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1. Introduction and preliminaries
The discussion of the population growth model called the continuous-time Markov Branching

Process with Immigration (MBPI) which was considered in [5] is continued in this paper. Recall
that this process has simple physical interpretation: the population size changes not only as
a result of reproduction and disappearance of existing individuals but also as a result of the
random influx of "extraneous" individuals of the same type from the outside. Namely, the process
develops according to the following scheme. Each individual existing at time t ∈ T := [0,+∞)
independently of his history and of each other for a small time interval (t, t+ ε) is transformed
into j ∈ N0\{1} individuals with probability ajε+ o(ε), and with probability 1+a1ε+ o(ε) stays
to live or makes evenly one descendant (as ε ↓ 0). Here N0 = {0} ∪N and N is the set of natural
numbers, and {aj} are intensities of individual transformation, aj > 0 for j ∈ N0\{1} and 0 <
a0 < −a1 =

∑
j∈N0\{1}

aj < ∞. Independently of these for each time interval j ∈ N new individuals

enter the population with probability bjε+o(ε), and immigration does not occur with probability
1 + b0ε + o(ε). Immigration intensities bj > 0 for j ∈ N and 0 < −b0 =

∑
j∈N

bj < ∞. Newly

arrived individuals undergo transformation in accordance with the reproduction law generated by
intensities {aj}; see [11, p. 217]. Thus, the process under consideration is completely determined
by infinitesimal generating functions(GFs)

f(s) :=
∑
j∈N0

ajs
j and g(s) :=

∑
j∈N0

bjs
j for s ∈ [0, 1).
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Let us denote the population size at the time t ∈ T in MBPI by X(t). This is homogeneous
continuous-time Markov chain with state space S ⊂ N0 and transition functions

pij(t) := Pi

{
X(t) = j

}
= P

{
X(t+ τ) = j

∣∣X(τ) = i
}

for all i, j ∈ S and τ, t ∈ T .
Only critical case is considered in the paper, i.e., f ′(1−) =

∑
j∈N

jaj = 0, and limit behaviours

of transition functions pij(t) as t → ∞ is observed. Pakes [9] was one of the first who studied
invariant measures for MBPI with finite variance and found an integral form of GF of invariant
measures. He has proved that limits πj := lim

t→∞
tλpij(t) exist independently on j, iff

∑
j∈N

ajj
2 ln j <

∞ and
∑
j∈N

bjj ln j < ∞, where λ = 2g′(1−)
/
f ′′(1−), besides the set {πj , j ∈ S} presents an

invariant measure for MBPI. The invariant measure of MBPI can also be constructed by the
strong ratio limit property of transition functions but slightly different [7]. Namely, the set of
positive numbers

{
υj := lim

t→∞
p0j(t)/p00(t)

}
is an invariant measure. Moreover one can see a

close relation between the sets {πj , j ∈ S} and {υj , j ∈ S}, and their GFs π(s) =
∑
j∈S

πjs
j and

U(s) =
∑
j∈S

υjs
j . In fact, they are really only different versions of the same limit law. So, it is

easy to see that U(s) = π(s)
/
π(0), and this is consistent with uniqueness, up to a multiplicative

constant, of the invariant measure of MBPI.
An estimation of the rate of convergence to invariant measures is of exceptional interest.

The rate of convergence of tλpij(t) to πj for all i, j ∈ S was studied under the condition
max

{
f ′′′(1−), g′′(1−)

}
< ∞ [5]. It was found that the convergence rate is O

(
ln t/t

)
as t → ∞.

Throughout the paper, the following Basic assumptions for f(s) and g(s) are used

f(s) = (1− s)1+νL
(

1

1− s

)
, [fν ]

and

g(s) = −(1− s)δℓ

(
1

1− s

)
[gδ]

for all s ∈ [0, 1), where 0 < ν, δ < 1 and L(·), ℓ(·) are slowly varying at infinity (SV∞) in the
sense of Karamata (see, for instance, [2] and [10]). Basic assumptions imply that the offspring
distribution belongs to the domain of attraction of the (1 + ν)-stable law, and the immigration
distribution belongs to the domain of attraction of the δ-stable law. In the critical case assump-
tion [fν ] implies that 2b := f ′′(1−) = ∞. If b < ∞ then representation [fν ] holds with ν = 1
and L(t) → b as t → ∞. Similarly, GF g(s) of the form [gδ] generates the immigration law with
the δ-order moment. However, if g′(1−) < ∞ then assumption [gδ] is fulfilled with δ = 1 and
ℓ(t) → g′(1−) as t → ∞.

An additional requirement for L(x) and ℓ(x) is introduced:

L (λx)

L(x)
= 1 +O

(
α(x)

)
as x → ∞ [Lν ]

for each λ > 0, where α(x) is known positive decreasing function so that α(x) → 0 as x → ∞.
In this case L(x) is called SV∞ with remainder O

(
α(x)

)
(see [2, p. 185, condition SR1]). When

employing condition [Lν ] it is assumed that

α(x) = O
(
L (x)

xν

)
as x → ∞.
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Similarly, the condition
ℓ (λx)

ℓ(x)
= 1 +O

(
β(x)

)
as x → ∞ [ℓδ]

is also allowed for each λ > 0, where

β(x) = O
(
ℓ (x)

xδ

)
as x → ∞.

It was shown that the asymptotes of the transition functions depend on the sign of the
parameter γ := δ − ν [3]. In addition, the limit functions U(s) := lim

t→∞
P(t; s) for γ > 0 and

π(s) := lim
t→∞

eT (t)P(t; s) for γ < 0 and for some T (t) were found.
In this paper the rate of convergence is determined provided that conditions [Lν ] and [ℓδ]

hold.
The rest of this paper is organized as follows. Section 2. contains main results. Auxiliary

statements that are used in the proof of theorems are considered in Section 3.. Proof of main
results is presented in Section 4..

2. Main results
Let us consider GF Pi(t; s) :=

∑
j∈S

pij(t)s
j . It is not difficult to see that (see [9])

Pi(t; s) =
(
F (t; s)

)i
exp

{∫ t

0

g
(
F (u; s)

)
du

}
, (1)

where F (t; s) is GF of Markov Branching Process initiated by single individual without immi-
gration. Since F (t; s) → 1 as t → ∞ uniformly in s ∈ [0, d], d < 1 (see Lemma 1 below), it is
sufficient to consider P(t; s) := P0(t; s). Then taking into account Basic assumptions and the
Kolmogorov backward equation ∂F

/
∂t = f (F ), it follows from (1) that

P(t; s) = exp


F (t;s)∫
s

g(u)

f(u)
du

 . (2)

Taking into account Basic assumptions, the integrand is

g(u)

f(u)
= −(1− u)

γ−1 L
(

1

1− u

)
, (3)

where γ := δ − ν and

L(t) :=
ℓ(t)

L(t)
.

State space S can be classified in accordance with the sign of γ. By virtue of (3), integral
1∫
s

[g(u) /f(u) ] du converges if γ > 0, and diverges if γ < 0. It was shown that S is positive-

recurrent if γ > 0, and it is transient if γ < 0. The special case γ = 0 implies that g(s) = f ′(s) and
L(t) → 1+ ν as t → ∞. It is another population process called Markov Q-process (see [4], [6], [1,
pp. 56–58] and [8] for the discrete-time case).

Main results are formulated only for the case γ ̸= 0 in the following two theorems. Let

τ(t) :=
(νt)1/ν

N (t)
and T (t) :=

(
τ(t)

)|γ|
,

where N (x) is SV∞ defined in Lemma 1 below.
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Theorem 2.1. Let γ > 0. Then P(t; s) converges to the function U(s) =

= exp

{
1∫
s

[
g(u)

/
f(u)

]
du

}
for s ∈ [0, 1), and its power series expansion U(s) =

∑
j∈S

ujs
j gener-

ates an invariant distribution {uj , j ∈ S} for MBPI. The convergence is uniform over compact
subsets of [0, 1). In addition, if assumptions [Lν ] and [ℓδ] hold then

P(t; s) = U(s)
(
1 + ∆(t; s)K

(
τ(t)

))
, (4)

where K(x) = L−δ/ν(x)ℓ(x), function N (x) is SV∞ defined in (13) below and

∆(t; s) =
1

γ

1(
λ(t; s)

)γ/ν +O

(
ln
[
Λ(1− s)λ(t; s)

](
λ(t; s)

)δ/ν
)

as t → ∞,

where λ(t; s) = νt+ Λ−1 (1− s) and Λ(y) = yνL (1/y). The transition functions are

pij(t) = uj

(
1 +O

(
K(t)

tγ/ν

))
as t → ∞, (5)

where K(t) is SV∞.

Another asymptotic property comes out for P(t; s) when γ < 0. Taking into account Basic
assumptions, one can easily verify that

− ln p00(t)

T (t)
∼ 1

|γ|
L
(
τ(t)

)
as t → ∞.

This asymptotic relation shows that
(
T (t)

)−1
ln p00(t) is asymptotically SV∞. Then one

should consider the limit of the function eT (t)P(t; s) as t → ∞. First one needs to consider
SV∞ property of L(t). In accordance with the slowly varying theory, functions ℓ(·) and L(·)
are positive. Then by virtue of [2, p. 185, Theorem 3.12.2 (SR1)], one can obtain the following
propositions:

I [Lν ] ⇐⇒ L(x) = CL +O
(
α(x)

)
as t → ∞, [CL]

I [ℓδ] ⇐⇒ ℓ(x) = Cℓ +O
(
β(x)

)
as t → ∞, [Cℓ]

where CL, Cℓ are positive constants and functions α(x), β(x) are in [Lν ] and [ℓδ]. Then

L(t) =
ℓ(t)

L(t)
= CL +O

(
ℓ(t)

tδ

)
as t → ∞, (6)

since δ < ν, where CL = Cℓ /CL . This requirement for L(t) is quite possible. Especially, one
can obtain an “excellent result” if CL = |γ| is chosen. The following explicit form of π(s) =
limt→∞ eT (t)P(t; s) was found in [3]:

π(s) = exp

{
1

(1− s)|γ|
+

∫ 1

s

[
g(u)

f(u)
+

|γ|
(1− u)1+|γ|

]
du

}
. (7)

Now the convergence rate of eT (t)P(t; s) to π(s) is determined in the following theorem.

Theorem 2.2. Let γ < 0 and CL = |γ| in (6). If µ := 2δ − ν > 0 then

eT (t)P(t; s) = π(s)
(
1 + ρ(t; s)

)
, (8)
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where ρ(t; s) → 0 as t → ∞ uniformly in s ∈ [0, r], r < 1, and the limiting GF π(s) can be
expressed in the form given in (7). In addition, if assumptions [Lν ] and [ℓδ] hold then

ρ(t; s) = O
(
ℓ (τ(t))

(τ(t))
µ

)
as t → ∞ (9)

uniformly in s ∈ [0, r], r < 1. Denoting the power series expansion of π(s) by
∑
j∈S

πjs
j, transition

functions have the form

pij(t) = πj

(
1 +O

(
ℓ (τ(t))

(τ(t))
µ

))
as t → ∞, (10)

and {πj , j ∈ S} is an invariant measure for MBPI.

Remark 1. The form of limiting GF π(s) given in the first part of Theorem 2.2 is compatible
with the results presented in [9] and [5] where the case max

{
f ′′(1−), g′(1−)

}
< ∞ was considered.

Thus, this theorem essentially strengthens last-mentioned results.

Remark 2. The conditions CL = |γ| and µ > 0 in Theorem 2.2 are essential because they ensure
the convergence of the integral in (7). In fact, due to Basic assumptions and (6) the majorizing
function for the integrand is (1− u)µ−1. Then function

B(s) := exp

{∫ 1

s

[
g(u)

f(u)
+

|γ|
(1− u)1+|γ|

]
du

}
(11)

is bounded for s ∈ [0, 1].

The following result is a consequence of Theorem 2.2.

Corollary 1. Under the conditions of Theorem 2.2

eT (t)p00(t) = B(0)
(
1 +O

(
ℓ (τ(t))

(τ(t))
µ

))
as t → ∞,

where function B(s) is defined in (11).

Remark 3. Further reasoning imply that functions L(x) and ℓ(x) can be omitted in estimations
of error terms of asymptotic relations in given above Theorems. Taking into account assertions
[CL] and [Cℓ], these functions are asymptotically constant.

3. Auxiliaries
In this section, some auxiliary assertions are provided. They are essential for the proof of

theorems.
First, the asymptotic representation of GF of Markov branching processes Z(t) without im-

migration is considered. Let F (t; s) = E
[
sZ(t)

∣∣Z(0) = 1
]

be GF of the process initiated by single
individual. Let R(t; s) := 1− F (t; s). The following result called the Basic lemma of the theory
of critical Markov branching processes [4]. It is presented in slightly different form below.

Lemma 1. If condition [fν ] holds then

1

R(t; s)
=

(νt)1/ν

N (t)
·
[
1 +

M(s)

t

]1/ν
(12)
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for all s ∈ [0, 1), where N (x) is SV ∞ such that

N ν(t) · L
(
(νt)1/ν

N (t)

)
−→ 1 as t → ∞, (13)

and M(s) is GF of invariant measures of MBP that has the form

M(s) =

1/(1−s)∫
1

dx

x1−νL(x)
.

Let us introduce the following function

Λ(y) := yνL
(

1

y

)
=

f(1− y)

y

for y ∈ (0, 1]. Let us note that function yΛ(y) is positive, tends to zero and it has the monotone
derivative so that yΛ′(y)/Λ(y) → ν as y ↓ 0 (see [2, p. 401]). Then it is natural to write

yΛ′(y)

Λ(y)
= ν + δ(y), (14)

where δ(y) is continuous and δ(y) → 0 as y ↓ 0. Since Λ(1) = L(1) = a0 it follows from (14) that

Λ(y) = a0y
ν exp

∫ y

1

δ(u)

u
du.

Therefore
L
(

1

y

)
= a0 exp

∫ y

1

δ(u)

u
du.

Substituting u = 1/t in last integrand, one can obtain

L (x) = a0 exp

∫ x

1

ε(t)

t
dt,

******************************************************************* where ε(t) =
−δ(1/t) and ε(t) → 0 as t → ∞. Considering the last equation together with [Lν ], one can
obtain

λx∫
x

ε(t)

t
dt = ln

[
1 +O

(
α(x)

)]
= O

(
α(x)

)
as x → ∞

for each λ > 0. Applying the mean value theorem to the left-hand side of the last equality, we
have that ε(x) = O (α(x)). Then condition [Lν ] gives

δ(y) = O
(
α

(
1

y

))
as y ↓ 0. (15)

The following result is a modification of Lemma 1 and it is required in the subsequent dis-
cussions.

Lemma 2. Let assumptions [fν ] and [Lν ] hold. Then

1

Λ (R(t; s))
− 1

Λ (1− s)
= νt+O

(
ln ν(t; s)

)
as t → ∞, (16)

where ν(t; s) = Λ(1− s)νt+ 1.
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Proof. One can write from (14) that

RΛ′ (R)

Λ (R)
= ν + δ (R) (17)

since R := R(t; s) → 0 as t → ∞. Using the backward Kolmogorov equation ∂F/∂t = f (F ) and
considering representation [fν ], relation (17) becomes

dΛ (R)

dt
= −Λ (R)

R
f (1−R)

(
ν + δ (R)

)
= −Λ2 (R)

(
ν + δ (R)

)
.

Therefore

d

[
1

Λ (R)
− νt

]
= δ (R) dt. (18)

Integrating (18) over [0, t), the following equation is obtained

1

Λ (R(t; s))
− 1

Λ (1− s)
= νt+

∫ t

0

δ (R(u; s))du, (19)

where δ(y) is in (14). Now one should take integral in (19). Considering (15),one can write∫ t

0

δ (R(u; s))du =

∫ t

0

O
(
Λ (R(u; s))

)
du. (20)

One should mention that due to (12) R(t; s) → 0 as t → ∞ uniformly in s ∈ [0, 1). Therefore,
since Λ(y) → 0 as y ↓ 0, the integral in the right-hand side of (20) is o(t) as t → ∞. Hence

Λ (R(t; s)) =
1

λ(t; s)
+ o

(
1

λ(t; s)

)
as t → ∞,

where λ(t; s) = νt+ Λ−1 (1− s). Therefore∫ t

0

O
(
Λ (R(u; s))

)
du = O

(∫ t

0

Λ (R(u; s))du

)
= O

(
ln ν(t; s)

)
as t → ∞.

Together with (19) and (20) this gives relation (16).

Lemma 3. Let L(t) be SV∞ with remainder ϱ(t). Then for σ > 0∫ ∞

t

y−(1+σ)L(y)dy =
1

σ

1

tσ
L(t)

(
1 +O

(
ϱ(t)

))
as t → ∞. (21)

Proof. Undoubtedly
∫∞
1

u−(1+σ)du = 1/σ. Considering this fact and making the substitution
y := ut in the integrand of (21), one can write∫ ∞

t

y−(1+σ)L(y)dy =
1

σ

L(t)

tσ

[
1 + σ

∫ ∞

1

[
L(ut)

L(t)
− 1

]
u−(1+σ)du

]
. (22)

By definition of SV∞-function with remainder, the expression in brackets of the integrand on
the right-hand side of (22) tends to 0 as t → ∞ uniformly in u > 1 (by Uniform Convergence
Theorem for SV∞-functions [2, Theorem 1.5.2]) with the rate O

(
ϱ(t)

)
. Thus relation (21) is

obtained.
The Lemma is proved.
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Lemma 4. Let conditions [Lν ] and [ℓδ] hold and γ > 0. Then∫ 1

x

g(u)

f(u)
du =

1

γ

g(x)

Λ(1− x)

(
1 +O

(
Λ(1− x)

))
as x ↑ 1. (23)

Proof. It follows from Basic assumption that

I(x) :=
1∫

x

g(u)

f(u)
du = −

∞∫
1/(1−x)

y−(1+γ)L(y)dy, (24)

where L(t) = ℓ(t)/L(t) as before. One can easily show that

L(ut)
L(t)

− 1 = O
(
L(t)
tν

)
as t → ∞

uniformly in u > 0. Considering the right-hand side of (24), one can directly use (21) with
t = 1/(1− x) and r(t) = O

(
L(t)

/
tν
)
. Then

I(x) = − 1

γ

L(t)
tγ

[
1 +O

(
L(t)
tν

)]
as t → ∞.

Now returning to primary designations, relation (23) is obtained.
The Lemma is proved.

4. Proof of Theorems
In this final section the Main results are consistently proved.

Proof of Theorem 2.1. Let us rewrite (2) as follows

P(t; s) = U(s) exp


F (t;s)∫
1

g(u)

f(u)
du

 , (25)

where

U(s) = exp

{∫ 1

s

g(u)

f(u)
du

}
. (26)

Considering (3), the integral in (25) converges for s ∈ [0, 1) and becomes 0 as t → ∞. Therefore
P(t; s) converges to U(s) as t → ∞ uniformly over compact subsets. Now, using the functional
equation F (t+ τ ; s) = F

(
t;F (τ ; s)

)
(see [9, p. 134]), it follows that

P(t+ τ ; s) = P(τ ; s) · exp
{∫ t+τ

τ

g (F (u; s)) du

}

= P(τ ; s) · exp
{∫ t

0

g
(
F
(
u;F (τ ; s)

))
du

}
= P(τ ; s) · P

(
t;F (τ ; s)

)
.

Taking limit as t → ∞, one can obtain the following Schröder type functional equation

U
(
F (τ ; s)

)
=

1

P(τ ; s)
U(s) for any τ ∈ T . (27)
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Writing the power series expansion U(s) =
∑
j∈S

ujs
j , equation (27) has an invariant property

uj =
∑
i∈S

uipij(τ). Obviously U(1−) = 1 and hence the function in (26) generates an invariant

distribution {uj , j ∈ S} for MBPI.
Let us prove now of of (4). Considering (25) and using (23), one can obtain

P(t; s) = U(s) exp
{
−I(t; s)

}
, (28)

where

I(t; s) =
1

γ

g
(
F (t; s)

)
Λ
(
R(t; s)

) (1 +O
(
Λ(R(t; s))

))
as t → ∞. (29)

Next, let us use the asymptotic expansion of R(t; s). Relation (16) implies

1

Λ (R(t; s))
= λ(t; s)

(
1 +O

(
ln [Λ(1− s)λ(t; s)]

λ(t; s)

))
as t → ∞, (30)

and therefore

R(t; s) =
N (t; s)

(λ(t; s))
1/ν

(
1 +O

(
ln [Λ(1− s)λ(t; s)]

λ(t; s)

))
as t → ∞, (31)

where λ(t; s) = νt + Λ−1 (1− s) and N (t; s) = L−1/ν
(
1/R(t; s)

)
. Let us note that g(s) has the

form of [gδ]. Using (30) and (31), one can obtain

g
(
F (t; s)

)
Λ
(
R(t; s)

) = − N δ(t; s)

(λ(t; s))
γ/ν

ℓ

(
1

R(t; s)

)(
1 +O

(
ln [Λ(1− s)λ(t; s)]

λ(t; s)

))
(32)

as t → ∞. It is easy to verify that the function N (t; s) is asymptotically equivalent to the
SV∞-function N (t) defined in Lemma 1.

Asymptotic formula (4) now follows from a combination of (28), (29) and (32). Equation (5)
follows from the continuity theorem for power series.

The Theorem is proved.

Proof of Theorem 2.2. Let us write

eT (t)P(t; s) = exp

{(
τ(t)

)|γ|
+

∫ t

0

g (F (u; s)) du

}
=

= exp

∆(t; s) +
(
τ(t; s)

)|γ|
+

F (t;s)∫
s

g(x)

f(x)
dx

 , (33)

where ∆(t; s) =
(
τ(t)

)|γ| − (τ(t; s))|γ| and τ(t; s) = R−1(t; s). Standard integration yields

(
τ(t; s)

)|γ|
=

1

(1− s)|γ|
+

F (t;s)∫
s

|γ|
(1− u)1+|γ| du.

Therefore, relation (33) can be written as follows

eT (t)P(t; s) = π(s) · exp

∆(t; s)−
1∫

F (t;s)

[
g(u)

f(u)
+

|γ|
(1− u)1+|γ|

]
du

 , (34)
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where π(s) has the form of (7). An exponential factor in (34) defines the convergence rate ρ(t; s)
in (8). Let us first evaluate ∆(t; s) as t → ∞. According to Lemma 1 M(0) = 0 and,therefore,
τ(t) = τ(t; 0). Hence, asymptotic representation (12) gives

∆(t; s) =
(
τ(t)

)|γ| [
1−

(
1 +

M(s)

t

)|γ|/ν
]

∼ −|γ|
(
τ(t)

)|γ|M(s)

νt
= −|γ| M(s)

(νt)δ/νN |γ|(t)
as t → ∞.

On the other hand M(s) is bounded for s ∈ [0, r], r < 1. Thus

∆(t; s) = O
(
Lγ(t)

tδ/ν

)
as t → ∞, (35)

uniformly in s ∈ [0, r], r < 1, where Lγ(t) = N−|γ|(t).
Let us observe the integral in (34). Taking into account relations (3) and (6), the integrand

in brackets becomes O
(
(1− u)µ−1ℓ

(
1/(1− u)

))
in the neighbourhood of the point u = 1. Let

us examine the integral
1∫

F (t;s)

[
(1− u)µ−1ℓ

(
1/(1− u)

)]
du as t → ∞. Substitution y = (1− u)−1

gives the alternative form
∞∫

1/R(t;s)

y−(1+µ)ℓ(y)dy.

The direct application of Lemma 3 transforms the last integral to the form

∞∫
1/R(t;s)

y−(1+µ)ℓ(y)dy =
1

µ
Rµ(t; s)ℓ

(
1

R(t; s)

)(
1 + o(1)

)
as t → ∞.

But R(t; s) = τ−1(t; s) and τ(t; s)τ−1(t) → 1 as t → ∞ uniformly in s ∈ [0, 1). Thus

1∫
F (t;s)

[
g(u)

f(u)
+

|γ|
(1− u)1+|γ|

]
du = O

(
ℓ (τ(t))

(τ(t))
µ

)
as t → ∞. (36)

Taking into account that µ < δ and comparing relations (35) and (36), one can obtain that
∆(t; s) decreases to zero faster than last integral, i.e., ∆(t; s) = o

(
ℓ (τ(t))

/
(τ(t))

µ) as t → ∞. So,
asymptotic relation (8) with the error part ρ(t; s) in form (9) is found from (34)–(36). Equation
(10) follows from the continuity theorem for power series.

Finally, one can verify that function π(s) satisfies equation (14). Therefore, denoting its power
series representation by π(s) =

∑
j∈S

πjs
j , an invariant property πj =

∑
i∈S

πipij(τ) is obtained for

any τ > 0. Thus {πj , j ∈ S} is an invariant measure for MBPI X(t).
The Theorem is proved.

Proof of Corollary 1. The statement follows immediately from (8) by setting x = 0.

The author is deeply grateful to the anonymous referee for his careful reading of the manuscript
and for his kindly comments which contributed to improving the paper.
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Об оценке скорости сходимости к инвариантным мерам
в марковских ветвящихся процессах с возможной
бесконечной дисперсией и иммиграцией

Азам А. Имомов
Каршинский государственный университет

Карши, Узбекистан

Аннотация. В работе исследуется марковский ветвящийся случайный процесс с непрерывным
временем и с иммиграцией. Мы рассматриваем критический случай, в котором второй момент
закона размножения частиц и первый момент закона иммиграции бесконечны. Предполагая, что
нелинейные части соответствующих производящих функций правильно меняются в смысле Кара-
мата, мы доказываем теоремы о сходимости переходных вероятностей процесса к инвариантным
мерам. Мы определим скорости этой сходимости при условии, что медленно меняющиеся части
являются функциями с остатком.

Ключевые слова: марковский ветвящийся процесс, производящие функции, иммиграция, пере-
ходные вероятности, медленно меняющаяся функция, инвариантные меры, скорость сходимости.
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