On the Uniqueness of the Classical Solutions of the Radial Viscous Fingering Problems in a Hele-Shaw Cell

Atusi Tani*
Department of Mathematics, Keio University Yokohama, Japan Hisasi Tani ${ }^{\dagger}$ JANUS
Yokohama, Japan

Received 10.03.2021, received in revised form 05.04.2021, accepted 20.05.2021

Abstract

In $[9,10]$ we established the existence of classical solutions to two-phase and one-phase radial viscous fingering problems, respectively, in a Hele-Shaw cell by the parabolic regularization and by vanishing the coefficient of the derivative with respect to time in a parabolic equation. In this paper we show the uniqueness of such solutions to the respective problems.

Keywords: classical solution, unique existence, radial viscous fingering.
Citation: A.Tani, H.Tani, On the Uniqueness of the Classical Solutions of the Radial Viscous Fingering Problems in a Hele-Shaw Cell, J. Sib. Fed. Univ. Math. Phys., 2021, 14(4), 475-482.
DOI: 10.17516/1997-1397-2021-14-4-475-482.

Dedicated to the memory of Yu. Ya.Belov (1944-2019)

1. Introduction and preliminaries

Viscous fingering occurs in the flow of two immiscible, viscous fluids between the plates of a Hele-Shaw cell ([3]). Due to pressure gradients or gravity, the initially planar interface separating the two fluids undergoes a Saffman-Taylor instability ([5]), and develops finger-like structure (see also [4] and the literatures therein).

In $[9,10]$ we established the existence of solutions belonging to the standard Hölder spaces for two-phase and one-phase radial viscous fingering problems in a Hele-Shaw cell, without surface tension effect, by the parabolic regularization and by vanishing the coefficient of the derivative with respect to time in parabolic equations (cf. $[1,2]$). However, our results in $[9,10]$ are only the existence of the solutions because of the sub-sequential limiting procedure.

The aim of this paper is to prove the uniqueness of such solutions to the respective problems.
This paper consists of three sections. In the rest of this section, we give a brief formulation of the problem in the two-phase case that we discuss. In Section 2, we give a proof of the uniqueness of the classical solution to the two-phase problem, and in Section 3 to the one-phase problem.

1.1. Formulation of the two-phase problem

The motion of a slow quasistationary displacement of a fluid by another fluid in a Hele-Shaw cell is described by

$$
\begin{equation*}
\nabla \cdot \mathbf{v}_{i}=0, \quad \mathbf{v}_{i}=-M_{i} \nabla p_{i} \quad \text { in } \quad \Omega_{i}(t), t>0(i=1,2) . \tag{1.1}
\end{equation*}
$$

[^0]Here $M_{i}=b^{2} / 12 \mu_{i}$ is mobility; μ_{i} is the fluid viscosity; b is the width of two plates; \mathbf{v}_{i} is the velocity vector field in the fluid and p_{i} is the pressure ($i=1$ and 2 for the displacing and the displaced fluid, respectively). For a radial fingering problem it is sufficient to consider (1.1) under the following geometric situation:

$$
\begin{aligned}
& \Omega_{1}(t)=\left\{x \in \mathbb{R}^{2}\left|R_{*}<|x|<R(t)+\zeta\left(\frac{x}{|x|}, t\right)\right\},\right. \\
& \Omega_{2}(t)=\left\{x \in \mathbb{R}^{2}\left|R(t)+\zeta\left(\frac{x}{|x|}, t\right)<|x|<R^{*}\right\},\right.
\end{aligned}
$$

where R_{*} is the radius of the hole through which the displacing fluid is injected or driven by suction at a flow rate $Q(t), R^{*}$ is the radius of the Hele-Shaw cell occupied by the displaced fluid, $R(t)$ is the time-dependent unperturbed radius satisfying

$$
\pi R(t)^{2}=\pi R_{0}^{2}+\int_{0}^{t} Q(\tau) \mathrm{d} \tau, \quad R_{0} \equiv R(0)>R_{*}
$$

and ζ is the perturbed radius.
The boundary and initial conditions for (1.1) are as follows:

$$
\begin{gather*}
\left\{\begin{array}{l}
\mathbf{v}_{1} \cdot \mathbf{n}=\frac{Q(t)}{2 \pi R_{*}} \quad \text { on } \Gamma_{*}, t>0, \quad p_{2}=p_{e} \quad \text { on } \Gamma^{*}, t>0, \\
\mathbf{v}_{1} \cdot \mathbf{n}=\mathbf{v}_{2} \cdot \mathbf{n}=V_{n}, \quad p_{1}=p_{2} \quad \text { on } \Gamma(t), t>0,
\end{array}\right. \tag{1.2}\\
\left\{\begin{array}{l}
\left.\mathbf{v}_{i}\right|_{t=0}=\mathbf{v}_{i}^{0}, \quad p_{i}=p_{i}^{0} \quad \text { on } \Omega_{i}(0) \equiv \Omega_{i} \quad(i=1,2), \\
\left.\zeta\right|_{t=0}=\zeta^{0} \in\left(R_{*}-R_{0}, R^{*}-R_{0}\right) \quad \text { on } \quad \Gamma(0) \equiv \Gamma,
\end{array}\right. \tag{1.3}
\end{gather*}
$$

where $\Gamma_{*}=\left\{x \in \mathbb{R}^{2}| | x \mid=R_{*}\right\}, \Gamma(t)=\left\{x \in \mathbb{R}^{2}| | x \mid=R(t)+\zeta(x /|x|, t)\right\}, \Gamma^{*}=\left\{x \in \mathbb{R}^{2}| | x \mid=\right.$ $\left.R^{*}\right\} ; V_{n}$ is the normal velocity of the interface $\Gamma(t) ; \mathbf{n}$ is the unit normal vectors, outward to Γ_{*} or to $\Gamma(t)$ in the direction from $\Omega_{1}(t)$ to $\Omega_{2}(t) ; p_{e}$ is the surface pressure acting on Γ^{*}.

Our two-phase problem is to find $\left(\mathbf{v}_{i}, p_{i}\right)(i=1,2)$ and ζ satisfying (1.1)-(1.3), which is reduced to find $\left(p_{1}, p_{2}\right)$ and ζ satisfying

$$
\left\{\begin{array}{l}
\Delta p_{i}=0 \quad \text { in } \Omega_{i}(t), t>0(i=1,2) \tag{1.4}\\
-M_{1} \nabla p_{1} \cdot \mathbf{n}=\frac{Q(t)}{2 \pi R_{*}} \quad \text { on } \Gamma_{*}, t>0, \quad p_{2}=p_{e} \quad \text { on } \Gamma^{*}, t>0 \\
-M_{1} \nabla p_{1} \cdot \mathbf{n}=-M_{2} \nabla p_{2} \cdot \mathbf{n}=V_{n}, \quad p_{1}=p_{2} \quad \text { on } \Gamma(t), t>0 \\
\left.p_{i}\right|_{t=0}=p_{i}^{0} \quad \text { on } \Omega_{i}(i=1,2),\left.\quad \zeta\right|_{t=0}=\zeta^{0} \quad \text { on } \Gamma .
\end{array}\right.
$$

As the compatibility conditions p_{1}^{0} and p_{2}^{0} are assumed to satisfy

$$
\left\{\begin{array}{l}
\Delta p_{i}^{0}=0 \quad \text { in } \Omega_{i} \quad(i=1,2), \tag{1.5}\\
-M_{1} \nabla p_{1}^{0} \cdot \mathbf{n}=\frac{Q(0)}{2 \pi R_{*}} \quad \text { on } \Gamma_{*}, \quad p_{2}^{0}=\left.p_{e}\right|_{t=0} \quad \text { on } \Gamma^{*}, \quad p_{1}^{0}=p_{2}^{0} \quad \text { on } \Gamma .
\end{array}\right.
$$

In polar coordinates (r, θ) problem (1.4) is written as

$$
\left\{\begin{array}{l}
\frac{1}{r} \frac{\partial}{\partial r}\left(r \frac{\partial p_{1}}{\partial r}\right)+\frac{1}{r^{2}} \frac{\partial^{2} p_{1}}{\partial \theta^{2}}=0 \quad\left(r \in\left(R_{*}, R(t)+\zeta\right), \theta \in[0,2 \pi), t>0\right), \tag{1.6}\\
\frac{1}{r} \frac{\partial}{\partial r}\left(r \frac{\partial p_{2}}{\partial r}\right)+\frac{1}{r^{2}} \frac{\partial^{2} p_{2}}{\partial \theta^{2}}=0 \quad\left(r \in\left(R(t)+\zeta, R^{*}\right), \theta \in[0,2 \pi), t>0\right), \\
\left.M_{1} \frac{\partial p_{1}}{\partial r}\right|_{r=R_{*}}=-\left.\frac{Q(t)}{2 \pi R_{*}} \quad p_{2}\right|_{r=R^{*}}=p_{e} \quad(\theta \in[0,2 \pi), t>0), \\
-\frac{\partial}{\partial t}(R(t)+\zeta)=M_{1}\left(\frac{\partial p_{1}}{\partial r}-\frac{1}{r^{2}} \frac{\partial \zeta}{\partial \theta} \frac{\partial p_{1}}{\partial \theta}\right)=M_{2}\left(\frac{\partial p_{2}}{\partial r}-\frac{1}{r^{2}} \frac{\partial \zeta}{\partial \theta} \frac{\partial p_{2}}{\partial \theta}\right), \quad p_{1}=p_{2} \\
\quad(r=R(t)+\zeta, \theta \in[0,2 \pi), t>0), \\
\left.p_{1}\right|_{t=0}=p_{1}^{0} \quad\left(r \in\left(R_{*}, R_{0}+\zeta^{0}\right), \theta \in[0,2 \pi)\right), \\
\left.p_{2}\right|_{t=0}=p_{2}^{0} \quad\left(r \in\left(R_{0}+\zeta^{0}(\theta), R^{*}\right), \theta \in[0,2 \pi)\right) \\
\left.\zeta\right|_{t=0}=\zeta^{0} \quad(\theta \in[0,2 \pi)) .
\end{array}\right.
$$

Now let us transform the free boundary problem (1.6) into the problem on fixed domains. Introduce the transformations from $\Omega_{1}(t)=\left\{R_{*}<r<R(t)+\zeta(\theta, t), 0 \leqslant \theta<2 \pi\right\}$ onto $\Omega_{1}=\left\{R_{*}<r^{\prime}<R_{0}+\zeta^{0}\left(\theta^{\prime}\right), 0 \leqslant \theta^{\prime}<2 \pi\right\}$ by the change of the variables $r^{\prime}=\frac{R_{0}+\zeta^{0}-R_{*}}{R+\zeta-R_{*}} \times$ $\times\left(r-R_{*}\right)+R_{*}, \theta^{\prime}=\theta, t^{\prime}=t$, and $\Omega_{2}(t)=\left\{R(t)+\zeta(\theta, t)<r<R^{*}, 0 \leqslant \theta<2 \pi\right\}$ onto $\Omega_{2}=\left\{R_{0}+\zeta^{0}\left(\theta^{\prime}\right)<r^{\prime}<R^{*}, 0 \leqslant \theta^{\prime}<2 \pi\right\}$ by $r^{\prime}=\frac{R_{0}+\zeta^{0}-R^{*}}{R+\zeta-R^{*}}\left(r-R^{*}\right)+R^{*}, \theta^{\prime}=\theta, t^{\prime}=t$. Moreover, by letting $p_{i}(r, \theta, t)=p_{i}^{\prime}\left(r^{\prime}, \theta^{\prime}, t^{\prime}\right)(i=1,2), \zeta(\theta, t)=\zeta^{\prime}\left(\theta^{\prime}, t^{\prime}\right)$, and by omitting the primes for simplicity, problem (1.6) takes the form

$$
\left\{\begin{array}{l}
\mathcal{L}_{\zeta}^{i} p_{i}=0 \quad \text { in } \Omega_{i}, t>0 \quad(i=1,2) \tag{1.7}\\
\frac{\partial p_{1}}{\partial r}=-\frac{Q(t)}{2 \pi R_{*} M_{1}} \frac{R+\zeta-R_{*}}{R_{0}+\zeta^{0}-R_{*}} \quad \text { on } \quad \Gamma_{*} \equiv\left\{r=R_{*}, \theta \in[0,2 \pi]\right\}, t>0 \\
p_{2}=p_{e} \quad \text { on } \Gamma^{*} \equiv\left\{r=R^{*}, \theta \in[0,2 \pi]\right\}, t>0 \\
\frac{\partial \zeta}{\partial t}-b_{2}^{1}(\zeta) \frac{\partial p_{1}}{\partial r}-b_{1}^{1}(\zeta) \frac{\partial p_{1}}{\partial \theta}-b_{2}^{2}(\zeta) \frac{\partial p_{2}}{\partial r}-b_{1}^{2}(\zeta) \frac{\partial p_{2}}{\partial \theta}=-\frac{Q(t)}{2 \pi R} \\
b_{2}^{1}(\zeta) \frac{\partial p_{1}}{\partial r}+b_{1}^{1}(\zeta) \frac{\partial p_{1}}{\partial \theta}=b_{2}^{2}(\zeta) \frac{\partial p_{2}}{\partial r}+b_{1}^{2}(\zeta) \frac{\partial p_{2}}{\partial \theta}, \quad p_{1}=p_{2} \\
\quad \text { on } \Gamma \equiv\left\{r=R_{0}+\zeta^{0}, \theta \in[0,2 \pi]\right\}, t>0 \\
\left.p_{i}\right|_{t=0}=p_{i}^{0} \quad \text { on } \quad \Omega_{i}(i=1,2),\left.\quad \zeta\right|_{t=0}=\zeta^{0} \quad \text { on }[0,2 \pi]
\end{array}\right.
$$

Here $\mathcal{L}_{\zeta}^{i} \equiv \mathcal{L}_{\zeta}^{i}(r, \theta ; \partial / \partial r, \partial / \partial \theta)$ is a Laplace operator represented by the composite change of variables of polar coordinates (r, θ) and the mapping from $\Omega_{i}(t)$ to $\Omega_{i}(i=1,2)$, and

$$
\begin{aligned}
& b_{2}^{j}(\zeta)=\frac{M_{j}}{2}\left[\left(1+\frac{1}{\left(R_{0}+\zeta^{0}\right)^{2}}\left(\frac{\partial \zeta}{\partial \theta}\right)^{2}\right) \frac{R_{0}+\zeta^{0}-R_{*}}{R+\zeta-R_{*}}-\frac{1}{\left(R_{0}+\zeta^{0}\right)^{2}} \frac{\partial \zeta}{\partial \theta} \frac{\mathrm{~d} \zeta^{0}}{\mathrm{~d} \theta}\right] \\
& b_{1}^{j}(\zeta)
\end{aligned}
$$

In detail, see [9].
We consider problem (1.7) in the standard Hölder spaces, $C^{l+\alpha}(\bar{\Omega}), C_{x, t}^{l+\alpha,(l+\alpha) / 2}\left(\bar{Q}_{T}\right)\left(\bar{Q}_{T} \equiv\right.$ $\bar{\Omega} \times[0, T] ; \Omega \subset \mathbb{R}^{n}(n \in \mathbb{N})$, a domain; T, any positive number; $l \geqslant 0$, an integer; $\left.\alpha \in(0,1)\right)$ with
the norms:

$$
\begin{aligned}
& |u|^{(\alpha)}=|u|^{(0)}+\langle u\rangle^{(\alpha)}, \quad|u|^{(0)}=\sup _{(x, t) \in \bar{Q}_{T}}|u(x, t)|, \quad\langle u\rangle^{(\alpha)}=\langle u\rangle_{x}^{(\alpha)}+\langle u\rangle_{t}^{(\alpha / 2)} \\
& \langle u\rangle_{x}^{(\alpha)} \equiv \sup _{x, y \in \bar{\Omega}, t \in[0, T]} \frac{|u(x, t)-u(y, t)|}{|x-y|^{\alpha}}, \quad\langle u\rangle_{t}^{(\alpha)} \equiv \sup _{x \in \bar{\Omega}, t, t^{\prime} \in[0, T]} \frac{\left|u(x, t)-u\left(x, t^{\prime}\right)\right|}{\left|t-t^{\prime}\right|^{\alpha}} .
\end{aligned}
$$

We also use the semi-norm

$$
[u]^{(\alpha, \beta)} \equiv \sup _{\substack{x, y \in \bar{\Omega} \\ t, t^{\prime} \in[0, T]}} \frac{\left|u(x, t)-u(y, t)-u\left(x, t^{\prime}\right)+u\left(y, t^{\prime}\right)\right|}{|x-y|^{\alpha}\left|t-t^{\prime}\right|^{\beta}} \quad(\alpha, \beta \in(0,1))
$$

and introduce the Banach spaces $E^{k+\alpha}\left(\bar{Q}_{T}\right)(k=0,1,2)$ which are the completion of infinitely differential functions in respective norms

$$
\begin{aligned}
& \|u\|_{\alpha}=\|u\|_{E^{\alpha}\left(\bar{Q}_{T}\right)} \equiv E^{\alpha, \alpha / 2}[u]=|u|^{(0)}+\langle u\rangle^{(\alpha)}+[u]^{(\alpha, \alpha / 2)} \\
& D^{\alpha, \alpha}[u]=|u|^{(0)}+\langle u\rangle_{x}^{(\alpha)}+\langle u\rangle_{t}^{(\alpha)}+[u]^{(\alpha, \alpha)} \\
& \|u\|_{k+\alpha}=\|u\|_{E^{k+\alpha}\left(\bar{Q}_{T}\right)}=E^{\alpha, \alpha / 2}\left[\mathrm{D}_{x}^{k} u\right]+\sum_{j=0}^{k-1} D^{\alpha, \alpha}\left[\mathrm{D}_{x}^{j} u\right] \quad\left(\mathrm{D}_{x}^{k}=\sum_{|j|=k} \frac{\partial^{j}}{\partial x^{j}}, k=1,2\right) \\
& \hat{E}^{2+\alpha}\left(\bar{Q}_{T}\right)=\left\{u \mid\|u\|_{\hat{E}^{2+\alpha}\left(\bar{Q}_{T}\right)}<\infty\right\}, \quad\|u\|_{\hat{E}^{2+\alpha}\left(\bar{Q}_{T}\right)}=\|u\|_{2+\alpha}+\left\|\frac{\partial u}{\partial t}\right\|_{1+\alpha}
\end{aligned}
$$

The function spaces on a smooth manifold Γ in \mathbb{R}^{n} are defined with the help of partition of unity and of local maps.

2. Uniqueness of the solution to problem (1.7)

Our main result for two-phase problem (1.7) is as follows:
Theorem 2.1. Let $T>0$ and $\alpha \in(0,1)$. Assume that $\left(p_{1}^{0}, p_{2}^{0}, \zeta^{0}\right) \in C^{3+\alpha}\left(\bar{\Omega}_{1}\right) \times C^{3+\alpha}\left(\bar{\Omega}_{2}\right) \times$ $C^{4+\alpha}([0,2 \pi])$ satisfy the compatibility conditions, $\partial p_{1}^{0} / \partial r-\partial p_{2}^{0} / \partial r>0$ on $\Gamma, Q \in C^{\alpha}([0, T])$ and $p_{e} \in C_{\theta, t}^{3+\alpha,(3+\alpha) / 2}\left(\Gamma_{T}^{*}\right)$ with $\partial p_{e} /\left.\partial t\right|_{t=0}=0$. Then there exists $T_{0}^{*}>0$ depending on the data of the problem such that problem (1.7) has a unique solution $\left(p_{1}, p_{2}, \zeta\right) \in E^{2+\alpha}\left(\bar{Q}_{1, T_{0}^{*}}\right) \times$ $E^{2+\alpha}\left(\bar{Q}_{2, T_{0}^{*}}\right) \times \hat{E}^{2+\alpha}\left(\Gamma_{T_{0}^{*}}\right)$ except for the extension of ζ^{0} to $[0,2 \pi] \times[0, T]$ satisfying

$$
\begin{equation*}
\left\|p_{1}\right\|_{E^{2+\alpha}\left(\bar{Q}_{1, T_{0}^{*}}\right)}+\left\|p_{2}\right\|_{E^{2+\alpha}\left(\bar{Q}_{2, T_{0}^{*}}\right)}+\|\zeta\|_{\hat{E}^{2+\alpha}\left(\Gamma_{T_{0}^{*}}\right)} \leqslant C . \tag{2.1}
\end{equation*}
$$

In [9] we showed the existence of the solution to problem (1.7) on some time interval $\left[0, T_{0}\right]\left(0<T_{0} \leqslant T\right)$ in the form

$$
\left\{\begin{array}{l}
p_{1}=p_{1}^{*}+p_{1}^{0}+\frac{r-R_{*}}{R+\bar{\zeta}-R_{*}} \frac{\partial p_{1}^{0}}{\partial r} \zeta^{*}, \quad p_{2}=p_{2}^{*}+p_{2}^{0}+\frac{r-R^{*}}{R+\bar{\zeta}-R^{*}} \frac{\partial p_{2}^{0}}{\partial r} \zeta^{*} \tag{2.2}\\
\zeta=\zeta^{*}+\bar{\zeta}
\end{array}\right.
$$

by the parabolic regularization and by vanishing the coefficient of the derivative with respect to time in a parabolic equation. Here $\bar{\zeta} \in C_{\theta, t}^{4+\alpha,(4+\alpha) / 2}([0,2 \pi] \times[0, T])$ is an extension of ζ^{0} such that $\left.\left(\bar{\zeta}, \partial \bar{\zeta} / \partial t, \partial^{2} \bar{\zeta} / \partial t^{2}\right)\right|_{t=0}=\left.\left(\zeta^{0}, \partial \zeta / \partial t, \partial^{2} \zeta / \partial t^{2}\right)\right|_{t=0}$ whose right hand side are obtained from the fourth equation in (1.7) and its derivative in t at $t=0$.

Then (1.7) becomes

$$
\left\{\begin{array}{l}
\mathcal{L}_{*}^{i} p_{i}^{*}=\Phi_{i} \quad \text { in } \Omega_{i}, t>0(i=1,2) \tag{2.3}\\
\frac{\partial p_{1}^{*}}{\partial r}=\Psi_{*} \quad \text { on } \quad \Gamma_{*}, t>0, \quad p_{2}^{*}=\Psi^{*} \quad \text { on } \quad \Gamma^{*}, t>0 \\
\frac{\partial \zeta^{*}}{\partial t}-b_{2}^{1}(\bar{\zeta}) \frac{\partial p_{1}^{*}}{\partial r}-b_{1}^{1}(\bar{\zeta}) \frac{\partial p_{1}^{*}}{\partial \theta}-b_{2}^{2}(\bar{\zeta}) \frac{\partial p_{2}^{*}}{\partial r}-b_{1}^{2}(\bar{\zeta}) \frac{\partial p_{2}^{*}}{\partial \theta}=\Psi_{1}+\Psi_{2} \\
b_{2}^{1}(\bar{\zeta}) \frac{\partial p_{1}^{*}}{\partial r}+b_{1}^{1}(\bar{\zeta}) \frac{\partial p_{1}^{*}}{\partial \theta}-b_{2}^{2}(\bar{\zeta}) \frac{\partial p_{2}^{*}}{\partial r}-b_{1}^{2}(\bar{\zeta}) \frac{\partial p_{2}^{*}}{\partial \theta}=-\Psi_{1}+\Psi_{2} \\
p_{1}^{*}-p_{2}^{*}+d(\bar{\zeta}) \zeta^{*}=\Psi_{3} \quad \text { on } \Gamma, t>0, \\
\left.p_{i}^{*}\right|_{t=0}=0 \quad \text { on } \quad \Omega_{i}(i=1,2),\left.\quad \zeta^{*}\right|_{t=0}=0 \quad \text { on } \quad[0,2 \pi]
\end{array}\right.
$$

Here \mathcal{L}_{*}^{i} is the principal part of \mathcal{L}_{ζ}^{i} with ζ replaced by $\bar{\zeta}$,

$$
\begin{aligned}
& \Phi_{i}=\Phi_{i}\left(p_{i}^{*}, \zeta^{*}\right)=-\mathcal{L}_{\zeta}^{i} p_{i}+\mathcal{L}_{*}^{i} p_{i}^{*} \quad(i=1,2), \quad \Psi^{*}=p_{e}-p_{2}^{0} \\
& \Psi_{*}= \\
& \Psi_{*}\left(\zeta^{*}\right)=-\frac{\partial}{\partial r}\left(p_{1}^{0}+\frac{r-R_{*}}{R+\bar{\zeta}-R_{*}} \frac{\partial p_{1}^{0}}{\partial r}\right) \zeta^{*}-\frac{R+\zeta-R_{*}}{R_{0}+\zeta^{0}-R_{*}} \frac{Q(t)}{2 \pi R_{*} M_{1}} \\
& \Psi_{j}=\Psi_{j}\left(p_{1}^{*}, p_{2}^{*}, \zeta^{*}\right)=b_{2}^{j}(\zeta) \frac{\partial p_{j}}{\partial r}+b_{1}^{j}(\zeta) \frac{\partial p_{j}}{\partial \theta}-b_{2}^{j}(\bar{\zeta}) \frac{\partial p_{j}^{*}}{\partial r}-b_{1}^{j}(\bar{\zeta}) \frac{\partial p_{j}^{*}}{\partial \theta}-\frac{Q(t)}{4 \pi R}-\frac{1}{2} \frac{\partial \bar{\zeta}}{\partial t} \\
& \quad(j=1,2), \\
& \Psi_{3}=p_{2}^{0}-p_{1}^{0}, \quad d(\bar{\zeta})=\frac{R_{0}+\zeta^{0}-R_{*}}{R+\bar{\zeta}-R_{*}} \frac{\partial p_{1}^{0}}{\partial r}-\frac{R_{0}+\zeta^{0}-R^{*}}{R+\bar{\zeta}-R^{*}} \frac{\partial p_{2}^{0}}{\partial r}
\end{aligned}
$$

with $\left(p_{1}, p_{2}, \zeta\right)$ replaced by (2.2).
If problem (2.3) admits a unique solution on some time interval $\left[0, T_{0}^{*}\right]\left(0<T_{0}^{*} \leqslant T_{0}\right)$, then the limit process holds for the full sequence, not the subsequence, on $\left[0, T_{0}^{*}\right]$, so that the proof of Theorem 2.1 is completed.

In what follows we shall prove the uniqueness of solution to problem (2.3).
Let $\left(p_{1}^{*}, p_{2}^{*}, \zeta^{*}\right)$ and $\left(p_{1}^{* *}, p_{2}^{* *}, \zeta^{* *}\right)$ be two solutions of (2.3) satisfying

$$
\begin{equation*}
\left\|p_{1}^{\dagger}\right\|_{E^{2+\alpha}\left(\bar{Q}_{1, T_{0}}\right)}+\left\|p_{2}^{\dagger}\right\|_{E^{2+\alpha}\left(\bar{Q}_{2, T_{0}}\right)}+\left\|\zeta^{\dagger}\right\|_{\hat{E}^{2+\alpha}\left(\Gamma_{T_{0}}\right)} \leqslant C_{1} \quad(\dagger=*, * *) \tag{2.4}
\end{equation*}
$$

To the end, as the same way as in [9] it is essential to consider the following four model problems in the whole- and half-spaces:

$$
\begin{gather*}
\mathcal{L} u=f \text { in } \mathbb{R}^{2}, t>0,\left.\quad u\right|_{t=0}=0 ; \tag{2.5}\\
\mathcal{L} u=f \quad\left(x_{1} \in \mathbb{R}, x_{2}>0, t>0\right),\left.\quad u\right|_{x_{2}=0}=0,\left.\quad u\right|_{t=0}=0 \tag{2.6}\\
\mathcal{L} u=f \quad\left(x_{1} \in \mathbb{R}, x_{2}>0, t>0\right),\left.\quad \frac{\partial u}{\partial x_{2}}\right|_{x_{2}=0}=0,\left.\quad u\right|_{t=0}=0 \tag{2.7}\\
\left\{\begin{array}{l}
\mathcal{L} u^{+}=0\left(x_{1} \in \mathbb{R}, x_{2}>0, t>0\right), \quad \mathcal{L} u^{-}=0\left(x_{1} \in \mathbb{R}, x_{2}<0, t>0\right) \\
\frac{\partial \varrho}{\partial t}-b^{+} \frac{\partial u^{+}}{\partial x_{2}}-\left.b^{-} \frac{\partial u^{-}}{\partial x_{2}}\right|_{x_{2}=0}=g_{1}, \quad-b^{+} \frac{\partial u^{+}}{\partial x_{2}}+\left.b^{-} \frac{\partial u^{-}}{\partial x_{2}}\right|_{x_{2}=0}=g_{2} \\
-u^{+}+u^{-}+\left.d \varrho\right|_{x_{2}=0}=g_{3},\left.\quad\left(u^{+}, u^{-}, \varrho\right)\right|_{t=0}=0
\end{array}\right. \tag{2.8}
\end{gather*}
$$

Moreover, it suffices to assume that $\mathcal{L}=\Delta$, and $b^{ \pm}$and d are positive constants, and set $b \equiv\left(2 d b^{+} b^{-}\right) /\left(b^{+}+b^{-}\right)$in (2.5)-(2.8).

In estimating the difference $\left(p_{1}^{*}, p_{2}^{*}, \zeta^{*}\right)-\left(p_{1}^{* *}, p_{2}^{* *}, \zeta^{* *}\right)$, we trace a proof in [9] with the help of a fundamental solution and Green functions of (2.5)-(2.8) instead of $\Gamma_{\varepsilon}, G_{\varepsilon}, N_{\varepsilon}$ and Z_{ε} in [9]. It is clear that the solutions to problems (2.5)-(2.7) for $\mathcal{L}=\Delta$ are given by

$$
\begin{gathered}
u(x, t)=\int_{\mathbb{R}^{2}} \Gamma_{0}(x-y) f(y, t) \mathrm{d} y, \quad u(x, t)=\int_{\mathbb{R}^{2}} G_{0}(x-y) f(y, t) \mathrm{d} y \\
u(x, t)=\int_{\mathbb{R}^{2}} N_{0}(x-y) f(y, t) \mathrm{d} y
\end{gathered}
$$

respectively, where $\Gamma_{0}(x)=-\log |x| /(2 \pi), \quad G_{0}\left(x_{1}, x_{2}\right)=\Gamma_{0}\left(x_{1}, x_{2}\right)-\Gamma_{0}\left(x_{1},-x_{2}\right)$, and $N_{0}\left(x_{1}, x_{2}\right)=\Gamma_{0}\left(x_{1}, x_{2}\right)+\Gamma_{0}\left(x_{1},-x_{2}\right)$. Whereas, the solution $\left(u^{+}, u^{-}, \varrho\right)=(\mathcal{F} \mathcal{L})^{-1}\left[\left(\tilde{u}^{+}, \tilde{u}^{-}, \tilde{\varrho}\right)\right]$ of problem (2.8) is represented by virtue of Green function

$$
\begin{gathered}
Z_{0}\left(x_{1}, t\right)=(\mathcal{F} \mathcal{L})^{-1}\left[\tilde{Z}_{0}\right]=(\mathcal{F} \mathcal{L})^{-1}\left[\frac{1}{s+b|\xi|}\right]: \\
\tilde{u}^{+}=(\mathcal{F} \mathcal{L})\left[u^{+}\right]=\tilde{v}^{+}(\xi, s) \mathrm{e}^{-|\xi| x_{2}} \quad\left(x_{2}>0\right), \quad \tilde{u}^{-}=(\mathcal{F} \mathcal{L})\left[u^{-}\right]=\tilde{v}^{-}(\xi, s) \mathrm{e}^{|\xi| x_{2}} \quad\left(x_{2}<0\right), \\
\tilde{v}^{+}=\frac{1}{\left(b^{+}+b^{-}\right)|\xi|} \tilde{g}_{2}-\frac{b^{-}}{b^{+}+b^{-}} \tilde{g}_{3}+\tilde{Z}_{0}\left(\frac{d b^{-}}{b^{+}+b^{-}} \tilde{g}_{1}-\frac{b-d b^{-}}{b^{+}+b^{-}} \tilde{g}_{2}+\frac{b b^{-}}{b^{+}+b^{-}}|\xi| \tilde{g}_{3}\right), \\
\tilde{v}^{-}=\frac{1}{\left(b^{+}+b^{-}\right)|\xi|} \tilde{g}_{2}+\frac{b^{+}}{b^{+}+b^{-}} \tilde{g}_{3}+\tilde{Z}_{0}\left(-\frac{d b^{+}}{b^{+}+b^{-}} \tilde{g}_{1}-\frac{b-d b^{+}}{b^{+}+b^{-}} \tilde{g}_{2}-\frac{b b^{+}}{b^{+}+b^{-}}|\xi| \tilde{g}_{3}\right), \\
\tilde{\varrho}=\tilde{Z}_{0}\left(\tilde{g}_{1}-\frac{b^{+}-b^{-}}{b^{+}+b^{-}} \tilde{g}_{2}+\frac{2 b^{+} b^{-}}{b^{+}+b^{-}}|\xi| \tilde{g}_{3}\right) .
\end{gathered}
$$

Here $\tilde{u}=(\mathcal{F} \mathcal{L})[u]$ is the Fourier transformation in x_{1} and Laplace transformation in t of u, and $(\mathcal{F} \mathcal{L})^{-1}[\tilde{u}]$ is its inverse transformation.

Lemma 2.2. When $b=1$, we have the following estimates of Z_{0} :

$$
\begin{aligned}
\left|Z_{0}\left(x_{1}, t\right)\right| \leqslant & C_{2} \frac{1}{\sqrt{x_{1}^{2}+t^{2}}}, \quad\left|\frac{\partial}{\partial t} Z_{0}\left(x_{1}, t\right)\right|+\left|\frac{\partial}{\partial x_{1}} Z_{0}\left(x_{1}, t\right)\right| \leqslant C_{2} \frac{1}{x_{1}^{2}+t^{2}} \\
& \left|\frac{\partial^{2}}{\partial t \partial x_{1}} Z_{0}\left(x_{1}, t\right)\right|+\left|\frac{\partial^{2}}{\partial x_{1}^{2}} Z_{0}\left(x_{1}, t\right)\right| \leqslant C_{2} \frac{1}{\left(x_{1}^{2}+t^{2}\right)^{3 / 2}}
\end{aligned}
$$

Using Lemma 2.2, we estimate these solutions of (2.5)-(2.8) in the same way as in [9] (cf. [1,2]). For a general domain by using the regularizer method for elliptic system ([6-8]), we finally obtain the estimate of $\left(p_{1}^{*}, p_{2}^{*}, \zeta^{*}\right)-\left(p_{1}^{* *}, p_{2}^{* *}, \zeta^{* *}\right)$ with the help of Young's and interpolation inequalities and (2.4):

$$
\begin{align*}
& \left\|p_{1}^{*}-p_{1}^{* *}\right\|_{E^{2+\alpha}\left(\bar{Q}_{1, t}\right)}+\left\|p_{2}^{*}-p_{2}^{* *}\right\|_{E^{2+\alpha}\left(\bar{Q}_{2, t}\right)}+\left\|\zeta^{*}-\zeta^{* *}\right\|_{\hat{E}^{2+\alpha}\left(\Gamma_{t}\right)} \leqslant \tag{2.9}\\
& \leqslant C_{3}\left(\sum_{i=1}^{2}\left(\left\|\Phi_{i}\left(p^{*}, \zeta^{*}\right)-\Phi_{i}\left(p^{* *}, \zeta^{* *}\right)\right\|_{E^{\alpha}\left(\bar{Q}_{i, t}\right)}+\left\|\Psi_{i}\left(p^{*}, \zeta^{*}\right)-\Psi_{i}\left(p^{* *}, \zeta^{* *}\right)\right\|_{E^{1+\alpha}\left(\bar{\Gamma}_{t}\right)}\right)+\right. \\
& \left.\quad+\left\|\Psi_{*}\left(\zeta^{*}\right)-\Psi_{*}\left(\zeta^{* *}\right)\right\|_{E^{1+\alpha}\left(\bar{\Gamma}_{* t}\right)}\right) \leqslant \\
& \leqslant C_{3}\left(\beta+C_{\beta} t^{\chi} F\left(4 C_{1}\right)\right)\left(\left\|p_{1}^{*}-p_{1}^{* *}\right\|_{E^{2+\alpha}\left(\bar{Q}_{1, t}\right)}+\left\|p_{2}^{*}-p_{2}^{* *}\right\|_{E^{2+\alpha}\left(\bar{Q}_{2, t}\right)}+\left\|\zeta^{*}-\zeta^{* *}\right\|_{\hat{E}^{2+\alpha}\left(\Gamma_{t}\right)}\right)
\end{align*}
$$

for any $t \in\left(0, T_{0}\right)$ and any $\beta>0$, where C_{β} is a positive constant depending on β non-increasingly, χ is a constant depending on $\alpha, F(\cdot)$ is a polynomial in its argument.

Now choosing first $\beta=1 /\left(4 C_{3}\right)$, and then

$$
T_{0}^{*}=\min \left\{T_{0},\left(\frac{1}{4 C_{3} C_{\beta} F\left(4 C_{1}\right)}\right)^{1 / \chi}\right\},
$$

we conclude from (2.9) that the solution to problem (2.3) is unique on $\left[0, T_{0}^{*}\right]$.

3. Uniqueness of the solution to the one-phase problem

Our next main result for one-phase problem is as follows:
Theorem 3.1. Let $T>0$ and $\alpha \in(0,1)$. Assume that $\left(p^{0}, \zeta^{0}\right) \in C^{3+\alpha}(\bar{\Omega}) \times C^{4+\alpha}([0,2 \pi])$ satisfy the compatibility conditions, $\partial p^{0} / \partial r<0$ on $\Gamma, Q \in C^{\alpha}([0, T])$ and $p_{e} \in C_{\theta, t}^{3+\alpha,(3+\alpha) / 2}\left(\Gamma_{T}^{*}\right)$ with $\partial p_{e} /\left.\partial t\right|_{t=0}=0$. Then there exists $T_{0}^{*}>0$ depending on the data of the problem such that onephase problem has a unique solution $(p, \zeta) \in E^{2+\alpha}\left(\bar{Q}_{T_{0}^{*}}\right) \times \hat{E}^{2+\alpha}\left(\Gamma_{T_{0}^{*}}\right)$ except for the extension of ζ^{0} to $[0,2 \pi] \times[0, T]$ satisfying

$$
\begin{equation*}
\|p\|_{E^{2+\alpha}\left(\bar{Q}_{T_{0}^{*}}\right)}+\|\zeta\|_{\hat{E}^{2+\alpha}\left(\Gamma_{T_{0}^{*}}\right)} \leqslant C^{\prime} \tag{3.1}
\end{equation*}
$$

Like the two-phase problem we transform the one-phase problem into just the same equations as (2.3). In [10] the existence of the solution $\left(p^{*}, \zeta^{*}\right)(c f .(2.2))$ to one-phase problem on some time interval $\left[0, T_{0}\right]\left(0<T_{0}<T\right)$ was shown.

Let $\left(p^{*}, \zeta^{*}\right)$ and $\left(p^{* *}, \zeta^{* *}\right)$ be two solutions satisfying

$$
\begin{equation*}
\left\|p^{\dagger}\right\|_{E^{2+\alpha}\left(\bar{Q}_{T_{0}}\right)}+\left\|\zeta^{\dagger}\right\|_{\hat{E}^{2+\alpha}\left(\Gamma_{T_{0}}\right)} \leqslant C_{1}^{\prime} \quad(\dagger=*, * *) \tag{3.2}
\end{equation*}
$$

For one-phase case the essential model problems are the same as (2.5), (2.7), (2.8) with $\left(u^{+}, u^{-}, \varrho\right)$ replaced by $(u, 0, \varrho)$.

$$
\begin{align*}
& \quad \mathcal{L} u=f \text { in } \mathbb{R}^{2}, t>0,\left.\quad u\right|_{t=0}=0 \tag{3.3}\\
& \quad \mathcal{L} u=f \quad\left(x_{1} \in \mathbb{R}, x_{2}>0, t>0\right),\left.\quad \frac{\partial u}{\partial x_{2}}\right|_{x_{2}=0}=0,\left.\quad u\right|_{t=0}=0 \tag{3.4}\\
& \left\{\begin{array}{l}
\mathcal{L} u=0 \quad\left(x_{1} \in \mathbb{R}, x_{2}>0, t>0\right), \\
\frac{\partial \varrho}{\partial t}-\left.b \frac{\partial u}{\partial x_{2}}\right|_{x_{2}=0}=g_{1}, \quad u-\left.d \varrho\right|_{x_{2}=0}=g_{2},\left.\quad(u, \varrho)\right|_{t=0}=0
\end{array}\right. \tag{3.5}
\end{align*}
$$

The solution $(u, \varrho)=(\mathcal{F} \mathcal{L})^{-1}[(\tilde{u}, \tilde{\varrho})]$ of problem (3.5) is represented by virtue of Green function Z_{0} (cf. in Sec. 2):

$$
\tilde{u}=\tilde{v}(\xi, s) \mathrm{e}^{-|\xi| x_{2}} \quad\left(x_{2}>0\right), \quad \tilde{v}=d \tilde{\varrho}+g_{2}, \quad \tilde{\varrho}=\tilde{Z}_{0}\left(\tilde{g}_{1}-b d|\xi| \tilde{g}_{2}\right) .
$$

Just in the same way as the two-phase problem, we can estimate the solutions of (3.3)-(3.5) with the help of Lemma 2.2, and for a general domain the regularizer method for elliptic system leads to the estimate of $\left(p^{*}, \zeta^{*}\right)-\left(p^{* *}, \zeta^{* *}\right)$:

$$
\begin{align*}
&\left\|p^{*}-p^{* *}\right\|_{E^{2+\alpha}\left(\bar{Q}_{t}\right)}+\left\|\zeta^{*}-\zeta^{* *}\right\|_{\hat{E}^{2+\alpha}\left(\Gamma_{t}\right)} \leqslant \\
& \leqslant C_{3}^{\prime}\left(\beta 7+C_{\beta^{\prime}} t^{\chi^{\prime}} F^{\prime}\left(4 C_{1}^{\prime}\right)\right)\left(\left\|p^{*}-p^{* *}\right\|_{E^{2+\alpha}\left(\bar{Q}_{t}\right)}+\left\|\zeta^{*}-\zeta^{* *}\right\|_{\hat{E}^{2+\alpha}\left(\Gamma_{t}\right)}\right) \tag{3.6}
\end{align*}
$$

for any $t \in\left(0, T_{0}\right)$ and any $\beta^{\prime}>0$, where $C_{\beta^{\prime}}$ is a positive constant depending on β^{\prime} nonincreasingly, χ^{\prime} is a constant depending on $\alpha, F^{\prime}(\cdot)$ is a polynomial of its argument.

Now choosing first $\beta^{\prime}=1 /\left(4 C_{3}^{\prime}\right)$, and then

$$
T_{0}^{*}=\min \left\{T_{0},\left(\frac{1}{4 C_{3}^{\prime} C_{\beta^{\prime}} F^{\prime}\left(4 C_{1}^{\prime}\right)}\right)^{1 / \chi}\right\}
$$

we conclude from (3.6) that the solution to one-phase problem is unique on $\left[0, T_{0}^{*}\right]$.

References

[1] B.V.Bazaliǐ, On estimates for the solution of a model conjugation problem in the theory of problems with a free boundary, Differ. Uravn., 33(1997), 1374-1381 (in Russian).
[2] B.V.Bazaliĭ, On a proof of the classical solvability of the Hele-Shaw problem with a free surface, Ukr. Mat. Zh., 50(1998), 1452-1462 (in Russian).
[3] H.S.Hele-Shaw, The flow of water, Nature, 58(1898), 33-36.
[4] D.A.Kessler, J.Koplik, H.Levine, Pattern selection in fingering growth phenomena, Adv. Phys., 37(1988), 255-339.
[5] P.G.Saffman, G.I.Taylor, The penetration of a fluid into a porous medium or Hele-Shaw cell containing a more viscous liquid, Proc. Royal Soc. London. Ser. A, 245(1958), 312-329.
[6] V.A.Solonnikov, General boundary value problems for systems elliptic in the sense of A. Douglis and L. Nirenberg. I, Izv. Akad. Nauk SSSR Ser. Mat., 28(1964), 665-706; II, Trudy Mat. Inst. Steklov, 92(1966), 233-297 (in Russian).
[7] V.A.Solonnikov, On boundary value problems for linear parabolic systems of differential equations of general form, Trudy Mat. Inst. Steklov, 83(1965), 3-163 (in Russian).
[8] A.Tani, Two-phase free boundary problem for compressible viscous fluid motion, J. Math. Kyoto Univ., 24(1984), 243-267.
[9] A.Tani, H.Tani, Classical solvability of the two-phase radial viscous fingering problem in a Hele-Shaw cell, In: Mathematical Fluid Dynamics, Present and Future, Eds. Y. Shibata and Y. Suzuki, Springer Proc. Math. Stat., Vol. 183, 2016, 317-348.
[10] A.Tani, H.Tani, Classical solvability of the radial viscous fingering problem in a Hele-Shaw cell, Math. Notes NEFU, 25(2018), 79-92. DOI: 10.1007/978-4-431-56457-7_11

О единственности классических решений задач радиальной вязкой пальцеобразной структуры в ячейке Хеле-Шоу

Атуси Тани
Департамент математики Университета Кейо
Иокогама, Япония
Хисаси Тани
JANUS
Иокогама, Япония

Abstract

Аннотация. В $[9,10]$ мы установили существование классических решений двухфазной и однофазной задач радиальной вязкой аппликатуры соответственно в ячейке Хеле-Шоу параболической регуляризацией и обращением в нуль коэффициента производной по времени в параболическом уравнении. В этой статье мы показываем единственность таких решений соответствующих задач.

Ключевые слова: классическое решение, уникальное наличие, радиальная вязкая пальцеобразная структура.

[^0]: *tani@math.keio.ac.jp
 †hisasitani@gmail.com
 © Siberian Federal University. All rights reserved

