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Abstract. Collective modes of the gyrotropic motion of a magnetic vortex core in ordered arrays of
triangular and square ferromagnetic film nanodots have been theoretically investigated. The dispersion
relations have been derived. The dipole–dipole interaction of the magnetic moments of the magnetic
vortex cores of elements has been taken into account in the approximation of a small shift from the
equilibrium position. It is shown that the effective rigidity of the magnetic subsystem of triangular
elements is noticeably higher than that of the subsystem of square elements of the same linear sizes. The
potential application of the polygonal film nanodisks as nanoscalpels for noninvasive tumor cell surgery
is discussed.
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Introduction

Ordered arrays and suspensions of ferromagnetic nanodots have a great potential for ap-
plication in new spintronic devices and noninvasive cell nanosurgery of malignant tumors in
medicine [1,2]. The requirements for the magnetic moment of a nanoobject used as a magnetic-
filed-driven nanoscalpel for cell destruction are contradictory: an increase in the magnetic mo-
ment facilitates the cell destruction, but is accompanied by an undesirable effect of agglomeration
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of nanoparticles in a suspension. To resolve this contradiction, it is necessary to search for a com-
promise situation where the initial magnetic moment of a nanoscalpel is small, but significantly
increases upon switching on a magnetic field at the instant of destruction.

The aim of this work, along with studying the features in the resonance behavior of the
magnetization of ordered arrays of triangular and square nanodots, is to clarify whether the
problem of nanoparticle agglomeration in a cell surgery suspension can be solved by changing
the nanoparticle geometry.

The point is that the disk is not an optimal nanoscalpel configuration. In ferromagnetic
nanoparticles suspended in a liquid, the magnetic flux tends to close inside an element with the
formation of magnetic vortices. In a disk-shaped particle, a single vortex is formed (Fig. 1а),
in which the magnetization is circularly oriented in the plane at the periphery of a particle and
is out-of-plane at its center (the vortex core). The magnetic moment of an object is induced
mainly by the core. The external field causes a reversible displacement of the core at the almost
invariable value of the magnetic moment.

For the analysis, we chose square and triangle configurations as presumably promising. As in
disks, the magnetic flux in square and triangular nanodots is almost completely closed within an
element. A quasi-vortex with a core at the center is formed (Fig. 1 b and c). A core is the magnet
region with a size of δ0 ≈ 10 nm in which the magnetization is out-of-plane (perpendicular to
the magnet plane) due to the competition between the exchange and demagnetizing energies:
δ0 ≈

√
A/(µ0MS) (A is the exchange constant and MS is the saturation magnetization).

Fig. 1. Equilibrium magnetic structures of (a) circular, (b) square, and (c) triangular permalloy
film nanospots [3]. The quasi-vortices of the square and triangular spots represent closed domain
structures with a vortex core at the center

Under the action of any factors (external fields, spin-polarized currents, anisotropy field
gradients, stresses, etc.), a magnetic vortex moves along a curvilinear trajectory, being driven by
the Magnus forces [4–8]. In analytical calculations, the well-proven rigid vortex approximation is
often used. In the model used, it is assumed that the magnetization configuration in the region
covered by the vortex distribution remains unchanged upon displacement of the core from the
equilibrium position. In this case, the vortex dynamics should be described by the method of
collective variables, which are the core coordinate and velocity. Then, the equations of motion
take the well-known form (the Thiele equation [9]):

G× v + D̂v +∇W = 0. (1)

Here G is the gyrovector [7, 9, 10], perpendicular to the magnet plane, v is the core velocity,
W is the potential energy of the vortex, and D̂ is the tensor of effective coefficients of the force
of friction. The potential energy W includes the terms responsible for its growth due to the
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exit of the magnetic subsystem of elements from the metastable state (the shift of the core from
the equilibrium position), the terms describing the pairing energy of interaction between the
magnetic moments of different elements, and the terms describing external factors (fields).

Below, we consider specific equations for square and triangular elements using the models
that are simple, but make it possible to compare the resonance behavior of disks with different
shapes and the effective rigidity of their magnetic subsystems.

1. Effective Potential Energy of a Polygonal Ferromagnetic
Element

In this Section, we estimate the increment of the potential energy W of magnetic elements
upon displacement of the magnetic vortex core from the equilibrium position. A rigorous ana-
lytical solution to this problem faces great computational difficulties. Therefore, the numerical
modeling is frequently used (see, for example, [11–14]). This calculation is necessary to determine
the parameters of vortex motion using Eq. (1).

Fig. 2. presents the models of ferromagnetic elements. Each element has a domain magneti-
zation structure with a vortex at the center of a magnet. To perform the estimation, we assume
that, upon displacement of the core, the energy of the magnetic subsystem changes mainly due to
an increase in the energy of the magnetostatic interaction of domains. We calculate this energy
using the dipole–dipole approximation. It can be shown that the energy of the magnetostatic in-
teraction of uniformly magnetized triangular regions (domains) can be approximately presented
as the energy of interaction between dipoles located in the medians at a distance of one third of
the height from the base to which the magnetization is parallel (quasi-dipoles). In Fig. 2, these
positions are shown by closed circles with arrows. The value of magnetic moment M of each
dipole is determined by the magnetic moment of the corresponding magnetic domain.

Fig. 2. Models of ferromagnetic nanoelements in the form of a square and a regular triangle

When the core is shifted from the element centers, the domain structure configuration changes,
which is reflected in a change in the domain size and, consequently, in the energy of the interaction
between domains. This process can be considered as a variation in the energy of interaction
between magnetic dipoles (quasi-dipoles), which, in this case, shifted and changed the absolute
values of their magnetic moments.
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Let us enumerate domains as shown in Fig. 2. For the energy of interaction between the n-th
and m-th dipoles, we write

Wnm =
µ0

4π

(
MnMm

r3nm
− 3

(Mnrnm)(Mmrnm)

r5nm

)
. (2)

Here rnm is the radius vector connecting the dipoles and Mn and Mm are their magnetic mo-
ments. For the magnetic moments, we can write

|Mn| ≈ MSVn =
1

2
MSbSn =

1

2
MSbahn. (3)

Here MS is the saturation magnetization, Vn is the domain (prism) volume, Sn is the domain
square (triangle), hn is the altitude of a triangular domain plotted from the core position to the
outer side of the element, b – is the element thickness, and a is the side of a regular polygon.

The vortex core position is specified by length ρ of its radius vector and azimuth angle ϕ.
Obviously, the dipole positions and absolute values of the magnetic moments are determined by
the ρ and ϕvalues. Solving a simple geometric problem, we can express the parameters included
in energy (2) through ρ and ϕ. The results of the calculation are given in Tab. 1.

Table 1. Parameters of quasi-dipoles as functions of ρ and ϕ according to the numeration in
Fig. 2. The absolute values of the magnetic moments are calculated using Eq. (3)

Element
shape

Quasi-dipoles Cartesian
coordinates

Quasi-dipole magnetic moment

Square

x1 =
1

3
ρ cos(ϕ)

x2 =
1

3
(a+ ρ cos(ϕ))

x3 = x1

x4 = −1

3
(a− ρ cos(ϕ))

y1 = −1

3
(a− ρ sin(ϕ))

y2 =
1

3
ρ sin(ϕ)

y3 =
1

3
(a+ ρ sin(phi)

y4 = y2.

M1 =
1

2
MSba

(a
2
+ ρ sin(ϕ)

)
M2 =

1

2
MSba

(a
2
− ρ cos(ϕ)

)
M3 =

1

2
MSba

(a
2
− ρ sin(ϕ)

)
M4 =

1

2
MSba

(a
2
+ ρ cos(ϕ)

)

Triangle

x1 =
1

3
ρ cos(ϕ)

x2 =
1

3

(a
2
+ ρ cos(ϕ)

)
x3 = −1

3

(a
2
− ρ cos(ϕ)

)
y1 = −1

3

(a√3

3
− ρ sin(ϕ)

)
y2 =

1

3

(a√3

6
+ ρ sin(ϕ)

)
y3 = y2

M1 =
1

2
MSba

(
a
√
3

6
+ ρ sin(ϕ)

)
M2 =

1

4
MSba

(a√3

3
−

√
3ρ cos(ϕ)− ρ sin(ϕ)

)
M3 =

1

4
MSba

(
a
√
3

3
+

√
3ρ cos(ϕ)− ρ sin(ϕ)

)

Taking into account the data from Tab. 1, we obtain the square element energy

Wsq(ρ) = W12 +W13 +W14 +W23 +W24 +W34 =
27

128

µ0M
2
Sb

2

πa

(
ρ2 − a2

2

)
, (4)
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and the triangular element energy

Wtr(ρ) = W12 +W13 +W32 =
15

2

27

128

µ0M
2
Sb

2

πa

(
ρ2 − a2

3

)
. (5)

Importantly, according to the calculation, the energies of both a square and triangular element
are independent of the azimuth angle; i.e. the potential of the vortex core has a cylindrical
symmetry. This is a safety signal, since the potential does not reflect the shape of a magnet.
This is true until the area covered by the vortex reaches the boundary of a magnet. If the
shift is so large that the core appears in the vicinity of the boundary (ρ ≈ a), then the vortex
distribution will lead to the occurrence of noticeable magnetostatic charges on the lateral surface.
The contribution of the terms related to these charges to the magnetostatic energy will ensure
the dependence of the total potential energy on the lateral surface shape. In this case, the
symmetry of a magnet will be reflected in the functional dependence of the energy on azimuth
angle ϕ [15–18]. Thus, Eqs. (4) and (5) are valid as long as the core shift does not lead to the
exit of the magnetization from the lateral surface of a magnet.

The analytical form of Eqs. (4)–(5) allows us to estimate the initial susceptibilities of na-
noelements. To do that, we obtain the dependence of the total magnetic moment of an element
on applied dc magnetic field H. For simplicity, we assume that the magnetic field is parallel to
the polygon side (directed along the OX axis for both the square and the triangle).

When the external field is applied, the energy of the magnetic subsystem should be added
with the Zeeman energy

Wtot = W (ρ)−MH. (6)

Switching on the field H, along the positive direction of the x axis (see Fig. 2), leads to the
displacement of the core from the magnet center in the positive direction of the y axis (ϕ = π/2,
q = +1). or in the opposite direction (ϕ = −π/2) if the magnetization in elements rotates
clockwise (q = −1)rather than counterclockwise.

The total magnetic moment of an element can be calculated as follows (see Fig. 3). A
domain with the magnetization co-directed with the field grows by the expense of domains the
magnetization of which has the energetically unfavorable direction. Then, for the magnetic
moment of a square element, obtain

|M| = 1

2
MSba

(a
2
+ ρ
)
− 1

2
MSba

(a
2
− ρ
)
= MSbaρ. (7)

The search for the equilibrium shift ρ is conventionally made with regard to Eq. (7):

dWtot

dρ
=

54

128

µ0M
2
Sb

2

πa
ρ−MSbaH = 0. (8)

Then, for the equilibrium position of the core, obtain

ρ =
128

54

πa2

µ0MSb
H. (9)

Taking into account (9), for magnetic moment (7) obtain

M = χsqH, χsq =
128

54

πa3

µ0
. (10)

The calculation for triangular elements, analogously to (7)–(10) yields

χtr =
24

135

πa3

µ0
. (11)
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Fig. 3. Occurrence of the magnetic moment in (a) a square and (b) triangular element

2. Collective Modes in an Ordered Array of Polygons

The above analytical expressions for energy W (ρ) allow us to analyze the gyrotropic motion
of vortex cores in the arrays of elements arranged in a certain order, for example, forming a
square lattice (see Fig. 4 for triangular elements).

Fig. 4. Example of an ordered array of triangular elements. The distance between the centers
of elements is l. Example of orientation of the magnetization of the core and trajectory of its
motion

Let us continue the discussion of the case when the vortex cores in elements remain fairly
distant from the element edges during the motion induced by, e.g., an ac magnetic field. In this
case, the magnetic subsystems of triangles interact magnetostatically only due to the presence of
a magnetic moment of cores at the center of the vortices. At the vortex center, the magnetization
is perpendicular to the element surface and, depending on the p polarity, can be conditionally
oriented upward (p = 1) or downward (p = −1). The example of the trajectory of the core motion
in the centrosymmetric potential is shown in Fig. 4 for one of the elements. The direction of the
gyrotropic rotation is determined by the sign of the product of polarity and chirality: q = ±1.

The energy of interaction of the magnetic moments of the cores of all elements must be
included in the total energy of a system. The energy of the pairwise interaction of the core of
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some selected element with polarity p and another element with polarity pnm, which belongs to
the column with number n in the row with number m can be presented in the form

W (dip)
nm = ppnm

µ0

4π

µ2

r3nm
. (12)

Here rnm =
√
(nl + (xnm − x))2 + (ml + (ynm − y))2 is the distance between the cores, µ is the

magnetic moment of the core vortex, x and y are the core shifts along the x and y axes of the
chosen element, respectively, and xnm and ynm are the core shifts along the x and y axes of the
second element with coordinates (n,m), respectively. The summation is made over all n and
m except for the case n = m = 0. For the total energy of the interaction between the chosen
element and the rest matrix, we write

W (dip) =
pµ0µ

2

4π

∑
n,m

pnm
r3nm

. (13)

Then, taking into account (4) or (5), the force acting on the core is

f = −∇(W (ρ) +W (dip)) = ex

(
−κx+ ξp

∑
n,m

pnm
(
4n2 −m2

)
(x− xnm)

(n2 +m2)
7
2

)
+

+ ey

(
−κy + ξp

∑
n,m

pnm
(
4m2 − n2

)
(y − ynm)

(n2 +m2)
7
2

)
.

(14)

The designations used here are κ = 54µ0M
2
Sb

2/(128πa) for squares or κ = 405µ0M
2
Sb

2/(128πa)

for triangles; ex and ey are the unit vectors of the x and y axes, respectively; and ξ =

3µ0µ
2/(4πl5). In addition, the relations ρ2 = x2 + y2, x, y, xnm, ynm ≪ l. were used. It

should be noted that Eqs. (14) are valid at the symmetric distribution of the polarities of ele-
ments in an infinite array. For instance, at pnm = ±1, regardless of n and m, we have either
pnm = (−1)n+m or pnm = (−1)n, etc., since, in these cases, the core of a selected element is not
affected by constant forces from the side of its neighbors and has an equilibrium position at the
center of this element.

According to Eq. (14), we write equation of motion (1) in the components
Gvy +Dvx +

(
κ+ ξ

∑
n,m

ppnm
(
4n2 −m2

)
(n2 +m2)

7
2

)
x− ξ

∑
nm

ppnm
(
4n2 −m2

)
xnm

(n2 +m2)
7
2

= 0,

−Gvx +Dvy +

(
κ+ ξ

∑
n,m

ppnm
(
4m2 − n2

)
(n2 +m2)

7
2

)
y − ξ

∑
nm

ppnm
(
4m2 − n2

)
ynm

(n2 +m2)
7
2

= 0.

(15)

It is reasonable to search for solutions of system of equations (15) in the form of waves

xnm(r, t) = Xei(kr−Ωt), ynm(r, t) = iY ei(kr−Ωt). (16)

Here i =
√
−1 is the imaginary unit, k = kxex + kyey is the wave vector, r = nlex +mley is the

radius vector connecting the centers of the chosen element and the element for the column with
number n and the row with number m, and X and Y are the amplitudes of the core shift along
the x and y axes, respectively.

Substituting the trial solutions of (16) into system of equations (15), we obtain the system
of algebraic equations of variables X and Y{

GΩY − (iDΩ− κ− ξSx(kx, ky))X = 0,

GΩX − (iDΩ− κ− ξSy(kx, ky))Y = 0.
(17)
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Here, we used the designations

Sx(kx, ky) =
∑
nm

4n2 −m2

(n2 +m2)
7
2

(1− cos(kxnl) cos(kyml)) ,

Sy(kx, ky) =
∑
nm

4m2 − n2

(n2 +m2)
7
2

(1− cos(kxnl) cos(kyml)) .

(18)

Equating the determinant built on the coefficients at X and Y to zero, we obtain the quadratic
equation of variable Ω, the solution of which is

Ω = ±ω − iδ, (19)

where

ω =

[
(κ+ ξSx(kx, ky)) (κ+ ξSy(kx, ky))

G2 +D2
− κ2D2

(G2 +D2)
2

] 1
2

, (20)

δ =
κD

G2 +D2
. (21)

The real part of Eq. (19) — ω — determines the angular velocity of the vortex core rotation (the
gyrotropic frequency). The imaginary part δ determines the effective damping parameter.

In the long-wavelength limit (kx, ky → 0) , the sums turn to zero and we obtain the well-known
expressions for the frequency and damping parameter in a single element [19,20]. Indeed, in this
case, the cores of all disks of the array move synchronously and the dipole–dipole interaction
forces acting on a selected element are compensated pairwise from neighbors with numbers n

and −n, similar to m and −m. In other words, the interaction between the elements in this case
does not affect the gyrotropic frequency. In other cases, Eq. (20) specifies the dispersion law
ω(kx, ky).

When creating ordered arrays of ferromagnetic elements, nature chooses the energetically
most favorable state, which corresponds to a checkboard pattern of the polarity signs, i.e., the
state given by the expression pnm = (−1)n+m. In the opposite limit (the least favorable distri-
bution), the polarities of all elements have the same sign (the magnetization at the center of all
vortices is identically directed); i.e., p is independent of numbers n and m. Such a state can be
created by applying a magnetic field exceeding the saturation field perpendicular to the array
plane. The dispersion surfaces for these extreme cases are shown in Fig. 5. The linear sizes of
the cores are, as a rule, smaller than the sizes of elements; therefore, the inequality ξ ≪ κ can
be considered valid.

Basing on Fig. 5, we should emphasize an important feature. At sufficiently large ξ values,
in the model with the alternating p signs, there are the wavenumber ranges in which ω becomes
imaginary, which is indicative of the aperiodic motion of the cores. This can be qualitatively
explained as follows. The alternation of the polarity sign leads to a decrease in the effective
rigidity of the potential in which the core moves. This obviously follows from Eqs. (15) or
(20), where the rigidity κ is added with the correction the value and sign of which depend on
the values of polarities pnm. At different polarity signs, the attraction between the cores of
neighboring elements arises (on the contrary to the repulsion at the same p), which competes
with the restoring force determined by the rigidity κ. of the magnetic subsystem. As a result, the
restoring force acting on the core becomes so small that it leads to the imaginary ω value (20).
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Fig. 5. Dispersion laws ω(kx, ky) based on Eq. (20). The frequency in units of κ/G is laid off
along the vertical axis. (a) The case of δ = 0.1ω and ξ = 0.1κ and (b) the case of ξ = 0.3κ. The
surfaces with number 1 correspond to the case of the same polarity of vortices of all elements
and the surfaces with number 2, to the case of a checkboard pattern of the polarity signs

3. Discussion

To sum up the comparison of the properties of arrays of square and triangular elements, we
can emphasize some circumstances that can play a significant role in selecting the objects that
are candidates for use as functional tools for medicine or various spintronic devices. First of all, it
should be noted that the effective rigidities of the magnetic subsystems of square and triangular
elements of the same linear sizes are significantly different. This feature is responsible for the
difference between the initial susceptibilities of the arrays of these elements by almost an order
of magnitude. According to Eqs. (10) and (11), we have

χsq

χtr
=

128

54

135

24
≈ 13. (22)

This phenomenon was confirmed in our experiment. The arrays of square, triangular, and
circular elements for the experiment were formed by explosive lithography from a continuous film
using high-vacuum thermal sputtering of an 80HXC alloy onto a silicon substrate coated with
a photoresist. The required morphology was formed on the substrate surface using an AZ Nlof
2035 negative photoresist. The magnetic structure and morphology of the obtained elements
were examined on a Veeco MultiMode NanoScope IIIa scanning probe microscope.

The surface morphology of the investigated arrays is shown in Fig. 6. The images were
obtained on an atomic force microscope operating in a tapping mode [21, 22]. A cantilever was
brought to the surface so that in the lower half-period of the oscillations, the sample surface was
touched. The interaction of the cantilever with the surface in the tapping mode was ensured
by the van der Waals forces, which, at the instant of touching, are added with the elastic force
acting on the cantilever from the surface side.

Fig. 7 shows a typical scan of the magnetic structure obtained using a two-pass technique
in the cantilever frequency modulation mode. The return passage height is z0 = 50 nm. The
obtained images allow us to conclude that, in square elements, an equilibrium structure with the
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Fig. 6. Atomic force microscopy images of the surface relief of the arrays of different elements.
The linear sizes of the elements are the same (the diameter is 3 micrometers and the thickness
is 12 nm)

closed magnetic flux (quasi-vortex) of four domains separated by 90-degree Neel walls is most
often implemented, while in triangular elements, the structure is formed by three domains with
120-degree walls. At the center, at the intersection of the diagonals, there is a core similar to
that at the center of circular elements.

Fig. 7. Atomic force microscopy images of the magnetic structure of different elements

The hysteresis loops of the arrays of squares and triangles were obtained on a NanoMOKE
facility. The result is presented in Fig. 8. It can be seen that the slopes of the initial portions of
the curves for square and triangular elements differ by more than an order of magnitude, which
is in good agreement with estimate (22).

Such a significant dependence of the effective rigidity of the magnetic subsystems on the
element shape should be taken into account in designing the basic components, for example,
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storage devices, field sensors, etc. For medicine, square-shaped elements seem to be preferable,
since they more readily respond to an external field, which simplifies the control of their motion
in suspensions and biological liquids. In zero external field, they have a weak total magnetic
moment, since the flux is closed inside an element and the magnetic moment of the central part
of the vortex is small due to the small size of the core.

Fig. 8. Hysteresis loops obtained on an array of (a) square and (b) triangular elements. The
loop in (a) was obtained by applying a field along the square side. Plot 1 in (b) was obtained by
applying a field along the triangle edge and plot 2, by applying a field along the triangle height

In addition, a significant difference in the rigidity of the system will affect the resonance
properties of the arrays. The frequencies of the gyrotropic motion of arrays of square elements
were about 400 MHz 400 МГц [15], while for triangular elements one should expect multiply
higher frequencies. Features of the collective modes for different shapes of elements will be
objects of further investigations.

As intermediate results, in this work, the analytical expressions for the potential energy of
the magnetic vortex core and the dispersion relations were obtained.

This study was supported by the Russian Foundation for Basic Research, project no. 20-02-
00696.
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Особенности резонансного поведения намагниченности
в массивах треугольных и квадратных наноточек

Виталий А. Орлов
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Аннотация. Теоретически исследуются коллективные моды гиротропного движения ядра маг-
нитного вихря в упорядоченных массивах ферромагнитных пленочных наноточек треугольной и
квадратной форм. Получены дисперсионные соотношения. Учитывается диполь-дипольное взаи-
модействие магнитных моментов ядер магнитных вихрей элементов в приближении малого сме-
щения от положения равновесия. Показано, что эффективная жесткость магнитной подсистемы
в треугольных элементах заметно больше, чем в квадратных при одинаковых линейных разме-
рах. Обсуждается перспектива использования пленочных нанодисков-многоугольников в качестве
"наноскальпелей" для неинвазивной клеточной хирургии опухолей.

Ключевые слова: дифференциальные уравнения, задача Коши, расщепление, устойчивость, схо-
димость.

– 623 –


