function φ (t) = φ (t1, . . . , tn) and x ∈ Z>.
In case of n = 2 the sum (1) can be written as

S (x) =
∑

t1+t2=x

φ (t1, t2) =

x∑
t=0

φ (t, x− t) (2)

and if the function φ does not depend on the second variable, then (2) is a classical problem of
the ‘indefinite’ summation, i.e. the problem of finding in an explicit form the sum

S (x) =

x∑
t=0

φ (t). (3)

Euler’s approach to solving the problem is based on finding a discrete primitive function for
φ (t), i.e. any solution to a difference equation

f (t+ 1)− f (t) = φ (t) , (4)
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what yields a discrete analog of the Newton–Leibniz formula for the sum (2)

S (x) = f (x+ 1)− f (0) . (5)

Euler found a formula (1732–1733, published in 1738) in which a discrete primitive function
for the function φ (x) is expressed through derivatives φ(µ) (x) :

f
′
(x) =

∞∑
µ=0

Bµ

µ!
φ(µ) (x), (6)

where Bµ are Bernulli numbers (see, for example, [2]). Integrating equality (6) over the interval
from 0 to x+ 1 we get a formula to solve the problem of summation:

x∑
t=0

φ (t) =

∫ x+1

0

φ (t) dt+

∞∑
µ=1

Bµ

µ!

[
φ(µ−1) (x+ 1)− φ(µ−1) (0)

]
.

Independently of Euler, Maclaurin found the same formula in 1742. Their derivation of the
formula was not strict, the first serious investigation of the residual member was undertaken
by Poisson in 1823 and its first rigorous proof was demonstrated by Jacobi in 1834 (see, for
example, [1, 2]). A discrete analog of the Euler summation formula was obtained in [3] .

A large number of works are devoted to various aspects of the problem of summation and its
applications, among the relatively recent ones, we note [4, 5].

The summation problem for the functions of several variables can be formulated in various
ways. The problem of summation of polynomials of several variables over integer points of a
rational convex polyhedron with variable faces was studied in the works [6, 7], in particular, a
multidimensional analog of the Euler–Maclaurin formula was obtained.

The problem of summation of arbitrary functions over lattice points of a rational parallelotope
was studied in [8–10], where Euler’s approach based on the concept of a discrete primitive function
and a discrete analog of the Newton–Leibniz formula were used.

The connection of the classical summation problem with the problem of finding vector par-
tition functions with weight was considered in [11]

1. Basic designations and definitions. Formulation
of the main result

Let δj be the linear shift operator on j-th variable

δjf (t1, . . . , tn) = f (t1, . . . , tj−1, tj + 1, tj+1 . . . , tn) , j = 1, . . . n,

and consider the polinomial difference operator

W (δ) =
∏

16i<j6n

(δj − δi) . (7)

For a given function φ (t), we call a discrete primitive function any solution f (t) of the
difference equation

W (δ) f (t) = φ (t) , t ∈ Zn
>. (8)

For n = 2 we get W (δ) = δ2 − δ1 and, if f (t1, t2) is a solution of the equation (8), then for
the sum (1) the formula S (x) = f (0, x+ 1)− f (x+ 1, 0) holds true and it can be considered as
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a discrete analog of the Newton–Leibniz formula. In case of arbitrary n we need to define the
Newton–Leibniz operator.

Denote by πj the projection operator along j-th coordinate axis, πjt = (t1, . . . , tj−1, 0,

tj+1, . . . , tn), which acts on the function f (t) according to the rule πjf (t) = f (πjt), j = 1, . . . , n.
Define the Newton–Leibniz operator as

WNL

(
δ, π)

¯
=

∏
16i<j6n

(πiδj − πjδi). (9)

If n = 2, then WNL (δ, π) = π1δ2 − π2δ1 and WNL (δ, π) f (x, x) = f (0, x+ 1)− f (x+ 1, 0).
It is proved in the work [12], that if f (t) is a discrete primitive function of the function φ (t),

then for the sum (1) the following discrete analog of the Newton–Leibniz formula holds true

S (x) = WNL (δ, π) f (x, . . . , x) . (10)

One of the way to find a solution to the difference equation (8) (a discrete primitive function)
is to construct the Todd operator. Consider a meromorphic function

T (ξ) =
W (ξ)

W (eξ)
=

W (ξ1, . . . , ξn)

W (eξ1 , . . . , eξn)
(11)

which is holomorphic in a neighborhood V2π =
⋃

16i<j6n {|ξj − ξi| < 2π} of the origin and,
therefore, expands in a power series

T (ξ) =
∑
ν∈Zn

>

Bν

ν!
ξν , (12)

where ν = (ν1, . . . , νn) is a multiindex, ν! = ν1! . . . νn! and ξν = ξν1
1 . . . ξνn

n .
The generalized Bernoulli numbers are coefficients Bν of the expansion of the function T (ξ)

in power series (12). The Todd operator is a differential operator of infinite order constructed by
substitution the differentiation operators by j-th variable ∂j instead of variables ξj in (12)

Todd = T (∂) =
∑
ν∈Zn

>

Bν

ν!
∂ν , (13)

where ∂ = (∂1, . . . , ∂n) and ∂ν = ∂ν1
1 . . . ∂νn

n .

For T (ξ) =
n∏

j=1

ξj
eξj − 1

, the Todd operator was defined in [13].

Define the space of function, where the Todd operator acts correctly. Denote by Exp (Cn) the
set of entire functions φ : Cn → C of exponential type, which means that for any σ = (σ1, . . . , σn),
σj > 0, j = 1, . . . , n and C > 0, satisfying |φ (z)| < Ce⟨σ,|z|⟩, where |z| = (|z1| , . . . , |zn|),
⟨σ, |z|⟩ = σ1 |z1|+ . . .+ σn |zn|.

Also, we need an additional condition on the functions φ ∈ Exp (Cn) in terms of their
derivatives. For R = (R1, . . . , Rn), Rj > 0, j = 1, . . . , n, denote ExpR (Cn) is a subspace
of the space Exp (Cn), whose elements φ satisfy the condition: there is constant C > 0 and
r = (r1, . . . , rn), rj < Rj , j = 1, . . . , n such that

∂αφ (z) 6 Crαe⟨r,|z|⟩,

where multiindex α and points z ∈ Cn are arbitrary.
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The Todd operator is defined correctly in the space ExpR (Cn), i.e. if φ ∈ ExpR (Cn), then
Toddφ ∈ ExpR (Cn) [see [14], Theorem 5.1].

Denote by UR = {ξ : |ξj | < Rj , j = 1, . . . , n} the polycylinder with the maximal radius R =

= (R1, . . . , Rn), which is contained in the space V2π =
⋃

16i<j6n {ξ : |ξi − ξj | < 2π}.
Next, we give the Euler–Maclaurin formula for a discrete primitive function.

Theorem 1. Let φ (t) ∈ ExpR (Cn), where UR ⊂ V2π, then for a discrete primitive function
f (t) the following analog of the Euler–Maclaurin formula

W (∂) f (t) = Toddφ (t) (14)

holds.

For the differential operator ∂j − ∂i, (1 6 i < j 6 n), we define an ‘inverse’ operator Pij as
follows

Pijf (t) =

∫ tj

0

f (t1, . . . , ti−1, τ, ti+1, ti + tj , . . . , tn) dτ.

It is directly checked that (∂j − ∂i) ◦Pijf (t) = f (t) for i, j = 1, 2, . . . , n and i < j, therefore,

W (∂) ◦ Pf (t) = f (t) , (15)

where P is a polynomial differential operator of the form

P =
∏

16i<j6n

Pij . (16)

We now formulate the following analog of the Euler–Maclaurin formula.

Theorem 2. Let φ (t) ∈ ExpR (Cn) and UR ⊂ V2π, then the analog of the Euler–Maclaurin
formula for the sum (1)

S (x) = WNL (δ, π) ◦ P ◦ Toddφ (t) |t1=...=tn=x. (17)

holds.

2. Proofs

Proof of the Theorem 1. For a function A (ξ) holomorphic in the polycylinder UR =

= {ξ ∈ Cn : |ξj | < Rj , j = 1, . . . , n} we consider the differential operator A (∂) of infinite order,
formally replacing the argument ξ = (ξ1, . . . , ξn) by the symbol of differentiation ∂ = (∂1, . . . , ∂n).
The function A (ξ) is called the symbol of the differential operator A (∂). If A (ξ) =

∑
α>0

aαξ
α is

an expansion of the holomorphic function into a series, then the action of the operator A (∂) on
the function φ (t) ∈ ExpR (Cn) is defined by the formula A (∂)φ (z) =

∑
α>0

aα∂
αφ (z).

The set {A (∂)} of the operators of infinite order is an algebra with the domain of definition
ExpR (Cn), which is isomorhpic to the algebra of holomorphic in polycylinder UR functions (see.
[14], Theorem 5.2).

For the Todd operator (see formula (11)) it means that

W
(
e∂
)
◦ Todd = W (∂) . (18)
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It is directly checked that the connection between the polynomial difference operator Q (δ) =

=
∑
α>0

cαδ
α and the operator of infinite order Q

(
e∂
)

acting on the space ExpR (Cn)

Q (δ) = Q
(
e∂
)

(19)

holds true.
Thus, if f (t) is a solution to the difference equation (8), formula (19) yields that W

(
e∂
)
f(t) =

= φ(t). Acting by the Todd operator on the both parts of (19), we obtain (14). 2

Proof of the Theorem 2. To prove it, we need the discrete analog of the Newton-Leibniz
formula in the problem of summation over lattice points of the simplex

S (x) = WNL (δ, π) f (x, x, · · · , x) ,

which was proved in [12].
Application of the operator P to the equality (14) yields f (t) = P (δ) ◦ Toddφ (t).
Acting by the Newton–Leibniz operator WNL (δ, π) on the both parts of this equality, we

obtain
S (x) = WNL (δ, π) ◦ P ◦ Toddφ (t) |t1=...=tn=x. 2

Example 1. The problem is to find the sum

S (x) =
∑

t1+t2=x

(
t21 + t22 + 1

)
.

According to Theorem 1 and Theorem 2 we obtain

(∂1 − ∂2) f (t1, t2) =

∞∑
µ1,µ2=0

Bµ1µ2

µ1!µ2!
∂µ1

1 ∂µ2

2

(
t21 + t22 + 1

)
= t21 + t22 − t1 − t2 +

4

3
.

and
f (t1, t2) =

2

3
t31 + t21t2 + t1t

2
2 − t1t2 − t21 +

4

3
t1.

Applying the Newton–Leibniz formula we obtain the sum∑
t1+t2=x

(
t21 + t22 + 1

)
= (x+ 1)

(
2

3
x2 +

1

3
x+ 1

)
.
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Формула Ейлера-Маклорена в задаче суммирования
по целым точкам рационального симплекса

Евгений К. Лейнартас
Ольга А. Шишкина

Сибирский федеральный университет
Красноярск, Российская Федерация

Аннотация. В задаче суммирования функции по целым точкам рационального симплекса найден
аналог формулы Эйлера–Маклорена для дискретной первообразной и искомой суммы.

Ключевые слова: суммирование функций, дискретная первообразная, формула Эйлера–
Маклорена
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