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Abstract. A material with a microstructure is considered. A material is described on the basis of
a non-Euclidean model of a continuous medium. In equilibrium, the total stress field is represented
as the sum of elastic and self-balanced stresses, the parameterization of which is given through the
scalar curvature of the Ricci tensor. It is proposed to use the spectral biharmonic equation to calculate
the scalar curvature. Using the example of a plane strain state of a material, it is shown that the
amplitude coefficients of elastic and self-balanced fields can be chosen so that singularities of the same
type compensate each other in the full stress field.
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Introduction

The singular behavior of the stress field in models of a continuous medium cannot be at-
tributed to physical phenomena of the real world. Nevertheless, these singularities have been
analyzed by researchers for a long time. The separation of their interests is associated, first of
all, with the need to solve problems of different quality level, in which, in the general case, the
use of various mathematical models is required to describe the internal properties of real mate-
rials during deformation. In particular, when studying the elastic-plastic behavior of materials,
the necessity of introducing singular lines for analyzing the stress field around dislocations was
considered by Burgers [1], while the word "singular" was used by him 83 times in that work.
Approaches to interpreting the features of such fields in a physically meaningful way were pro-
posed long ago [2].

Since the 1960s, the focus of theoretical research has been on the problem of constructing
models for describing the microcharacteristics of materials in order to exclude a singularity and
obtain a physically realistic result. A review of various approaches to overcoming singularities
in the continuum theory of dislocations since the 1960s can be found in [3]. In that case, the
authors proposed a nonsingular theory of dislocations, in which it is assumed that the core of
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a dislocation is distributed in space. In [4], on the basis of the translational gauge theory of
defects, an analytical representation was obtained for the fields of displacement, strain and stress
that do not contain singularities in the dislocation core. The research cycle presented in [5-10]
is devoted to the development of a nonsingular model for describing the field of elastic stresses
and strains for dislocations and disclinations in the framework of a Mindlin’s gradient theory.
It should be noted that research groups motivated by Aifantis [11-14], also built nonsingular
solutions of gradient elasticity for dislocations and cracks.

In continuum mechanics, each type of defect is associated with the state of internal stress
of the continuum, for the description of which researchers in the 1950s suggested using non-
Euclidean geometric objects [15,16]. Analysis of this problem for various decades can be found
in [17-22]. The common approach of all authors is to use geometric non-Euclidean objects as
variables characterizing the geometric structure of the incompatibility of the medium material
elements. Although theoretical approaches in this direction are actively developing, the use of
non-Euclidean objects for constructing a nonsingular model of defects has not received a wide
representation in the scientific literature. Therefore, the purpose of this work is to fill this
research gap.

1. Internal stress field

Internal stresses that exist in materials and do not disappear when external loads are removed
are usually called self-balanced or residual. By definition [23, 24], the stress field inside the body
has the property of self-balance if the total force and moment acting on the body are equal to
zero. It was shown in [25] that the solutions o;; equilibrium equations in the absence of mass
forces inside the volume V of a solid

(90'@‘

ﬁxj

=0, (1)

have the following structure: o;; = 7;; + T;;. Components o;; include the field of elastic stresses
7;; and the field of self-balanced stresses Tj;. In this case, the conditions for the absence of
external forces on the surface of a solid are satisfied pointwise:

(rijn; + Tigng)lov =0, 2)

i.e. the combined action of these stresses allows it to maintain a given shape.

If, in the model of a continuous medium with an internal structure, non-Euclidean geometric
objects are introduced to describe the internal stress state [26], then they allow to represent the
stress field T;; in the following way:

O’R
— 4(5.. _
T’ij == O'0l <57,]AR axiaxj> 5 (3)

where R is a scalar curvature: trace of the Ricci tensor [27]; constants oy and [ have the dimen-
sion of stress and length. The function R is generally unknown. This geometric object was used
to analyze the phenomenon of zonal disintegration [28]. Under the assumption that the inter-
nal energy of the medium depends on the thermodynamic variables quadratically, a stationary
equation was obtained for R in [26, 28]:

A’R =R, v #0. (4)

Parameter v depends on the spatial scale of the problem and has the dimension v =
= 1/[dimension of length]?.
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2. Non-singular solutions

To further concretize the above relations, consider the plane strain state of the material,
assuming that the elastic stress field is equal to zero: 7;; = 0. Obviously, the components Tj;
(3) satisfy the system of equations (1). Since A? —y = (A + ,/7)(A — ,/7), the solution for R
is given by the formula R = R, + R_, where R, R_ meet the requirements

(A+yA)Rs =0, (A= 7)R- =0, (5)

In order to construct the functions Ry and R_, consider the polar coordinate system (r, ) and
assume that they do not depend on ¢. Introducing the variable s = ¢/4r, we write relations (5)
in the following form:

R, 10R, O®R_  10R_

52 tias T ety R0 )

The solutions of equations (6) are determined in terms of the cylindrical functions:
Ri(s) =aJo(s) +bNo(s), R_(s)=cKo(s)+ dlo(s), (7)

where Jy(s) and Ny(s) are Bessel and Neumann functions respectively; Ko(s) is a MacDonald
function; Iy(s) is a modified Bessel function; a, b, ¢, d are amplitude coefficients that have the
dimention 1/[dimension of length])?>.The only limited solution for all values of the argument is
R = R.(s) = aJy(s). In this case, the nonzero components of the stress field are determined
from the formulas:

1
T, = l4 8R+(s —0p l4 \/>J1( )

o2 R+( ) 1OR(s)

0t (A2 ) -t (- i)

TSWJ = 00l4

in which we used the relations for the Bessel functions and the first equation in (5). Functions
Tyr, Tpp do not contain singularities at s — 0, insofar as J;(s) has a first-order root at zero.

Consider the constructed solution for a circle with a radius under the condition that there
are no forces on the boundary, then the boundary condition (2) is reduced to the vanishing of
the radial stress on the circle: T}.,|.—, = 0. From this and (8) we obtain

J(Y/7a) = 0. (9)

From (9) it follows that parameter v (4) cannot be arbitrary, but is determined by the roots six
of the Bessel function Ji(s): vx = (s1x/a)*, k > 1.
Now we assume that the elastic stress field 7;; is nonzero:

Aty Trr — Top _ . 10 0
ds + B = 0, A(Trr + 7—(‘0@) = 07 A = ;@Sg (10)

The solutions of equations (10) are given by the formula:
1 3
TTT:CQIHS+%+§CQ+63, T@¢:021n57%+502+03. (11)
Self-balanced stress field T;; (3) equals to

9> (R + R_
T); = ool (6UA(R+ +R-) - W) ' "
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Substituting (7) here and using the relations between the cylindrical functions, we obtain

T, = aol*\ /7 (—ajls(s) - les(S) - cKls(S) + djlis)) : (13)
T, = oolh/7 |a? 15(8) oY 15(8) + cKls(S) =B () — bNo(s)+ Ko (s)+ dfo(s)} . (14)

Elastic stress field 7;; (11) has singular behavior at s — 0. On the right-hand side of (13) and
(14), individual terms also contain a singularity in the vicinity of zero, and such a contribution
is made by the functions Ny(s), Ko(s), Ni(s), Ki(s), since at s — 0 they have the following
asymptotics:

2 2 1
No(s)fv;lns, Ky(s) ~ —1Ins, Nl(s)wglns—g, Kﬂs)w;—&—%lns. (15)

Terms (13) and (14) containing Ji(s), I1(s) do not have singular behavior, because Jy(s) ~
I(s) ~ s/2 at s — 0. Requirement for the absence of singular contributions in the total stress
field 0;; = m; + T;; leads to the fact that the coefficients in (11), (13) and (14) cannot be
arbitrary: they should be chosen so that singularities of the same type compensate each other.
Leading on s the singularity is of 1/s? order. Equating the combination of coefficients to zero at
1/s* in 0rp = Tpr + Tyry 0pp = Tipp + Tipyp, we obtain

c1 = ool /7y (—ib + c) . (16)

Note that the requirement that there is no singularity for o,.., 0, does not lead to the appearance
of two independent conditions and has the form (16). The next singular contribution to (13) and
(14) contains In s, then the requirement that the coefficients vanish at In s gives

en = aolt 7y (fr + ;) . (17)

Thus, under conditions (16), (17), the stress fields o,,, 04, do not contain singular contribu-
tions.

Conclusion

The presence of an internal microstructure in the material forced us to single out the con-
tributions in the total stress field that characterize its distribution in the material. The use
of a non-Euclidean model of a continuous medium allowed to parameterize the corresponding
internal stresses in terms of the scalar curvature of the Ricci tensor. Using the obtained relations
to describe the plane strain state of the material, we obtained an analytical representation for
the total stress field. The condition of the absence of singular contributions in it led to a con-
sistent choice of amplitude coefficients in the solution for the fields, providing compensation for
singularities in the total stress field. The performed procedure allows to construct a nonsingular
solution for a plane strain state of a continuous medium based on a non-Euclidean model.

The investigation was financially supported by the Russian Science Foundation (project 19-
19-00408).
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IlocTpoeHnne HeCHMHTYJISIPHBIX IOJIE HAOPAXKEHWIA
B HEEBKJIMJIOBOII MOJIeJIN /I MJI0CKO-1eOPMUPOBAHHOTO
COCTOSIHUSI CIIJIONTHON CpeJibl

Muxaua A. I'yzes

Ilepmckuit HaIMOHAJIBHBIN UCCJIEI0BATEIBCKUN TTOJUTEXHUIECKUI YHUBEPCUTET

Ilepmb, Poccuiickast @eneparms

WMucturyT npuknagaoit maremaruku JlasmpHeBocTouHOrO OTMEmeHnst Poccniickoit akaieMun HayK
Brnanusocroxk, Poccuiickast ®eneparnust

Esrenwnii II. Pa6okoHb
IlepMmckuit HAIMOHATBHBIN UCCIEIOBATEIbCKAN TOJTUTEXHUIECKNAN YHUBEPCUTET
Ilepmb, Poccuiickast @eneparms

AnnoTtanmsa. PaccmarpuBaercst MaTepras ¢ MUKPOCTPYKTYPOii, OIICaHIe KOTOPOi BBIIIOJIHSIETCST HA OC-
HOBe HEEBKJINJIOBOM MOJEJIN CIJIOIIHON cpelbl. B paBHOBecHH IOJIHOE IOJIe HAIPSKEHHI IIPEICTaBIIEHO
B BUJIe CyMMBI YIIDYTUX U CAMOYDABHOBEIICHHBIX HAIIPSKEHUH, TapaMeTpu3alisa KOTOPBIX JaeTcs depe3
CKaJIIDHYIO KPUBHU3HY TeH3opa Puwun. [ljis BBIMMCIIEHNsT CKaJISIPHON KPUBU3HBI IIPeJIaraeTcsl UCIOJIb-
30BaTh CIIEKTPaJIbHOE OHrapMoHHYeckoe ypaBHeHue. Ha npumepe miocko-s1epopMUpPOBAHHOIO COCTOS-
HOsI MaTepuaJia IO0Ka3aHO, YTO aMINIATYAHbIe KO3MDMUINEHTH! YIPYTUX U CAaMOYPABHOBEIIEHHBIX IIOJIEH
MOXKHO BBIODATh TaK, YTOObI CHHIYJIIDHOCTH OJIHOTO THIIa KOMIIEHCHPOBAJH JIPYT IPYyTa B IIOJHOM IIOJIE
HaIPAXKCHNN.

KurouyeBrble cjIOBa: HECUHTYJISIPHOE T0JI€ HAIPSIKEHUH, IJI0CKas JedopMaliusi, MUKPOCTPYKTYPa, CITeK-

TpPaJIbHOE OHTapMOHUYECKOE YDaBHEHUE.
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