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Abstract. In this paper we consider the problem of dynamic loading of a deformable solid medium con-
taining slip planes with nonlinear slip conditions on them. An explicit-implicit scheme was constructed
for the numerical solution of the constitutive system of equations, which exactly reduces to correcting
the stress tensor values after performing the elastic step. An implicit approximation of the constitutive
relations containing a small parameter in the denominator of the nonlinear free term was used with
the second order of the approximation. The correction procedure is applicable for those cases when
the viscosity parameter of interlayers providing the sliding mode of the contact boundaries is not small.
The solution of the problem of the seismic waves propagation in an inhomogeneous fractured geological
massif in a two-dimensional case was obtained numerically.
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Seismic exploration is a standard method of prospecting for hydrocarbon deposits and is
actively used by many service companies in the oil and gas complex. It is based on the prop-
agation of seismic waves in heterogeneous media, their reflection from contrasting boundaries,
during the registration of which the internal structure of the subsurface space can be restored.
Computational methods that allow calculating wavefields in a given geological model is a cru-
cially important. With the development of modern computer systems, they are being actively
improved and developed.

Various mathematical models are used to describe dynamic processes in geological media:
acoustic, isotropic elastic, anisotropic elastic, elastic-viscoplastic. Unfortunately, the vast ma-
jority of applied problems cannot be solved analytically, in view of which various numerical
methods are actively used [1–4]. Well prepared reviews are presented in [5, 6]. Among recent
works, one can highlight the work [7], devoted to the construction of a hybrid numerical method;
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and [8, 9], in which a numerical method was constructed for calculating wave processes in a block
medium with interacting structural elements. In paper [10], the grid-characteristic method was
successfully generalized for inverse migration problems.

Fractured media are of the practical interest, since they either contain oil or are confined
to the places of occurrence of its large reserves. Earlier in works [11, 12], continuous models of
deformable solid media with a discrete set of slip planes (layered, block media) and with nonlinear
slip conditions at contact boundaries of structural elements were constructed. In all these cases,
the constitutive relations of the system include equations with a nonlinear free term, the form
of which is determined by the selected contact condition at the interlayer boundary.

For a stable numerical solution of the system of differential equations, explicit-implicit schemes
were developed with an explicit approximation of motion equations and an implicit approxima-
tion of constitutive relations containing a small parameter in the denominator of the nonlinear
free term [13, 14]. Various effective formulas for correcting stress components after an "elastic"
time step were analytically derived from implicit nonlinear finite-difference approximations. To
calculate the "elastic" step, the grid-characteristic method on structured grids was used. For
monotonization, a grid-characteristic criterion of the monotonicity was used, which is based on
the characteristic property of the exact solution of the linear transport equation.

However, while an explicit elastic step allows the construction of schemes of a higher order of
approximation [15, 16], the correction of stresses in previously published works was carried out
by means of an implicit first-order approximation [13, 14]. In this paper, to match the orders
of approximation of the explicit elastic and implicit correction steps, an implicit second-order
approximation was constructed for the constitutive equations of a layered medium with friction
at contact boundaries and refined correction formulas were obtained after the elastic calculation
step. The use of this method with the consistent approximation for explicit elastic and implicit
correction steps made it possible to increase the accuracy of calculations and to carry out a
numerical simulation of non-stationary problems of scattering of elastic waves and generation of
a response from fractured clusters, both in a homogeneous and in an inhomogeneous geological
massif.

1. Mathematical model and numerical method

Let us formulate nonlinear conditions for the interaction of contact boundaries of structural
elements. In a Cartesian rectangular coordinate system xi (i = 1, 2, 3), we consider an infinite
elastic medium with an oriented system of periodically repeating parallel slip planes. The orien-
tation of this system is set by the unit normal n. The distance between sliding planes is constant
and equal ϵ. The density of the material ρ, as well as Lame moduli of elasticity λ and µ are
assumed to be given constants. The stress state is described by the stress tensor σ. The vector
of the shear stress on the slip plane is τ = σ ·n− (n · σ · n), the normal stress is σn = n ·σ ·n.
We assume that layers are in a compressed state and σn < 0.

Let us introduce the vector of the shear velocity γ, determined by the jump of the tangential

velocity [Vτ ] at the contact boundary: γ =
[Vτ ]

ϵ
.

It is assumed that physically between elastic layers there are thin layers with the thickness
d ≪ ϵ, however, we neglect the thickness of these layers and replace them with sliding conditions
at compressed boundaries of layers. The conditions of the contact interaction, depending on
physicomechanical properties of interlayers, are taken in the form the of local slip condition for
Coulomb friction with a small viscous additive.
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At σn < 0 (compressed contact boundaries):

τ = q|σn| (γ/|γ|+ ηγ) , (1)

or expressing the slip velocity γ in terms of shear stresses τ

γ =
1

η

τ

|τ |

⟨
|τ |
q|σn|

− 1

⟩
, (2)

where η is the viscosity coefficient, q is the Coulomb friction coefficient, ⟨F (y)⟩ = F (y)H(y),
H(y) is the Heaviside function, H(y) = 0 if y < 0 and H(y) = 1 if y > 0. The contact plane
with indicated interaction conditions is called the slip plane.

In order to deal with the continuous model of a medium containing a system of such slip
planes, we will consider γ as a continuous function of coordinates and time, which has the meaning
of distributed slip velocities. These relations allow us to take into account the contribution of
slip velocities to the tensor of velocities of an inelastic deformation eγ :

eγ = (n⊗ γ + γ ⊗ n) /2, γ · n = 0. (3)

The total strain velocity tensor e is obtained by summing all elastic and inelastic components
and is equal to

e = ee + eγ , e =
(
∇v +∇vT

)
/2. (4)

Here v is the "macroscopic" velocity of medium particles, ee is the elastic strain velocity
tensor, which is related to the stress tensor by Hooke’s law:

σ̇ = λ (ee : I) I + 2µee. (5)

The system is closed by motion equations:

ρv̇ = ∇ · σ. (6)

The system of equations for the model of a layered medium.
In a layered medium consisting of elastic layers, there is a single system of slip-delamination

planes with a normal n. If the normal n to interlayer boundaries is oriented along the x3

coordinate axis, then its components satisfy the relation nj = δ3j .
The conditions for γ, corresponding to the local contact condition, have the form:

γj =
1

η

σ3j

|τ |

⟨
|τ |

q|σ33|
− 1

⟩
, |τ | =

√∑
k ̸=3

σ3kσ3k. (7)

Taking into account the choice of the orientation of the normal in a component wise form,
the system of equations of the model will take the form:

ρv̇i = σij,j , σ̇ii =
i ̸=3

λvk,k + 2µvi,i, σ̇33 = λvk,k + 2µv3,3, (8)

σ̇ij =
i,j ̸=3

µ (vi,j + vj,i) , i ̸= j, σ̇3j =
j ̸=3

µ (v3,j + vj,3)− µγj . (9)

The system of equations for the model of a block medium.
The block medium is formed by uniformly stacked elastic cubes (parallelepipeds) with

three possible slip-delamination planes oriented by mutually perpendicular unit normals n(s),
s = 1, 2, 3. In this case, the tensor of the velocity of an inelastic deformation will take the form:

eγ =
3∑

s=1

(
n(s) ⊗ γ(s) + γ(s) ⊗ n(s)

)
/2, γ(s) · n(s) = 0. (10)
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If we orient three normals to slip-delamination planes along coordinate axes of the Cartesian
coordinate system, then the following relation will be true for normals: n

(s)
j = δsj , where δsj is

the Kronecker symbol.
The through conditions for γ(i), corresponding to the local contact conditions, have the form:

γ
(i)
j =

1

η

σij

|τ (i)|

⟨
|τ (i)|
q|σii|

− 1

⟩
, i ̸= j, |τ (i)| =

√∑
k ̸=i

σikσik. (11)

As in the case of a layered medium, we can write the system of equations for a block medium
in a component wise form:

ρv̇i = σij,j , σ̇jj = λvk,k + 2µvj,j , (12)

σ̇ij = µ (vi,j + vj,i)− µγ
(i)
j − µγ

(j)
i , i ̸= j. (13)

1.1. Implicit approximation of constitutive relations

The obtained system belongs to the class of semilinear hyperbolic systems; their numerical
solution can be constructed using various explicit schemes. However, in the slip mode, a nonlinear
free term with a small viscosity parameter in the denominator is included in the governing
equations for shear stresses. The system becomes rigid and common explicit schemes will be
unstable. To overcome these difficulties, we propose to use an explicit-implicit method. Implicit
approximation is used only for those equations that contain a small parameter in the denominator
of the free term, the rest of equations are approximated explicitly.

Let us describe this method using the example of the equation for σ̇3j in the compressed
contact boundary mode σ33 < 0 for a layered medium:

σ̇3j =
j ̸=3

µ (v3,j + vj,3)− µσ3j ⟨|τ |/ (q|σ33|)− 1⟩ / (η|τ |) , |τ | =
√
σi3σi3, i = 1, 2. (14)

Earlier, as a result of the analytical solution of an algebraic equation for an implicit first-order
approximation, the following correction formulas were obtained after an elastic step for the case
of compressed layers [13, 14]:

When |τn+1
e | > q|σn+1

33e |

σn+1
i3 = q|σn+1

33e |
(
σn+1
i3e /|τn+1

e |
) (

1 + δ|τn+1
e |

)
/
(
1 + δq|σn+1

33e |
)
, (15)

γi =
(
σn+1
i3e − σn+1

i3

)
/ (µ∆t) , σe

i3 = σn
i3 + µ∆t

(
vn+1
i,3 + vn+1

3,i

)
, i = 1, 2. (16)

When |τn+1
e | < q|σn+1

33e |

σn+1
i3 = σn+1

i3e , γn+1
i = 0, δ = η/ (µ∆t) , |τn+1

e | =
√

σn+1
i3e σn+1

i3e , i = 1, 2. (17)

Here, indices n + 1 and n correspond to the values on the upper and lower time layers, ∆t

is the time step, the subscript e marks values of the stress tensor after the elastic time step.
It is assumed that the values of vn+1

i and σn+1
jj have already been determined from an explicit

approximation of motion equations and equations for the normal component of the stress tensor
that do not contain small viscosity parameters in the denominator of the free term. To agree
approximation orders of the elastic step and the corrective numerical procedure, we construct
an implicit second-order scheme for governing equations of a layered medium with nonlinear
contact conditions at interlayer boundaries. We do not write out further the terms related to
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the approximation of spatial derivatives, since it can be carried out by various schemes. A
specific implementation based on the use of the inverse method of characteristics, which has a
second order of approximation in 2D and 3D cases, is given in the next section. An implicit
approximation in time of the second order for the equation for tangential stresses is:

σn+1
i3 − σn

i3

∆t
= µ

(
vn+1
i,3 + vn+1

3,i

)
− µ

2

{⟨
|τn+1|
q|σn+1

33 |
− 1

⟩
σn+1
i3

η|τn+1|
+

⟨
|τn|
q|σn

33|
− 1

⟩
σn
i3

η|τn|

}
, (18)

or

σn+1
i3 = σe

i3 −
1

2δ

{⟨
|τn+1|
q|σn+1

33 |
− 1

⟩
σn+1
i3

|τn+1|
+

⟨
|τn|
q|σn

33|
− 1

⟩
σn
i3

|τn|

}
. (19)

This nonlinear system of algebraic equations for σn+1
i3 can be rewritten as:

δσn+1
i3 +

1

2

{⟨
|τn+1|
q|σn+1

33 |
− 1

⟩
σn+1
i3

|τn+1|
+

⟨
|τn|
q|σn

33|
− 1

⟩
σn
i3

|τn|

}
= δσe

i3. (20)

Let us collapse this equation sequentially with σn+1
i3 , σn

i3, σe
i3 and introduce notations:

for unknown convolutions at the calculation step

X2 = σn+1
i3 · σn+1

i3 , Y 2 = σn
i3 · σn+1

i3 , Z2 = σe
i3 · σn+1

i3 , (21)

for known quantities

T 2 = σn
i3 · σn

i3, S2 = σn
i3 · σe

i3, Σ2 = σe
i3 · σe

i3. (22)

We get three algebraic equations for X, Y and Z:

δX2 +
1

2

{⟨
X

q|σn+1
33 |

− 1

⟩
X2

X
+

⟨
T

q|σn
33|

− 1

⟩
Y 2

T

}
= δZ2, (23)

δY 2 +
1

2

{⟨
X

q|σn+1
33 |

− 1

⟩
Y 2

X
+

⟨
T

q|σn
33|

− 1

⟩
T 2

T

}
= δS2, (24)

δZ2 +
1

2

{⟨
X

q|σn+1
33 |

− 1

⟩
Z2

X
+

⟨
T

q|σn
33|

− 1

⟩
S2

T

}
= δΣ2. (25)

We will also denote for brevity:

∆T =
1

2

⟨
T

q|σn
33|

− 1

⟩
/T, ∆X = δ +

1

2

⟨
X

q|σn+1
33 |

− 1

⟩
/X. (26)

In this case, the algebraic system can be written in the form:

X2∆X + Y 2∆T = δZ2, (27)

Y 2∆X + T 2∆T = δS2, (28)

Z2∆X + S2∆T = δΣ2. (29)

From second and third equations, we can obtain:

Y 2 =
δS2 − T 2∆T

∆X
, Z2 =

δΣ2 − S2∆T

∆X
. (30)
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From the first equation we obtain:

X2∆X = δ
δΣ2 − S2∆T

∆X
−∆T

δS2 − T 2∆T

∆X
(31)

or
X2∆X2 = ∆P 2, ∆P 2 = δ

(
δΣ2 − S2∆T

)
−∆T

(
δS2 − T 2∆T

)
. (32)

The system for defining the convolution X will take the form:

X∆X = ∆P, (33)

∆X = δ +
1

2

⟨
X

q|σn+1
33 |

− 1

⟩
/X, (34)

From this system

δX +
1

2

⟨
X

q|σn+1
33 |

− 1

⟩
= ∆P, (35)

and when X > |σn+1
33 | we get

X =
1 + 2∆P

2δ + 1/
(
q|σn+1

33 |
) . (36)

So, for this convolution we have the expression:

X = q|σn+1
33 | 1 + 2∆P

1 + 2δq|σn+1
33 |

, ∆X =
∆P

X
. (37)

The difference equation for σn+1
i3 can be written in the form

σn+1
i3 ∆X + σn

i3∆T = δσe
i3 (38)

or
σn+1
i3 =

δσe
i3 − σn

i3∆T

∆X
= X

δσe
i3 − σn

i3∆T

∆P
. (39)

The final correction formula of the second order of approximation will take the form:

σn+1
i3 = q|σn+1

33 | 1 + 2∆P

1 + 2δq|σn+1
33 |

δσe
i3 −∆Tσn

i3

∆P
, (40)

∆P =
√
δ (δΣ2 − S2∆T )−∆T (δS2 −∆T · T 2), (41)

∆T =
1

2

⟨√
σn
i3σ

n
i3

q|σn
33|

− 1

⟩
1√

σn
i3σ

n
i3

, Σ =
√
σe
i3σ

e
i3, (42)

S =
√
σn
i3σ

e
i3, T =

√
σn
i3σ

n
i3, i = 1, 2. (43)

The correction formula for shear stresses can be written in a different, more convenient form.
For this purpose, we introduce the notation σ̃n+1

i3 for additional components with corrections to
the elastic calculated values containing, at first glance, a "bad" small parameter in the denomi-
nator:

σ̃n+1
i3 = σe

i3 −
∆T

δ
σn
i3 = σe

i3 −
1

2δ

⟨
T

q|σn
33|

− 1

⟩
σn
i3

T
, T =

√
σn
i3σ

n
i3. (44)

We also introduce a notation for the convolution:
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Σ̃n+1 =

√
σ̃n+1
i3 σ̃n+1

i3 . (45)

It is easy to show that ∆P = δΣ̃n+1. So, in the square root expression in the formula for ∆P

the value is always positive. In these notations, the correction formula for shear stresses on the
n+ 1 time layer will take the form:

σn+1
i3 = q|σn+1

33 | 1 + 2δΣ̃n+1

1 + 2δq|σn+1
33 |

σ̃n+1
i3

Σ̃n+1
. (46)

Let us show that the small parameter in the denominator of the expression for σ̃n+1
i3 is canceled

after some transformations:

X =

√
σn+1
i3 σn+1

i3 = q|σn+1
33 | 1 + 2δΣ̃n+1

1 + 2δq|σn+1
33 |

, T =
√
σn
i3σ

n
i3 = q|σn

33|
1 + 2δΣ̃n

1 + 2δq|σn
33|

, (47)

Σ̃n =
√

σ̃n
i3σ̃

n
i3,

1

2δ

⟨
T

q|σn
33|

− 1

⟩
=

1

2δ

⟨
2δ

(
Σ̃n − q|σn

33|
)

1 + 2δq|σn
33|

⟩
=

⟨
Σ̃n − q|σn

33|
⟩

1 + 2δq|σn
33|

, (48)

and, finally,

σ̃n+1
i3 = σe

i3 −

⟨
Σ̃n − q|σn

33|
⟩

1 + 2δq|σn
33|

σn
i3√

σn
i3σ

n
i3

. (49)

It can be seen from this formula that σ̃n+1
i3 differs from the elastic stress on the upper time

layer by a relatively small value, and the formula for σn+1
i3 does not contain a small viscosity

parameter in the denominator.
Note that the obtained nonlinear algebraic system from the implicit approximation was solved

exactly, without taking into account the smallness of the parameter δ. Therefore, the proposed
correction procedure is also applicable for those cases when the viscosity parameter of interlayers
providing the sliding mode of contact boundaries is not small.

1.2. Explicit approximation of motion equations

Let us consider in more details the numerical method used to solve the elastic part of the
problem. In the three-dimensional case, the vector of unknowns contains nine components

u = (v1, v2, v3, σ11, σ12, σ13, σ22, σ23, σ33)
T
. (50)

Note that the original system of equations can be written in the canonical form

∂u

∂t
= A1

∂u

∂x1
+A2

∂u

∂x2
+A3

∂u

∂x3
, (51)

where A1,A2,A3 are 9 × 9 matrices and (x1, x2, x3) is an orthonormal coordinate system.
After splitting in coordinate directions, the original system splits into three independent one-
dimensional systems

∂u

∂t
= Aj

∂u

∂xj
, j = 1, 2, 3. (52)

Each of them is a hyperbolic system of equations, which means that its matrix can be diagonalized

∂u

∂t
= Ω−1

j ΛjΩj
∂u

∂xj
, j = 1, 2, 3, (53)
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where Ωj is composed of eigenvectors and Λj is a diagonal matrix composed of eigenvalues

Λj = diag (c1,−c1, c2,−c2, c2,−c2, 0, 0, 0) , j = 1, 2, 3, (54)

and c1 =

√
λ+ 2µ

ρ
and c2 =

√
µ

ρ
. After passing to the Riemann invariants v = Ωju, each of

the systems splits into a set of linear transport equations

∂v

∂t
+Λj

∂v

∂xj
= 0, j = 1, 2, 3. (55)

The transport equation is solved using an one-dimensional interpolation procedure with a given
order of approximation. Then the solution is restored on a new time layer. Note that to cal-
culate the dynamic behavior of a layered (or block) medium with nonlinear slip at the contact
boundaries, it is enough to apply the correcting relations given above after each elastic time step.

2. Simulation results

On the basis of the proposed computational algorithm consistent in the order of approxima-
tion, the numerical simulation of multidimensional problems of reflection and scattering of elastic
waves from a near-surface source on fractured buried geostructures was carried out.

At the first stage, a comparison was made of the calculation results obtained using the first and
the second order of approximation. For this, a two-dimensional problem of isotropic geological
massif loading with sizes of 2500×3000 m, a velocity of propagation of longitudinal waves of 4500
m/s, velocity of propagation of transverse waves of 2250 m/s, and density of 2500 kg/m3 was
considered. At a depth of 2000 m, a fractured cluster with a length of 1500× 100 m was located
in it. The dynamic behavior of the medium in this region was described within the framework
of a continual model with parameters q = 0.1, δ = 0.3, n =

(
1√
2
, 1√

2

)
. It was illuminated by

a longitudinal plane wave with a harmonic time dependence with a frequency of 30 Hz and an
amplitude of 1 cm/s. A rectangular computational grid was built with a spatial step of 5 m,
covering the computational domain and containing 300 000 nodes. The time step was chosen
from the Courant condition and was 1 ms. In total, 1 s of the loading process was simulated.
For the numerical solution of one-dimensional linear transport equations, the Rusanov scheme
of the third order of accuracy was used. In this 2D case, due to the use of coordinate splitting
technique, the total order of the elastic step is reduced to the second.

Fig. 1 shows the difference in seismic signals obtained using both computational algorithms.
In general, when the P-wave interacts with inclined cracks, reflected longitudinal and transverse
waves are generated — from the horizontal part of the inclusion, as well as two fronts of spherical
waves — from the side boundaries of the inhomogeneity. Analysis of the results shows that the
difference in seismic responses reaches 0.8%, and it is the most significant for the P-S response.

At the second stage, the seismic wave propagation was calculated in the Marmousi2 model
[14], complicated by the presence of a cluster of vertically oriented fractures in the volume
[4000− 4500]× [1000− 1500] m. The simulation domain was covered with a rectangular com-
putational grid with a spatial step of 5 m, in each node of which the elastic parameters of the
medium were stored. A spherically symmetric near-surface explosion with a time dependence in
the form of a Ricker pulse with a main frequency of 30 Hz was considered as a signal source.
It was located at the point (8500, 5). The fractured cluster was described by the following pa-
rameters: q = 0.1, δ = 0.3, n = (1, 0). Fig. 2 (top) shows the wavefield superimposed on the
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Fig. 1. Seismic response (left) and absolute value of velocity modulus (right) for first order and
second order schemes usage

density model of the medium. One can see the formation of numerous waves reflected from
curvilinear contact boundaries. At the same time, it is not possible to identify the position of
the heterogeneity itself. Fig. 2 (bottom) shows the difference wavefield obtained by subtracting
the simulation results for a fully elastic model. The generation of spherically diverging response
waves is clearly visible. Note that the level of the response amplitude is also at the level of 1%.

Conclusions

In this paper, we consider the problem of dynamic loading of a deformable elastic medium with
a discrete set of slip planes and nonlinear slip conditions at the contact boundaries of structural
elements. A continual model was used to describe its behavior. For a stable numerical solution
of the governing system of differential equations, an explicit-implicit scheme with an explicit
approximation of the motion equations and an implicit approximation of the constitutive relations
containing a small parameter in the denominator of nonlinear free terms is used. To match the
orders of approximation of the explicit elastic and implicit correction steps, an implicit second-
order approximation is constructed for the constitutive equations of a layered medium with
friction at the contact boundaries, and refined correction formulas are obtained after the elastic
calculation step. To calculate the "elastic" step, the grid-characteristic method on rectangular
grids was used. The use of the method of consistent approximation made it possible to increase
the accuracy of calculations and to carry out a numerical simulation of non-stationary problems
of the scattering of elastic waves and the generation of a response from an oriented fractured
cluster, both in a homogeneous and inhomogeneous geological massif.

This work was carried out with the financial support of the Russian Science Foundation,
project no. 19-71-10060.
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Fig. 2. Wave field in Marmousi2 fractured model (top) and difference with pure elastic model
(bottom)
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Явно-неявные схемы для расчета динамики слоистых сред
с нелинейными условиями на контактных границах

Илья С.Никитин
Институт автоматизации проектирования РАН

Москва, Российская Федерация
Василий И. Голубев

Московский физико-технический институт
Московская область, Российская Федерация

Аннотация. В настоящей работе рассматривается задача динамического нагружения деформи-
руемой твердой среды, содержащей плоскости скольжения с нелинейными условиями проскаль-
зывания на них. Построена явно-неявная схема для численного решения определяющей системы
уравнений, в точности сводящаяся к корректировке значений тензора напряжений после выпол-
нения упругого шага. Неявная аппроксимация определяющих соотношений, содержащих малый
параметр в знаменателе нелинейных свободных членов, выполнена со вторым порядком. Проце-
дура корректировки применима и для тех случаев, когда параметр вязкости у прослоек, обеспе-
чивающих режим скольжения контактных границ, не мал. Численно получено решение задачи о
распространении сейсмических волн в неоднородном трещиноватом геологическом массиве в дву-
мерной постановке.

Ключевые слова: слоистые среды, трещиноватые среды, компьютерное моделирование, явно-
неявный метод, сеточно-характеристический метод, условия скольжения.
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