Journal of Siberian Federal University. Mathematics & Physics 2021, 14(5), 573-583

DOLI: 10.17516/1997-1397-2021-14-5-573-583
YIK 519.218.2+517.518.26

On Estimation of the Convergence Rate to
Invariant Measures in Markov Branching Processes
with Possibly Infinite Variance and Immigration

Azam A.Imomov*
Karshi State University
Karshi city, Uzbekistan

Received 31.03.2021, received in revised form 29.05.2021, accepted 20.06.2021

Abstract. The continuous-time Markov Branching Process with Immigration is discussed in the paper.
A critical case wherein the second moment of offspring law and the first moment of immigration law are
possibly infinite is considered. Assuming that the non-linear parts of the appropriate generating functions
are regularly varying in the sense of Karamata, theorems on convergence of transition functions of the
process to invariant measures are proved. The rate of convergence is determined provided that slowly
varying factors are with remainder.
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1. Introduction and preliminaries

The discussion of the population growth model called the continuous-time Markov Branching
Process with Immigration (MBPI) which was considered in [5] is continued in this paper. Recall
that this process has simple physical interpretation: the population size changes not only as
a result of reproduction and disappearance of existing individuals but also as a result of the
random influx of "extraneous" individuals of the same type from the outside. Namely, the process
develops according to the following scheme. Each individual existing at time ¢t € T := [0, +00)
independently of his history and of each other for a small time interval (¢,¢ + ¢) is transformed
into j € No\{1} individuals with probability a;e + o(¢), and with probability 1+ a1e+ o(e) stays
to live or makes evenly one descendant (as € | 0). Here Ny = {0} UN and N is the set of natural
numbers, and {a;} are intensities of individual transformation, a; > 0 for j € No\{1} and 0 <
ap < —a1 = Y. a; <oo. Independently of these for each time interval j € N new individuals

JENo\{1}
enter the population with probability b;e+o(e), and immigration does not occur with probability
1 + boe + o(e). Immigration intensities b; > 0 for j € Nand 0 < —by = > b; < oo. Newly
jEN
arrived individuals undergo transformation in accordance with the reproductijon law generated by
intensities {a;}; see [11, p. 217]. Thus, the process under consideration is completely determined
by infinitesimal generating functions(GFs)

f(s):= Z ajs’ and g(s):= Z bjs’ for se€l0,1).

JENy JENy
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Let us denote the population size at the time ¢ € 7 in MBPI by X (¢). This is homogeneous
continuous-time Markov chain with state space S C Ny and transition functions

pij(t) =P {X(t) =j} =P{X(t+7)=j|X(7) =i}

foralli,j € Sand 7,t € T.
Only critical case is considered in the paper, i.e., f/(1—) = > ja; = 0, and limit behaviours
JEN

of transition functions p;;(t) as t — oo is observed. Pakes [9] was one of the first who studied

invariant measures for MBPI with finite variance and found an integral form of GF of invariant

measures. He has proved that limits 7; := tlim t*pi; (t) exist independently on j, iff 3 a;j2Inj <

oo and Y bjjlnj < oo, where A = 2¢/(1—)/f"(1-), besides the set {r;,j € S} presents an
jEN

invariant measure for MBPI. The invariant measure of MBPI can also be constructed by the

strong ratio limit property of transition functions but slightly different [7]. Namely, the set of

positive numbers {Uj = tlim Po; (1) /poo(t)} is an invariant measure. Moreover one can see a

—00
close relation between the sets {r;,j € S} and {vj,j € S}, and their GFs n(s) = Y ;5 and
jes

U(s) = > v;s?. In fact, they are really only different versions of the same limit law. So, it is
JjE€S

easy to see that U(s) = 7(s)/m(0), and this is consistent with uniqueness, up to a multiplicative

constant, of the invariant measure of MBPI.

An estimation of the rate of convergence to invariant measures is of exceptional interest.
The rate of convergence of t*p;;(t) to m; for all i,j € S was studied under the condition
max{ f"”(1-),¢"(1-)} < oo [5]. It was found that the convergence rate is O(Int/t) as t — oco.

Throughout the paper, the following Basic assumptions for f(s) and g(s) are used

ro = -e (). 1.

and

o) === 9 (1) o4

for all s € [0,1), where 0 < v,0 < 1 and L(:), £(-) are slowly varying at infinity (SV) in the
sense of Karamata (see, for instance, [2] and [10]). Basic assumptions imply that the offspring
distribution belongs to the domain of attraction of the (1 4+ v)-stable law, and the immigration
distribution belongs to the domain of attraction of the J-stable law. In the critical case assump-
tion [f,] implies that 2b := f”(1—) = oco. If b < oo then representation [f,] holds with v =1
and L(t) — b as t — oo. Similarly, GF g(s) of the form [gs] generates the immigration law with
the J-order moment. However, if ¢’(1—) < oo then assumption [gs] is fulfilled with 6 = 1 and
Lt) — ¢'(1-) as t — oc.
An additional requirement for £(z) and ¢(x) is introduced:

£ (\z)
L(z)

=1+ 0(a(z)) as z— o0 (L,]

for each A > 0, where a(z) is known positive decreasing function so that a(z) — 0 as z — oo.
In this case £(z) is called SV with remainder O(a(x)) (see [2, p. 185, condition SR1]). When
employing condition [£,] it is assumed that

alz) =0 <£(f)) as @ — oo.

T
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Similarly, the condition
¢ (Ax)
()

is also allowed for each A > 0, where

fta) =0 (

It was shown that the asymptotes of the transition functions depend on the sign of the
parameter v := ¢ — v [3]. In addition, the limit functions U(s) := tlim P(t;s) for v > 0 and
—00

=1+0(B(z)) as z— o0 [€5]

l(x)

3 as T — OoQ.
x

m(s) = tli>1rolo eTWP(t;5) for v < 0 and for some T'(t) were found.

In this paper the rate of convergence is determined provided that conditions [£,] and [¢s]
hold.

The rest of this paper is organized as follows. Section 2. contains main results. Auxiliary
statements that are used in the proof of theorems are considered in Section 3.. Proof of main
results is presented in Section 4..

2. Main results

Let us consider GF P;(t;s) := > p;;(t)s7. It is not difficult to see that (see [9])
JES

Pit;s) = (F(t;S))iexp{/Otg(F(u; 8>)d“}7 (1)

where F(t;s) is GF of Markov Branching Process initiated by single individual without immi-
gration. Since F(t;s) — 1 as t — oo uniformly in s € [0,d], d < 1 (see Lemma 1 below), it is
sufficient to consider P(t;s) := Py(t;s). Then taking into account Basic assumptions and the
Kolmogorov backward equation 0F /0t = f (F), it follows from (1) that

F(t;s)
u

P(t;s) = exp / ?EU; du p . (2)

Taking into account Basic assumptions, the integrand is

%(1u)71L(1iu), (3)

where 7 := 0 — v and
L(t) := ﬁ((?)

State space S can be classified in accordance with the sign of v. By virtue of (3), integral
1

Jlg(w) /f(u)] du converges if v > 0, and diverges if v < 0. It was shown that S is positive-
recurrent if ¥ > 0, and it is transient if v < 0. The special case v = 0 implies that g(s) = f’(s) and
L(t) — 14 v as t — oo. It is another population process called Markov Q-process (see [4], [6], [1,

pp. 56-58| and [8] for the discrete-time case).
Main results are formulated only for the case v # 0 in the following two theorems. Let

VLY
T(t) == (./\t/)(t) and T(t) := (7’(75))'“7

where AN (z) is SV defined in Lemma 1 below.
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Theorem 2.1. Let v > 0. Then P(t;s) converges to the function U(s) =
1

= exp {f [g(w)/ f(u)] du} for s € [0,1), and its power series expansion U(s) = > u;s’ gener-
s jJES

ates an invariant distribution {u;,j € S} for MBPI. The convergence is uniform over compact

subsets of [0,1). In addition, if assumptions [L,] and [(s] hold then

P(t;s) =U(s) (1 + A(t; s)lC(T(t))) , (4)

where K(x) = L7V (x)0(z), function N (x) is SVu defined in (13) below and

1 1 o (m [A(1 — $)A(t; s)]> 45t o0,
7 (A:9)"" (At 5)""

where \(t;8) = vt + A=Y (1 — s) and A(y) = y’L (1/y). The transition functions are

pi)=u; (140 (52)) et 5)

/v

A(t;s) =

where K(t) is SV.

Another asymptotic property comes out for P(¢;s) when v < 0. Taking into account Basic
assumptions, one can easily verify that

_Inpeo(t) 1

() mL(T(t)) as t — oo.

This asymptotic relation shows that (T(t))_lln poo(t) is asymptotically SV.,. Then one
should consider the limit of the function e”VP(t;s) as ¢t — oo. First one needs to consider
SV property of L(t). In accordance with the slowly varying theory, functions ¢(-) and L(:)
are positive. Then by virtue of [2, p. 185, Theorem 3.12.2 (SR1)|, one can obtain the following
propositions:

> L) < L(z)=C,+0(a(z)) as t— oo, [Cr]
> 6] = lx)=Ci+0(B(x)) as t— o0, [Cf]
where Cr, Cy are positive constants and functions a(x), 8(x) are in [£,] and [¢s5]. Then

(1)

_ _ 1)
(t) = )

C[_ + O <t5> as t — o0, (6)

since 0 < v, where Cp = Cy /C. This requirement for L(t) is quite possible. Especially, one
can obtain an “excellent result” if C; = |y| is chosen. The following explicit form of 7(s) =
limy o0 €7 WP(t; s) was found in [3]:

ol [ el

Now the convergence rate of e”(VP(t;s) to 7(s) is determined in the following theorem.

Theorem 2.2. Let v <0 and Cp = |v| in (6). If u:=26 —v > 0 then

eTWP(t;s) = 7(s) (1 + p(t; ), (8)

- 576 —



Azam A.Imomov On Estimation of the Convergence Rate to Invariant Measures. . .

where p(t;s) — 0 as t — oo uniformly in s € [0,r], r < 1, and the limiting GF w(s) can be
expressed in the form given in (7). In addition, if assumptions [L,] and [{s] hold then

o) =0 (i)

uniformly in s € [0,7], r < 1. Denoting the power series expansion of w(s) by > m;s?, transition
JjE€S

s t— 00 (9)

functions have the form

pis(t) = (1 4O (fjgg;ﬁ)) as t = oo, (10)

and {m;,j € S} is an invariant measure for MBPI.

Remark 1. The form of limiting GF 7(s) given in the first part of Theorem 2.2 is compatible
with the results presented in [9] and [5] where the case max{ " (1), ¢'(1—)} < oo was considered.
Thus, this theorem essentially strengthens last-mentioned results.

Remark 2. The conditions Cy = || and u > 0 in Theorem 2.2 are essential because they ensure
the convergence of the integral in (7). In fact, due to Basic assumptions and (6) the majorizing
function for the integrand is (1 — u)*~1. Then function

oo [ [+ =]

is bounded for s € [0,1].
The following result is a consequence of Theorem 2.2.

Corollary 1. Under the conditions of Theorem 2.2

e poo(t) = B(0) <1 +0 <§T((Tt()t))3)> as t — oo,

where function B(s) is defined in (11).

Remark 3. Further reasoning imply that functions L(x) and €(x) can be omitted in estimations
of error terms of asymptotic relations in given above Theorems. Taking into account assertions
[Cr] and [Cy], these functions are asymptotically constant.

3. Auxiliaries

In this section, some auxiliary assertions are provided. They are essential for the proof of
theorems.

First, the asymptotic representation of GF of Markov branching processes Z(t) without im-
migration is considered. Let F'(t;s) = E [sz(t) ’Z(O) = 1] be GF of the process initiated by single
individual. Let R(t;s) := 1 — F(t;s). The following result called the Basic lemma of the theory
of critical Markov branching processes [4]. It is presented in slightly different form below.

Lemma 1. If condition [f,] holds then

r (vt)t/v _
Ritis) ~ N [”
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for all s € [0,1), where N'(x) is SV s such that

N”(t)-ﬁ((yt)l/y> —1 as t— oo, (13)
N(1)
and M(s) is GF of invariant measures of MBP that has the form
1/(1-s) i
Mo = [

Let us introduce the following function
A =ye (1) = Y
Y Y

for y € (0,1]. Let us note that function yA(y) is positive, tends to zero and it has the monotone
derivative so that yA'(y)/A(y) — v as y | 0 (see [2, p. 401]). Then it is natural to write
)

0
yA'(y
Aly)

where (y) is continuous and §(y) — 0 as y | 0. Since A(1) = L(1) = ay it follows from (14) that

— v+ 3(y), (14)

y
Aly) = apy” exp/ @du.
1 u

y
L <1> = ag exp/ Mdu.
Y 1 u

Substituting « = 1/t in last integrand, one can obtain

Therefore

L(z) =ag exp/ #du
1

>k okk ok ok ok ok ok >k sk ok sk sk sk ok sk sk sk ok sk sk skok ok sk sk sk ok sk sk sksk sk ok ok sk sk skok sksk sk sk sk sk sk sk sk sk sk sksk skokoskokoskokoskok sk kskkok ok where E(t) —

—0(1/t) and e(t) — 0 as t — oo. Considering the last equation together with [£,], one can
obtain

Az
[ Wi =1+ 0(a(@)] = 0fa(@) as z o0

x

for each A > 0. Applying the mean value theorem to the left-hand side of the last equality, we
have that e(x) = O (a(x)). Then condition [£,] gives

5 =0(a(5)) s wio (15)

The following result is a modification of Lemma 1 and it is required in the subsequent dis-
cussions.

Lemma 2. Let assumptions [f,] and [L,] hold. Then

1 1
AREs) A(1—s) =vt+O(Inv(t;s)) as t— oo, (16)

where v(t;s) = A(1 — s)vt + 1.
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Proof. One can write from (14) that

RN (R)

T =UH® (17)

since R := R(t;s) — 0 as t = oo. Using the backward Kolmogorov equation OF /0t = f (F') and

considering representation [f,], relation (17) becomes

PR~ Ay Ry v+ 6 (m) = A (B)(v + 6 (R).

dt
Therefore
1
d|——= —vt| =46 (R)dt. 18
] e (18)
Integrating (18) over [0,¢), the following equation is obtained
! ! vt + /t d (R(u;s))du (19)
_ — w:
A(R(t;s))  A(l—s) 0 ’ ’

where §(y) is in (14). Now one should take integral in (19). Considering (15),0one can write
t t
/ 0 (R(u;8))du = / O(A (R(u; ))) du. (20)
0 0

One should mention that due to (12) R(t;s) — 0 as ¢t — oo uniformly in s € [0,1). Therefore,
since A(y) — 0 as y | 0, the integral in the right-hand side of (20) is o(¢) as t — co. Hence

1 1
A(R(t; ) = D) +0<)\(t;s)> as t— oo,

where \(t;s) = vt + A~ (1 — 5). Therefore

/ot O(A(R(u;9)))du = O </o A (R(u; s))dU> =O(lnv(t;s)) as ¢ co.

Together with (19) and (20) this gives relation (16). O

Lemma 3. Let L(t) be SV with remainder o(t). Then for o >0

/tC>O y_(1+")L(y)dy = l%L(t) (1 + (’)(Q(t))) as t — oo. (21)

g

Proof. Undoubtedly floo u~ (%9 dy = 1/0. Considering this fact and making the substitution
y := ut in the integrand of (21), one can write

/tij y~ T L(y)dy = éLt(f) [1 + “/100 [LL((I:;) - 1} u_(HU)dU} ' .

By definition of SV -function with remainder, the expression in brackets of the integrand on
the right-hand side of (22) tends to 0 as ¢ — oo uniformly in « > 1 (by Uniform Convergence
Theorem for SV..-functions [2, Theorem 1.5.2]) with the rate O(o(t)). Thus relation (21) is
obtained.

The Lemma is proved. O
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Lemma 4. Let conditions [L,] and [¢5] hold and v > 0. Then

Ygw) 1 g(x)
/m T =T g 1HOMA—2) es 2L (23)
Proof. Tt follows from Basic assumption that
1 o0
(u) _a
I(z) := gT du — — y~ N L (y)dy, (24)
[iam=- |

where L(t) = £(t)/L(t) as before. One can easily show that

L(ut) L(t)
1= =\

TR

tV
uniformly in w > 0. Considering the right-hand side of (24), one can directly use (21) with
t=1/(1—=x)and r(t) = O (L(t)/t"). Then

I(x):—l@ [14—0(5(0)} as t— oo.

vt tv

> as t— oo

Now returning to primary designations, relation (23) is obtained.
The Lemma is proved. O
4. Proof of Theorems

In this final section the Main results are consistently proved.

Proof of Theorem 2.1. Let us rewrite (2) as follows

F(t;s)
P(t;s) =U(s) exp / ?EZ; du y | (25)
where
oo [,
U(s) = p{/s f(u)d } (26)

Considering (3), the integral in (25) converges for s € [0, 1) and becomes 0 as t — oco. Therefore
P(t;s) converges to U(s) as t — oo uniformly over compact subsets. Now, using the functional
equation F(t+7;s) = F(t; F(7;5s)) (see [9, p. 134]), it follows that

Pt = P o] [ Pl )du}

— P(ris) - exp { / g (F(u F(r;9)) du} = P(r:5)- P(t: F(r:5)).

Taking limit as t — oo, one can obtain the following Schréder type functional equation

U(F(r;s)) = —U(s) forany 7¢T. (27)
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Writing the power series expansion U(s) = ) ujsj , equation (27) has an invariant property
JES
uj = Y. u;p;ij(7). Obviously U(1—) = 1 and hence the function in (26) generates an invariant
i€S

distribution {u;,j € S} for MBPIL.
Let us prove now of of (4). Considering (25) and using (23), one can obtain

P(t:s) = U(s) exp{ ~I(t;5)}, (28)
where (F( ))
L 1g t;s .
I(t;s) = ARG (1 + O(A(R(t,s)))) as t — oo. (29)
Next, let us use the asymptotic expansion of R(t;s). Relation (16) implies
A\ ts In [A(1 = s)A(¢E; 9)] as -
wwey ~ 00 (o (FHEETT)) oo .

and therefore

o) = N(t;5) In[A(1 — s)A(E;8)] ~
) = ™ (1ro (M) e (D)

where A(t;s) = vt + A1 (1 —s) and N(t;s) = L7Y7(1/R(t;s)). Let us note that g(s) has the
form of [g5]. Using (30) and (31), one can obtain

g(Pts)  N(s) [ 1 AL~ At )]
AR(ES) (A(t;s))w”g(R(t;S)>(1+O( As) )> (32)

as t — oo. It is easy to verify that the function N(¢;s) is asymptotically equivalent to the
SV so-function A (¢) defined in Lemma 1.

Asymptotic formula (4) now follows from a combination of (28), (29) and (32). Equation (5)
follows from the continuity theorem for power series.

The Theorem is proved. O

Proof of Theorem 2.2. Let us write

TOP(t;s) = exp{(T(f))M+/tg(F(U;s))du}:

0
F(t;s)

exp A(t;s)—k(r(t;s))l’”—k / ?Ei;daj ) (33)

S

where A(t;s) = (T(t))lﬂ — (7(t; s))hl and 7(t;s) = R™1(t;s). Standard integration yields
F(t;s) | |
AN TR gl
(t(t;s))"" = =S + / (1_u)1+wdu.

Therefore, relation (33) can be written as follows

1
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where 7(s) has the form of (7). An exponential factor in (34) defines the convergence rate p(t; s)
in (8). Let us first evaluate A(t; s) as t — oo. According to Lemma 1 M(0) = 0 and,therefore,
7(t) = 7(t;0). Hence, asymptotic representation (12) gives

NI
Ats) = (r@)" l1(1+Mt()> ]

- M) _ o M)
|’Y|(7—(t)) vt - |PY‘ (Vt)é/VNth) as t — oo.
On the other hand M(s) is bounded for s € [0,7], » < 1. Thus
A(t;s) =0 (i};?) as t — oo, (35)

uniformly in s € [0,7], r < 1, where £ (t) = N~1(¢).
Let us observe the integral in (34). Taking into account relations (3) and (6), the integrand
in brackets becomes O ((1 —u)*~1£(1/(1 — u))) in the neighbourhood of the point u = 1. Let
1

us examine the integral [ [(1 —w)*~¢(1/(1 —u))] du as t — oo. Substitution y = (1 —u)~*
F(t;s)
gives the alternative form
y~ I (y)dy.
1/R(t;s)

The direct application of Lemma 3 transforms the last integral to the form

1 1
y_(1+“)€(y)dy — ;R“(t; s)l (R(ts)) (1 + 0(1)) as t— oo.
1/R(t;s) ’

But R(t;s) = 771(t;8) and 7(¢;8)771(t) — 1 as t — oo uniformly in s € [0,1). Thus

/) [?(Z; * (1 —|Z)1+|7|] du =0 (m) as t — 0o. (36)

Taking into account that y < § and comparing relations (35) and (36), one can obtain that
A(t; s) decreases to zero faster than last integral, i.e., A(t;s) = o (¢ (7(t))/(7(t))") as t — oo. So,
asymptotic relation (8) with the error part p(¢; s) in form (9) is found from (34)—(36). Equation
(10) follows from the continuity theorem for power series.

Finally, one can verify that function 7 (s) satisfies equation (14). Therefore, denoting its power
series representation by m(s) = > m;s’, an invariant property m; = Y mp;;(7) is obtained for

i€S

JjE€S
any 7 > 0. Thus {7;,j € S} is an invariant measure for MBPI X (t).
The Theorem is proved. O
Proof of Corollary 1. The statement follows immediately from (8) by setting = = 0. O

The author is deeply grateful to the anonymous referee for his careful reading of the manuscript
and for his kindly comments which contributed to improving the paper.
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OO0 oreHKEe CKOPOCTU CXOAWMMOCTH K MHBAPUAHTHBIM MepaM
B MAapKOBCKUNX BETBLAINUNXCH IIPOIleCCaX C BO3MOXKHOM
OecKOHeYHOIl Juciiepcueili 1 UMMUTrpalein

A3zam A.HmomoB
Kapimackwnit rocymapcTBeHHBINT YHUBEPCUTET
Kapiu, Y36ekucran

Amnnoranusi. B pabore mcciaeayercss MApKOBCKUIT BETBSAIIMIACS CIIyYaHBIA MPOINECC C HEMPEPBIBHBIM
BpeMeHeM W ¢ uMMurpanumeit. Mbl paccMaTpuBaeM KPUTHIECKUH CJydail, B KOTOPOM BTOPO#l MOMEHT
3aKOHA PA3MHOYKEHUsI YACTUI[ U TEePBbIi MOMEHT 3aKOHA MMMHUTrparun GeckonedHbl. [Ipeamosarast, 9To
HEJINHEWHbIE YaCTH COOTBETCTBYIOIINX MTPOU3BOAAMNX (DYHKIWI MPaBUILHO MEHSIOTCS B cMmbicie Kapa-
MaTa, MBI JOKa3bIBaeM TE€OPEeMbl O CXOJUMOCTH II€PEXOJHBIX BEPOATHOCTEH Ipoliecca K MHBAPUAHTHBIM
MepaM. MBI onpefesinM CKOPOCTH 3TON CXOAWMOCTHU IIPU YCJOBUU, YTO MEJJIEHHO MEHSIOIINAECS YacTH
SABJISIOTCS (DYHKIMSAMEI C OCTATKOM.

KuroueBrle ciioBa: MapKOBCKHUIl BETBAIUICS IIPOIECC, IPOU3BOAANIINE DYHKIUN, UMMHUI'PDAIIN, I1epe-
XOJZIHbIE BEPOSITHOCTH, MEJIJIEHHO MEHSIOIIAsC (PYHKINS, NHBAPUAHTHBIE MEPBI, CKOPOCTh CXOIIMOCTH.
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