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Abstract. This article is devoted to the study of the properties of the zeta-function of zeros of an
entire function. We obtain an explicit expression for the kernel of the integral representation of the
zeta-function in one case.
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Introduction

The purpose of this article is to correct a mistake in the work [1]. Namely, in the article [1] an
incorrect statement was given that for an entire function f , satisfying some additional conditions,
the following equality holds on the positive part of the real axis

f ′ (x)

f (x)
=

√
π

2
√
x
− 1

2x
. (1)

It is easy to see that for any entire function f this equality cannot be true on the whole positive

semiaxis. Indeed, the function
f ′ (z)

f (z)
is meromorphic in the whole complex plane. By virtue of

the uniqueness theorem, the equality (1) holds not only on R+, but also in C \ {0}. However,
the function √

π

2
√
z
− 1

2z

is not meromorphic in a neighborhood of the origin.
Our article is devoted to correcting the relation (1) and some of its consequences. Note that

this result is related to the study of a generalized zeta-function constructed by zeros of some
entire function.
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1. Auxiliary results

Let f (z) be an entire function of order ρ in C. Consider the equation

f (z) = 0. (2)

Denote by Nf = f−1 (0) the set of all solutions to (2) (we take every zero as many times as its
multiplicity). The numbers of roots is at most countable.

The zeta-function ζf (s) of Eq. (2) is defined in the following way:

ζf (s) =
∑

zn∈Nf

(−zn)−s
,

where s ∈ C.
In [2], using the residue theory, V. I. Kuzovatov and A.A. Kytmanov obtained two integral

representation for the zeta-function constructed by zeros of an entire function of finite order on
the complex plane. With the help of these representations, they described a domain which the
zeta-function can be extended to.

Theorem 1.1 ( [2]). Let f (z) be an entire function of the zero order in C and satisfy the
condition

f ′ (z)

f (z)
− ω0 = O

(
1

|z|

)
, |z| → ∞.

Suppose that 0 < Re s < 1. Then

ζf (s) =
sinπs

π

∫ ∞

0

(
f ′ (x)

f (x)
− ω0

)
x−s dx, (3)

where ω0 is the limit value of
f ′ (x)

f (x)
at infinity.

The method of proof of Theorem 1.1 shows that the statement remains valid in the case
when f (z) is an entire function of order less than 1.

Now we will give an integral representation for the zeta-function ζf (s) of zeros zn of f which
are zn = −qn + isn, qn > 0. Let us denote

F (f, x) =

∞∑
n=1

eznx. (4)

We will assume that Re s = σ > 1 and the following conditions hold:

lim
n→∞

qn
n
> 0, (5)

the series
∞∑

n=1

(
1

qn

)σ−1

converges. (6)

For the convergence of the series (4), using condition (5), it is necessary and sufficient (for real x)
that x > 0 [2].

Theorem 1.2 ([2]). Suppose that the conditions (5) and (6) are satisfied and Re s > 1. Then

ζf (s) =
1

Γ (s)

∫ ∞

0

xs−1F (f, x) dx,

where F (f, x) is defined by formula (4), and Γ (s) is the Euler gamma-function.
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Our goal is to obtain an explicit expression for the kernel of the integral representation (3)
in case zn = −πn2. This choice of zeros zn is due to the fact that for series

F (f, x) =

∞∑
n=1

eznx =

∞∑
n=1

e−πn2x := ψ (x)

for x > 0 it is known (see, for example, [3, Chapter II, S. 6]) that

2ψ (x) + 1 =
1√
x

{
2ψ

(
1

x

)
+ 1

}
.

2. The main result

Theorem 2.1. Let f (z) be an entire function of order ρ < 1 with zeros zn = −πn2. Then for
real x ∈ (0;+∞) the following holds

f ′ (x)

f (x)
=

√
π

2
√
x
cth

√
πx− 1

2x
.

Proof. Since the order of f is less than 1, it has the form

f (z) = C

∞∏
n=1

(
1− z

zn

)
. (7)

The representation (7) is true, for example, for entire functions of order less than 1 or for entire

functions of the first order with the additional condition, i.e. the series
∞∑

n=1

1

|zn|
is convergent.

In particular, the representation (7) is true for functions of the zero genus.
It is easy to show that in this case we obtain

f ′ (z)

f (z)
=

∞∑
n=1

1

z − zn
(8)

if z ̸= zn.
Since the order of the canonical product (7) is equal to the index of convergence ρ1 of its

zeros and for given values of zn

ρ1 = lim
n→∞

lnn

ln |zn|
=

1

2
,

representations (7) and (8) are true for considered function f (z).
To further prove the assertion of the theorem, we use the standard decomposition (see, for

example, [4, formula 5.1.25.4])

∞∑
k=0

1

k2 + a2
=

1

2a2
+

π

2a
cthπa.

Then
∞∑
k=1

1

k2 + a2
= − 1

2a2
+

π

2a
cthπa.
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Thus

f ′ (x)

f (x)
=

∞∑
n=1

1

x+ πn2
=

1

π

∞∑
n=1

1

n2 + x/π
=

1

π

(
− 1

2x/π
+

π

2
√
x/π

cthπ
√
x/π

)
=

= − 1

2x
+

√
π

2
√
x
cth

√
πx. 2

Corollary 1. Suppose that the conditions of Theorem 2.1 are satisfied. If ω0 is the limit value

of
f ′ (x)

f (x)
at infinity, i.e.

ω0 = lim
x→+∞

f ′ (x)

f (x)
,

then ω0 = 0.

Proof. To prove the statement, we note that

lim
x→+∞

cthx = lim
x→+∞

ex + e−x

ex − e−x
= lim

x→+∞

ex
(
1 + e−2x

)
ex (1− e−2x)

= 1. 2

Remark 1. If f is an arbitrary entire function of order 1 6 ρ <∞, with zeros zn = −πn2, then
the ratio can be represented as

f(z)
∞∏

n=1

(
1− z

zn

) = eg(z),

where g(z) is an entire function. Since 1 6 ρ <∞, g(z) is a polynomial, deg g = ρ, and ρ ∈ N [5].
Therefore,

f(z) = Π(z)eg(z), Π(z) =

∞∏
n=1

(
1− z

zn

)
,

and
f ′(z)

f(z)
=

Π′(z)eg(z) +Π(z)eg(z)g′(z)

Π(z)eg(z)
=

Π′(z)

Π(z)
+ g′(z).

Consequently in this case we take

f ′(x)

f(x)
=

√
π

2
√
x
cth

√
πx− 1

2x
+ g′(x), 1 6 ρ <∞.
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О дзета-функции нулей целой функции
Вячеслав И. Кузоватов
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Аннотация. Данная статья посвящена исследованию свойств дзета-функции нулей целой функ-
ции. Получено явное выражение для ядра интегрального представления дзета-функции в одном
случае.
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ние.
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