On some Inverse Parabolic Problems with Pointwise Overdetermination

Sergey G. Pyatkov*
Vladislav A. Baranchuk ${ }^{\dagger}$
Yugra State University
Khanty-Mansiysk, Russian Federation

Received 10.03.2021, received in revised form 05.04.2021, accepted 20.05.2021

Abstract

We examine well-posedness questions in the Sobolev spaces of inverse problems of recovering coefficients depending on time in a parabolic system. The overdetermination conditions are values of a solution at some collection of points lying inside the domain and on its boundary. The conditions obtained ensure existence and uniqueness of solutions to these problems in the Sobolev classes.

Keywords: parabolic system, inverse problem, pointwise overdetermination, convection-diffusion.
Citation: S.G. Pyatkov, V.A. Baranchuk, On some Inverse Parabolic Problems with Pointwise Overdetermination, J. Sib. Fed. Univ. Math. Phys., 2021, 14(4), 463-474.
DOI: 10.17516/1997-1397-2021-14-4-463-474.

Dedicated to Yu. Ya. Belov

Introduction

We consider inverse problems with pointwise overdetermination for a parabolic system of the form

$$
\begin{equation*}
L u=u_{t}+A(t, x, D) u=f(x, t), \quad(t, x) \in Q=(0, T) \times G, G \subset \mathbb{R}^{n} \tag{1}
\end{equation*}
$$

where

$$
A(t, x, D) u=-\sum_{i, j=1}^{n} a_{i j}(t, x) u_{x_{j} x_{j}}+\sum_{i=1}^{n} a_{i}(t, x) u_{x_{i}}+a_{0}(t, x) u
$$

G is a bounded domain with boundary $\Gamma \in C^{2}, a_{i j}, a_{i}$ are matrices of dimension $h \times h$, and u is a vector of length h. The system (1) is supplemented by the initial and boundary conditions

$$
\begin{equation*}
\left.u\right|_{t=0}=u_{0},\left.\quad B u\right|_{S}=g, \quad S=(0, T) \times \Gamma \tag{2}
\end{equation*}
$$

where $B u=\sum_{i=1}^{n} \gamma_{i}(t, x) u_{x_{i}}+\gamma_{0}(t, x) u$. The overdetermination conditions are as follows:

$$
\begin{equation*}
<u\left(x_{i}, t\right), e_{i}>=\psi_{i}(t), \quad i=1,2, \ldots, r \tag{3}
\end{equation*}
$$

where the symbol $<\cdot, \cdot>$ stands for the inner product in $\mathbb{C}^{h},\left\{e_{i}\right\}$ is a collection of vectors of unit length and among the points $\left\{x_{i}\right\}$ as well as the vectors $\left\{e_{i}\right\}$ can be coinciding points and

[^0]vectors. The right-hand side is of the form $f=\sum_{i=1}^{m} f_{i}(x, t) q_{i}(t)+f_{0}(x, t)$. The problems is to find the unknowns $q_{i}(t)$ occurring into the right-hand side and the operator A as coefficients and a solution u to the system (1) satisfying (2) and (3). The conditions (3) generalized the conventional pointwise overdetermination conditions of the form $u\left(x_{i}, t\right)=\psi_{i}(t)$. In particular, it is possible that only part of the coordinates of the vector u at a point x_{i} is given. These problems arise of describing heat and mass transfer, diffusion, filtration, and in many other fields (see $[1-3])$ and they are studied in many articles. First, we should refer to the fundamental articles by A.I. Prilepko and his followers. In particular, an existence and uniqueness theorem for solutions to the problem of recovering the source $f(t, x) q(t)$ with the overdetermination condition $u\left(x_{0}, t\right)=\psi(t)\left(x_{0}\right.$ is a point in $\left.G\right)$ is established in [4,5]. Similar results are obtained in [6] for the problem of recovering lower-order coefficient $p(t)$ in the equation (1). The Hölder spaces serve as the basic spaces in these articles. The results were generalized in the book [7, Sec. 6.6, Sec. 9.4], where the existence theory for the problems (1)-(3) was developed in an abstract form with the operator A replaced with $-L, L$ is generator of an analytic semigroup. The main results employ the assumptions that the domain of L is independent of time and the unknown coefficients occur into the lower part of the equation nonlinearly. Under certain conditions, existence and uniqueness theorems were proven locally in time in the spaces of functions continuously differentiable with respect to time. We note also the article [8], where an existence and uniqueness theorem in the problem of recovering a lower-order coefficient and the right-hand was established with the overdetermination condition $u\left(x_{i}, t\right)=\psi(t)\left(x_{i}\right.$ are interior points of $\left.G, i=1,2\right)$. There are many articles devoted to the problems (1)-(3) in model situations, especially in the case of $n=1$ (see, for instance, [9-14]). In these articles different collections of coefficients are recovered with the overdetermination conditions of the form (3), in particular, including boundary points x_{i}. In this case the boundary condition and the overdetermination condition define the Cauchy data at a boundary point. Many results in the case of $n=1$ are exhibited in [15]. Note the book [16], where the solvability questions for inverse problems with the overdetermination conditions being the values of a solution on some hyperplanes (sections of a space domain) are studied. The problems (1)-(3) were considered in authors' articles in [17, 18], where conditions on the data were weakened in contrast to those in [7, Sec. 9.4] and the solvability questions were treated in the Sobolev spaces. In contrast to the previous results, we examine the case of the points $\left\{x_{i}\right\}$ lying on the boundary of G as well and the special overdetermination conditions (only some combinations of the coordinate of a solution are given). These overdetermination conditions also arise in applications (see [3]). Note that numerical methods for solving the problems (1)-(3) have been developed in many articles (see [2, 3, 19]).

1. Preliminaries

First, we introduce some notations. Let E be a Banach space. Denote by $L_{p}(G ; E)(G$ is a domain in \mathbb{R}^{n}) the space of strongly measurable functions defined on G with values in E and the finite norm $\left\|\|u(x)\|_{E}\right\|_{L_{p}(G)}[20]$. We employ conventional notations for the space of continuously differentiable functions $C^{k}(\bar{G} ; E)$ and the Sobolev space $W_{p}^{s}(Q ; E), W_{p}^{s}(G ; E)$, etc. (see $[20,21])$. If $E=\mathbb{C}$ or $E=\mathbb{C}^{n}$ then the latter space is denoted simply by $W_{p}^{s}(G)$. Therefore, the membership $u \in W_{p}^{s}(G)$ (or $\left.u \in C^{k}(\bar{G})\right)$ or $a \in W_{p}^{s}(G)$ for a given vector-function $u=\left(u_{1}, u_{2}, \ldots, u_{k}\right)$ or a matrix function $a=\left\{a_{i j}\right\}_{j, i=1}^{k}$ mean that every of the components u_{i} (respectively, an entry $a_{i j}$) belongs to the space $W_{p}^{s}(G)\left(\right.$ or $C^{k}(\bar{G})$). Given an interval $J=(0, T)$,
put $W_{p}^{s, r}(Q)=W_{p}^{s}\left(J ; L_{p}(G)\right) \cap L_{p}\left(J ; W_{p}^{r}(G)\right)$, Respectively, we have $W_{p}^{s, r}(S)=W_{p}^{s}\left(J ; L_{p}(\Gamma)\right) \cap$ $L_{p}\left(J ; W_{p}^{r}(\Gamma)\right)$. The anisotropic Hölder spaces $C^{\alpha, \beta}(\bar{Q})$ and $C^{\alpha, \beta}(\bar{S})$ are defined by analogy.

The definition of the inclusion $\Gamma \in C^{s}$ can be found in [22, Chapter 1]. In what follows we assume that the parameter $p>n+2$ is fixed. Let $B_{\delta}\left(x_{i}\right)$ be a the ball of radius δ centered at x_{i} (see (3)). The parameter $\delta>0$ will be referred to as admissible if $\overline{B_{\delta}\left(x_{i}\right)} \subset G$ for interior points $x_{i} \in G, \overline{B_{\delta}\left(x_{i}\right)} \cap \overline{B_{\delta}\left(x_{j}\right)}=\emptyset$ for $x_{i} \neq x_{j}, i, j=1,2, \ldots, r$, and, for every point $x_{i} \in \Gamma$, there exists a neighborhood U (the coordinate neighborhood) about this point and a coordinate system y (local coordinate system) obtained by rotation and translation of the origin from the initial one such that the y_{n}-axis is directed as the interior normal to Γ at x_{i} and the equation of the boundary $U \cap \Gamma$ is of the form $y_{n}=\omega\left(y^{\prime}\right), \omega(0)=0,\left|y^{\prime}\right|<\delta_{0}, y^{\prime}=\left(y_{1}, \ldots, y_{n-1}\right)$; moreover, we have $\omega \in C^{3}\left(\overline{B_{\delta}^{\prime}(0)}\right)\left(B_{\delta}^{\prime}(0)=\left\{y^{\prime}:\left|y^{\prime}\right|<\delta\right\}\right)$ end $G \cap U=\left\{y:\left|y^{\prime}\right|<\delta, 0<y_{n}-\omega\left(y^{\prime}\right)<\delta_{1}\right\}$, $\left(\mathbb{R}^{n} \backslash G\right) \cap U=\left\{y:\left|y^{\prime}\right|<\delta,-\delta_{1}<y_{n}-\omega\left(y^{\prime}\right)<0\right\}$. The numbers δ, δ_{1} for a given domain G are fixed and without loss of generality we can assume that $\delta_{1}>(M+1) \delta$, with M the Lipschitz constant of the function ω. Assume that $Q^{\tau}=(0, \tau) \times G, G_{\delta}=\cup_{i}\left(B_{\delta}\left(x_{i}\right) \cap G\right), Q_{\delta}=(0, T) \times G_{\delta}$, $Q_{\delta}^{\tau}=(0, \tau) \times G_{\delta}, S_{\delta}=(0, T) \times \cup_{i}\left(B_{\delta}\left(x_{i}\right) \cap \Gamma\right)$.

Consider the parabolic system

$$
\begin{equation*}
L u=u_{t}+A(t, x, D) u=f(t, x), \quad(t, x) \in Q=(0, T) \times G, G \subset \mathbb{R}^{n} \tag{4}
\end{equation*}
$$

where

$$
A(t, x, D) u=-\sum_{i, j=1}^{n} a_{i j}(t, x) u_{x_{j} x_{j}}+\sum_{i=1}^{n} a_{i}(t, x) u_{x_{i}}+a_{0}(t, x) u
$$

$a_{i j}, a_{i}$ are matrices of dimension $h \times h$, and u is a vector of length h. The system (4) is supplemented with the initial and boundary conditions (2). We assume that there exists an admissible number $\delta>0$ such that

$$
\begin{gather*}
a_{i j} \in C(\bar{Q}), \quad a_{k} \in L_{p}(Q), \quad \gamma_{k} \in C^{1 / 2,1}(\bar{S}), \quad a_{i j} \in L_{\infty}\left(0, T ; W_{\infty}^{1}\left(G_{\delta}\right)\right) \tag{5}\\
a_{k} \in L_{p}\left(0, T ; W_{p}^{1}\left(G_{\delta}\right)\right), \quad i, j=1,2, \ldots, n, k=0,1, \ldots, n \tag{6}
\end{gather*}
$$

The operator L is considered to be parabolic and the Lopatiskii condition holds. State these conditions. Introduce the matrix $A_{0}(t, x, \xi)=-\sum_{i, j=1}^{n} a_{i j}(t, x) \xi_{i} \xi_{j}\left(\xi \in \mathbb{R}^{n}\right)$, and assume that there exists a constant $\delta_{1}>0$ such that the roots p of the polynomial

$$
\operatorname{det}\left(A_{0}(t, x, i \xi)+p E\right)=0
$$

(E is the identity matrix) meet the condition

$$
\begin{equation*}
\operatorname{Re} p \leqslant-\delta_{1}|\xi|^{2} \quad \forall \xi \in \mathbb{R}^{n} \quad \forall(x, t) \in Q \tag{7}
\end{equation*}
$$

The Lopatinskii condition can be stated as follows: for every point $\left(t_{0}, x_{0}\right) \in S$ and the operators $A_{0}(x, t, D)$ and $B_{0}(x, t, D)=\sum_{i=1}^{n} \gamma_{i}(t, x) \partial_{x_{i}}$, written in the local coordinate system y at this point (the axis y_{n} is directed as the normal to S and the axes y_{1}, \ldots, y_{n-1} lie in the tangent plane at $\left.\left(x_{0}, t_{0}\right)\right)$, the system

$$
\begin{equation*}
\left(\lambda E+A_{0}\left(x_{0}, t_{0}, i \xi^{\prime}, \partial_{y_{n}}\right)\right) v(z)=0, \quad B_{0}\left(x_{0}, t_{0}, i \xi^{\prime}, \partial_{y_{n}}\right) v(0)=h_{j} \tag{8}
\end{equation*}
$$

where $\xi^{\prime}=\left(\xi_{1}, \ldots, \xi_{n-1}\right), y_{n} \in \mathbb{R}^{+}$, has a unique solution $C\left(\overline{\mathbb{R}}^{+}\right)$decreasing at infinity for all $\xi^{\prime} \in \mathbb{R}^{n-1},|\arg \lambda| \leqslant \pi / 2$, and $h_{j} \in \mathbb{C}$ such that $\left|\xi^{\prime}\right|+|\lambda| \neq 0$.

We also assume that there exists a constant $\varepsilon_{1}>0$ such that

$$
\begin{equation*}
\operatorname{Re}\left(-A_{0}(t, x, \xi) \eta, \eta\right) \geqslant \varepsilon_{1}|\xi|^{2}|\eta|^{2} \quad \forall \xi \in \mathbb{R}^{n}, \eta \in \mathbb{C}^{h} \tag{9}
\end{equation*}
$$

where the brackets (\cdot, \cdot) denote the inner product in \mathbb{C}^{h} (see $[22$, Definition 7, Sec. 8, Ch. 7]). Let

$$
\begin{equation*}
\left|\operatorname{det}\left(\sum_{i=1}^{n} \gamma_{i} \nu_{i}\right)\right| \geqslant \varepsilon_{0}>0 \tag{10}
\end{equation*}
$$

where ν is the outward unit normal to Γ, ε_{0} is a positive constant, and

$$
\begin{equation*}
u_{0}(x) \in W_{p}^{2-2 / p}(G), g \in W_{p}^{k_{0}, 2 k_{0}}(S),\left.B(x, 0) u_{0}(x)\right|_{\Gamma}=g(x, 0) \forall x \in \Gamma \tag{11}
\end{equation*}
$$

where $k_{0}=1 / 2-1 / 2 p$. Fix an admissible $\delta>0$. Construct functions $\varphi_{i}(x) \in C_{0}^{\infty}\left(\mathbb{R}^{n}\right)$ such that $\varphi_{i}(x)=1$ in $B_{\delta / 2}\left(x_{i}\right)$ and $\varphi_{i}(x)=0$ in $\mathbb{R}^{n} \backslash B_{3 \delta / 4}\left(x_{i}\right)$ and denote $\varphi(x)=\sum_{i=1}^{r} \varphi_{i}(x)$. Additionally it is assumed that

$$
\begin{gather*}
\varphi(x) u_{0}(x) \in W_{p}^{3-2 / p}(G), \quad \varphi g \in W_{p}^{k_{1}, 2 k_{1}}(S)\left(k_{1}=1-1 / 2 p\right) \tag{12}\\
\Gamma \in C^{2}, \gamma_{k} \in C^{1,2}\left(\overline{S_{\delta}}\right)(k=0,1,2, \ldots, n) \tag{13}
\end{gather*}
$$

The proof of the following theorem can be found in [18].
Theorem 1. Assume that the conditions (5)-(13) hold for some sufficiently small admissible $\delta>0$ and the function $\varphi, f \in L_{p}\left(Q^{\tau}\right), f \varphi \in L_{p}\left(0, \tau ; W_{p}^{1}(G)\right)$, and $\tau \in(0, T]$. Then there exists a unique solution $u \in W_{p}^{1,2}\left(Q^{\tau}\right)$ to the problem (4), (2). Moreover, $\varphi u_{t} \in L_{p}\left(0, \tau ; W_{p}^{1}(G)\right)$ and $\varphi u \in L_{p}\left(0, \tau ; W_{p}^{3}(G)\right)$. If $g \equiv 0$ and $u_{0} \equiv 0$ then we have the estimates

$$
\begin{gather*}
\|u\|_{W_{p}^{1,2}\left(Q^{\tau}\right)} \leqslant c\|f\|_{L_{p}\left(Q^{\tau}\right)} \\
\|u\|_{W_{p}^{1,2}\left(Q^{\tau}\right)}+\left\|\varphi u_{t}\right\|_{L_{p}\left(0, \tau ; W_{p}^{1}(G)\right)}+\|\varphi u\|_{L_{p}\left(0, \tau ; W_{p}^{3}(G)\right)} \leqslant c\left[\|f\|_{L_{p}\left(Q^{\tau}\right)}+\|\varphi f\|_{L_{p}\left(0, \tau ; W_{p}^{1}(G)\right)}\right] \tag{14}
\end{gather*}
$$

where the constant c is independent of f, a solution u, and $\tau \in(0, T]$.

2. Main results

Consider the problem (1)-(3), where

$$
A=L_{0}-\sum_{k=m+1}^{r} q_{k}(t) L_{k}, L_{k} u=-\sum_{i, j=1}^{n} a_{i j}^{k}(t, x) u_{x_{j} x_{j}}+\sum_{i=1}^{n} a_{i}^{k}(t, x) u_{x_{i}}+a_{0}^{k}(t, x) u
$$

and $k=0, m+1, m+2, \ldots, r$. The unknowns q_{i} are sought in the class $C([0, T])$. Construct a matrix $B(t)$ of dimension $r \times r$ with the rows

$$
<f_{1}\left(t, x_{j}\right), e_{j}>, \ldots,<f_{m}\left(t, x_{j}\right), e_{j}>,<L_{m+1} u_{0}\left(t, x_{j}\right), e_{j}>, \ldots,<L_{r} u_{0}\left(t, x_{j}\right), e_{j}>
$$

We suppose that

$$
\begin{align*}
& \psi_{j} \in C^{1}([0, T]), \quad<u_{0}\left(x_{j}\right), e_{j}>=\psi_{j}(0)(j=1,2, \ldots, r), \gamma_{l} \in C^{1 / 2,1}(\bar{S}) \cap C^{1,2}\left(\overline{S_{\delta}}\right) \tag{15}\\
& a_{i j}^{k} \in C(\bar{Q}) \cap L_{\infty}\left(0, T ; W_{\infty}^{1}\left(G_{\delta}\right)\right), \quad a_{l}^{k} \in L_{p}(Q) \cap L_{\infty}\left(0, T ; W_{p}^{1}\left(G_{\delta}\right)\right)(i, j=1, \ldots, n) \tag{16}
\end{align*}
$$

$$
\begin{equation*}
f_{i} \in L_{p}(Q) \cap L_{\infty}\left(0, T ; W_{p}^{1}\left(G_{\delta}\right)\right)(i=0,1, \ldots, m) \tag{17}
\end{equation*}
$$

foe some admissible $\delta>0, p>n+2$, and $k=0, m+1, \ldots, r, l=0,1, \ldots n$;

$$
\begin{equation*}
a_{i}^{k}\left(t, x_{l}\right), f_{i}\left(t, x_{l}\right) \in C([0, T]) \tag{18}
\end{equation*}
$$

for all possible values of i, k, l. We also need the condition
(C) there exists a number $\delta_{0}>0$ such that

$$
|\operatorname{det} B(t)| \geqslant \delta_{0} \quad \text { a.e. on }(0, T)
$$

Note that the entries of the matrix B belong to the class $C([0, T])$. Consider the system

$$
\begin{align*}
\psi_{j t}(0)+<L_{0} u_{0} & \left(0, x_{j}\right), e_{j}>-<f_{0}\left(0, x_{j}\right), e_{j}>= \\
= & \sum_{k=1}^{m} q_{0 k}<f_{k}\left(0, x_{j}\right), e_{j}>+\sum_{k=m+1}^{m_{1}} q_{0 k}<L_{k} u_{0}\left(0, x_{j}\right), e_{j}>, j=1, \ldots, r \tag{19}
\end{align*}
$$

where the vector $\vec{q}_{0}=\left(q_{01}, q_{02}, \ldots, q_{0 r}\right)$ is unknown. Under the condition (C), this system is uniquely solvable. Let $A_{1}=L_{0}-\sum_{k=m+1}^{r} q_{0 k} L_{k}$. Now we can state our main result.

Theorem 2. Let the conditions (9)-(13), (C), (15)-(18) hold. Moreover, we assume that the conditions (7), (8) are fulfilled for the operator $\partial_{t}+A_{1}$. Then there exists a number $\tau^{0} \in(0, T]$ such that, on the interval $\left(0, \tau^{0}\right)$, there exists a unique solution $\left(u, q_{1}, q_{2}, \ldots, q_{r}\right)$ to the problem (1)-(3) such that $u \in L_{p}\left(0, \tau^{0} ; W_{p}^{2}(G)\right), u_{t} \in L_{p}\left(Q^{\tau^{0}}\right), q_{i}(t) \in C\left(\left[0, \tau^{0}\right]\right), i=1, \ldots, r$. Moreover, $\varphi u \in L_{p}\left(0, \tau^{0} ; W_{p}^{3}\left(G_{\delta}\right)\right), \varphi u_{t} \in L_{p}\left(0, \tau^{0} ; W_{p}^{1}\left(G_{\delta}\right)\right)$.

Proof. First, we find a solution to the problem

$$
\begin{equation*}
\Phi_{t}+A_{1} \Phi=f_{0}+\sum_{k=1}^{m} q_{0 i} f_{i} \quad((x, t) \in Q),\left.\quad \Phi\right|_{t=0}=u_{0}(x),\left.\quad B \Phi\right|_{S}=g \tag{20}
\end{equation*}
$$

By Theorem $1, \Phi \in W_{p}^{1,2}(Q), \varphi \Phi_{t} \in L_{p}\left(0, T ; W_{p}^{1}(G)\right), \varphi \Phi \in L_{p}\left(0, T ; W_{p}^{3}(G)\right)$. As a consequence of Theorem III 4.10.2 in [24] and embedding theorems [20, Theorems 4.6.1,4.6.2.], we infer $\varphi \Phi \in$ $C\left([0, T] ; W_{p}^{3-2 / p}(G)\right) \subset C\left([0, T] ; C^{3-2 / p-n / p}(\bar{G})\right)$. Hence, $\varphi \Phi \in C\left([0, T] ; C^{2}(G)\right)$ after a possible change on a set of zero measure. The equations (20) and (18) imply that $\Phi_{t}\left(t, x_{j}\right) \in C([0, T])$. Note that this function is defined, since every summand in (20) with the weight φ belongs to $L_{p}\left(0, T ; W_{p}^{1}(G)\right) \subset C^{\alpha}\left(\bar{G} ; L_{p}(0, T)\right)(\alpha \leqslant 1-n / p)$ (see the embedding theorems in [25] and the arguments below). Multiply the equation (20) scalarly by e_{j} and take $x=x_{j}$. We obtain the equality

$$
\begin{align*}
<\Phi_{t}\left(0, x_{j}\right), e_{j} & >+<L_{0} u_{0}\left(0, x_{j}\right), e_{j}>-<f_{0}\left(0, x_{j}\right), e_{j}>= \\
& =\sum_{k=1}^{m} q_{0 k}<f_{k}\left(0, x_{j}\right), e_{j}>+\sum_{k=m+1}^{r} q_{0 k}<L_{k} u_{0}\left(0, x_{j}\right), e_{j}>, j=1, \ldots, r \tag{21}
\end{align*}
$$

The relations (19) and (21) imply that $<\Phi_{t}\left(0, x_{j}\right), e_{j}>=\psi_{j t}(0)$. After the change of variables $\vec{q}=\vec{q}_{0}+\vec{q}_{1}$ and $u=w+\Phi$ in (1), we arrive at the problem

$$
\begin{equation*}
L w=w_{t}+A_{1} w-\sum_{k=m+1}^{r} q_{1 k} L_{k} w=\sum_{i=1}^{m} f_{i} q_{1 i}+\sum_{i=m+1}^{r} q_{1 i} L_{i} \Phi=F,\left.\quad w\right|_{t=0}=0,\left.\quad B w\right|_{S}=0 \tag{22}
\end{equation*}
$$

$$
\begin{equation*}
<w\left(t, x_{j}\right), e_{j}>=\tilde{\psi}_{j}(t)=\psi_{j}(t)-<\Phi\left(t, x_{j}\right), e_{j}>\in C^{1}([0, T]), \quad \tilde{\psi}_{j}(0)=\tilde{\psi}_{j t}(0)=0 \tag{23}
\end{equation*}
$$

Fixing the vector $\vec{q}_{1}=\left(q_{11}, \ldots, q_{1 r}\right) \in C([0, \tau])$ and determining a solution w to the problem (22) on ($0, \tau$), we construct a mapping $w=w\left(\vec{q}_{1}\right)=L^{-1} F$. Demonstrate that there exists $R_{0}>0$ such that, for $\vec{q}_{1} \in B_{R_{0}}$, the problem

$$
\begin{equation*}
L v=g,\left.\quad v\right|_{t=0}=0,\left.\quad B v\right|_{S}=0 \tag{24}
\end{equation*}
$$

for every $g \in H_{\tau}$ и $\tau \in(0, T]$ has a unique solution in the class $v \in W_{p}^{1,2}\left(Q^{\tau}\right), \varphi v_{t} \in$ $L_{p}\left(0, \tau ; W_{p}^{1}(G)\right), \varphi v \in L_{p}\left(0, \tau ; W_{p}^{3}(G)\right)$ satisfying the estimate

$$
\begin{equation*}
\|v\|_{W_{p}^{1,2}\left(Q^{\tau}\right)}+\left\|\varphi v_{t}\right\|_{L_{p}\left(0, \tau ; W_{p}^{1}(G)\right)}+\|\varphi v\|_{L_{p}\left(0, \tau ; W_{p}^{3}(G)\right)} \leqslant c\|g\|_{H_{\tau}} \tag{25}
\end{equation*}
$$

where the constant c is independent of τ and the vector $\vec{q}_{1} \in B_{R_{0}}$ and the space H_{τ} is endowed with the norm

$$
\|f\|_{H_{\tau}}=\|f\|_{L_{p}\left(Q^{\tau}\right)}+\|\varphi f\|_{L_{p}\left(0, \tau ; W_{p}^{1}(Q)\right)}
$$

In accord with Theorem 1, the problem

$$
L_{01} v=v_{t}+A_{1} v=g,\left.\quad v\right|_{t=0}=0,\left.\quad B v\right|_{S}=0
$$

for every $g \in H_{\tau}$ has a unique solution such that $v \in W_{p}^{1,2}\left(Q^{\tau}\right), \varphi v_{t} \in L_{p}\left(0, \tau ; W_{p}^{1}(G)\right), \varphi v \in$ $L_{p}\left(0, \tau ; W_{p}^{3}(G)\right)$ and

$$
\begin{equation*}
\|v\|_{W_{p}^{1,2}\left(Q^{\tau}\right)}+\left\|\varphi v_{t}\right\|_{L_{p}\left(0, \tau ; W_{p}^{1}(G)\right)}+\|\varphi v\|_{L_{p}\left(0, \tau ; W_{p}^{3}(G)\right)} \leqslant c_{1}\|g\|_{H_{\tau}} \tag{26}
\end{equation*}
$$

where the constant c_{1} is independent of τ. In this case the question of solvability of the problem (24) is reduced to the same question for the equation

$$
\begin{equation*}
f-\sum_{i=m+1}^{r} q_{1 i} L_{i} L_{01}^{-1} f=g \tag{27}
\end{equation*}
$$

where $f=L_{01} v$. We have the estimate

$$
\begin{equation*}
\left\|-\sum_{i=m+1}^{r} q_{1 i} L_{i} v\right\|_{H_{\tau}} \leqslant c\left\|\vec{q}_{1}\right\|_{C([0, \tau])}\left(\|v\|_{W_{p}^{1,2}\left(Q^{\tau}\right)}+\left\|\varphi v_{t}\right\|_{L_{p}\left(0, \tau ; W_{p}^{1}(G)\right)}+\|\varphi v\|_{L_{p}\left(0, \tau ; W_{p}^{3}(G)\right)}\right) \tag{28}
\end{equation*}
$$

where the constant c depends on the coefficients of the operators L_{k} in Q and is independent of τ and \vec{q}_{1}. Indeed, the following estimate is obvious

$$
\begin{equation*}
\left\|-\sum_{k=m+1}^{r} q_{1 k} L_{k} v\right\|_{H_{\tau}} \leqslant\left\|\vec{q}_{1}\right\|_{C([0, \tau])} \sum_{k=m+1}^{r}\left\|L_{k} v\right\|_{H_{\tau}} \tag{29}
\end{equation*}
$$

Estimate the quantity $\left\|L_{k} v\right\|_{H_{\tau}}$. To this aim, we estimate the norms of every of the summands in this quantity. For example, estimate the norm

$$
\begin{align*}
\left\|a_{i j}^{k} v_{x_{i} x_{j}}\right\|_{H_{\tau}} \leqslant c_{0}\left(\left\|a_{i j}^{k} v_{x_{i} x_{j}}\right\|_{L_{p}\left(Q^{\tau}\right)}+\sum_{l=1}^{n}\left\|\varphi\left(a_{i j}^{k} v_{x_{i} x_{j}}\right)_{x_{l}}\right\|_{L_{p}\left(Q^{\tau}\right)}\right) \leqslant \\
\leqslant c_{1}\left(\|v\|_{L_{p}\left(0, \tau ; W_{p}^{2}(G)\right)}+\|\varphi v\|_{L_{p}\left(0, \tau ; W_{p}^{3}(G)\right)}\right)+\sum_{l=1}^{n}\left\|\varphi a_{i j x_{l}}^{k} v_{x_{i} x_{j}}\right\|_{L_{p}\left(Q^{\tau}\right)} \tag{30}
\end{align*}
$$

where the constant c_{1} depends on the norms $\left\|a_{i j}^{k}\right\|_{L_{\infty}(Q)}$. The last summand here is estimated as follows:

$$
\begin{align*}
\sum_{l=1}^{n}\left\|\varphi a_{i j x_{l}}^{k} v_{x_{i} x_{j}}\right\|_{L_{p}\left(Q^{\tau}\right)} \leqslant c_{2}\left(\|\varphi v\|_{L_{p}\left(0, \tau ; W_{\infty}^{2}(G)\right)}+\|v\|_{L_{p}\left(0, \tau ; W_{\infty}^{1}(G)\right)}\right) & \leqslant \\
& \leqslant c_{3}\left(\|\varphi v\|_{L_{p}\left(0, \tau ; W_{p}^{3}(G)\right)}+\|v\|_{L_{p}\left(0, \tau ; W_{p}^{2}(G)\right)}\right) \tag{31}
\end{align*}
$$

where the constant c_{2} depends on the norms $\left\|\nabla a_{i j}^{k}\right\|_{L_{p}\left(0, T ; L_{\infty}\left(G_{\delta}\right)\right)}$. Thus, we infer

$$
\begin{equation*}
\left\|a_{i j}^{k} v_{x_{i} x_{j}}\right\|_{H_{\tau}} \leqslant c_{4}\left(\|v\|_{L_{p}\left(0, \tau ; W_{p}^{2}(G)\right)}+\|\varphi v\|_{L_{p}\left(0, \tau ; W_{p}^{3}(G)\right)}\right) \tag{32}
\end{equation*}
$$

where the constant c_{4} is independent of τ. Similarly, we derive that

$$
\begin{align*}
&\left\|a_{i}^{k} v_{x_{i}}\right\|_{H_{\tau}} \leqslant c_{0}\left(\left\|a_{i}^{k} v_{x_{i}}\right\|_{L_{p}\left(Q^{\tau}\right)}+\sum_{l=1}^{n}\left\|\varphi\left(a_{i}^{k} v_{x_{i}}\right)_{x_{l}}\right\|_{L_{p}\left(Q^{\tau}\right)}\right) \leqslant \\
& \leqslant c_{1}\left(\|\nabla v\|_{L_{\infty}\left(Q^{\tau}\right)}+\|\varphi v\|_{L_{p}\left(0, \tau ; W_{p}^{2}(G)\right)}\right) \tag{33}
\end{align*}
$$

where the constant c_{1} depends on the norms of $a_{i}^{k}, a_{i x_{l}}^{k}$ in $L_{p}(Q)$ and the norms of a_{i}^{k} in $L_{\infty}\left(Q_{\delta}\right)$. However (see Lemma 3.3 in [22]), we have

$$
\|\nabla v\|_{L_{\infty}\left(Q^{\tau}\right)} \leqslant c_{1}\|v\|_{W_{p}^{1,2}\left(Q^{\tau}\right)}
$$

where the embedding constant is independent of τ. Summing the estimates obtained we justify (28). Using (28) and the estimate of Theorem 1, we conclude that

$$
\begin{equation*}
\left\|\sum_{i=m+1}^{r} q_{1 i} L_{i} L_{01}^{-1} f\right\|_{H_{\tau}} \leqslant c_{2}\left\|\vec{q}_{1}\right\|_{C([0, \tau])}\|f\|_{H_{\tau}} \tag{34}
\end{equation*}
$$

where c_{2} is independent of τ and $\vec{q}_{1} \in B_{R_{0}}$. Let $R_{0}=1 / 2 c_{2}$. In this case $c_{2}\left\|\vec{q}_{1}\right\|_{C([0, \tau])} \leqslant 1 / 2$ and thereby the equation (27) has a unique solution satisfying the estimate $\|f\|_{H_{\tau}} \leqslant 2\|g\|_{H_{\tau}}$, which along with Theorem 1 ensures (25).

Assume that w is a solution to the problem (22), (23). Take $x=x_{j}$ in (22) and multiply the equation scalarly by e_{j}. The traces of all function occurring into the equation exist. First, our conditions for coefficients and embedding theorems yield $\varphi w \in C\left([0, T] ; C^{2}(\bar{G})\right.$) (see the above arguments for the function $\Phi)$. Second, as we have indicated above, every of the summands in (22) with the weight φ belongs to $L_{p}\left(0, T ; W_{p}^{1}(G)\right) \subset C^{\alpha}\left(\bar{G} ; L_{p}(0, T)\right)(\alpha \leqslant 1-n / p)$ (see embedding theorems in [25]). We arrive at the system

$$
\begin{align*}
<\tilde{\psi}_{j t}, e_{j}> & +<A_{1} w\left(t, x_{j}\right), e_{j}>-\sum_{i=m+1}^{r} q_{1 i}<L_{i} w\left(t, x_{j}\right), e_{j}>= \\
& =\sum_{i=1}^{m}<f_{i}\left(t, x_{j}\right), e_{j}>q_{1 i}(t)+\sum_{i=m+1}^{r} q_{1 i}<L_{i} \Phi\left(t, x_{j}\right), e_{j}>\quad(j=1,2, \ldots, r) \tag{35}
\end{align*}
$$

which can be rewritten in the form

$$
\tilde{B} \vec{q}_{1}=\vec{\psi}+R\left(\vec{q}_{1}\right)
$$

where coordinates of the vectors $\vec{\psi}$ and $R\left(\vec{q}_{1}\right)$ agree with the functions $<\tilde{\psi}_{j t}, e_{j}>$ and $<$ $A_{0} w\left(t, x_{j}\right), e_{j}>-\sum_{i=m+1}^{r} q_{1 i}<L_{i} w\left(t, x_{j}\right), e_{j}>\left(w=w\left(\vec{q}_{1}\right)\right)$; respectively, j-th row of the matrix $\tilde{B}(t)$ of dimension $r \times r$ is written as

$$
<f_{1}\left(t, x_{j}\right), e_{j}>, \ldots,<f_{m}\left(t, x_{j}\right), e_{j}>,<L_{m+1} \Phi\left(t, x_{j}\right), e_{j}>, \ldots,<L_{r} \Phi\left(t, x_{j}\right), e_{j}>
$$

where $j=1, \ldots, r$. This matrix differs from B by the entries $<L_{i} \Phi\left(t, x_{j}\right), e_{j}>$. It is easy to prove that this matrix is nondegenerate as well on some segment $\left[0, \tau_{0}\right]$. Indeed, the embedding theorems (see Lemma 3.3 of Chapter 1 in [22]) imply that $\nabla \Phi, \Phi_{x_{i} x_{j}} \in C^{\beta / 2, \beta}\left(\overline{Q_{\delta / 2}}\right)$ for $\beta<$ $1-(n+2) / p$ and all i, j and, therefore,

$$
\begin{aligned}
\mid & <L_{k} \Phi\left(t, x_{j}\right)-L_{k} u_{0}\left(t, x_{j}\right), e_{j}>\left|\leqslant \sum_{i, k=1}^{n} \sup _{t \in[0, T]}\left\|a_{i k}^{k}\left(t, x_{j}\right)\right\|\right|\left|\Phi_{x_{k} x_{i}}\left(t, x_{j}\right)-u_{0 x_{k} x_{i}}\left(x_{j}\right)\right|+ \\
& +\sum_{i=1}^{n} \sup _{t \in[0, T]}\left\|a_{i}^{k}\left(t, x_{j}\right)\right\|| | \Phi_{x_{i}}\left(t, x_{j}\right)-u_{0 x_{i}}\left(x_{j}\right)\left|+\sup _{t \in[0, T]}\left\|a_{0}^{k}\left(t, x_{j}\right)\right\|\right| \Phi\left(t, x_{j}\right)-u_{0}\left(x_{j}\right) \mid \leqslant c t^{\beta / 2},
\end{aligned}
$$

on $[0, T]$, where, by the norm of a matrix (for example, $\left\|a_{i}^{k}\left(t, x_{j}\right)\right\|$), we mean the norm of the corresponding linear operator $a_{i}^{k}\left(t, x_{j}\right): \mathbb{C}^{h} \rightarrow \mathbb{C}^{h}$. Taking the condition (C) into account, we can say that there exists $\tau_{0}>0$ such that

$$
\begin{equation*}
|\operatorname{det} \tilde{B}(t)| \geqslant \delta_{0} / 2 \quad \forall t \leqslant \tau_{0} . \tag{36}
\end{equation*}
$$

We thus obtain the integral equation

$$
\begin{equation*}
\vec{q}_{1}=\tilde{B}^{-1} \vec{\psi}+R_{0}\left(\vec{q}_{1}\right), \quad R_{0}\left(\vec{q}_{1}\right)=\tilde{B}^{-1} R\left(\vec{q}_{1}\right), \tag{37}
\end{equation*}
$$

where the operator $R_{0}\left(\vec{q}_{1}\right): C([0, \tau]) \rightarrow C([0, \tau])\left(\tau \leqslant \tau_{0}\right)$ is bounded. Check the conditions of the fixed point theorem. Denote $R_{0 \tau}=2\left\|\tilde{B}^{-1} \vec{\psi}\right\|_{C([0, \tau])}$. Let $\vec{q}_{01}, \vec{q}_{02}$ be two vectors of length r with coordinates $q_{i}^{j}(i=1,2, \ldots, r, j=1,2)$ lying in the ball $B_{R_{0}}=\left\{\vec{q}:\|\vec{q}\|_{C(0, \tau])} \leqslant R_{0}\right\}$. The functions $w_{1}=w\left(\vec{q}_{01}\right), w_{2}=w\left(\vec{q}_{02}\right)$ are solutions to the equation (22) satisfying homogeneous initial and boundary conditions. Let $v=w_{1}-w_{2}$. We infer

$$
\begin{equation*}
L v=v_{t}+A_{1} v-\sum_{i=m+1}^{r} q_{i}^{2} L_{i} v=\sum_{i=1}^{m} f_{i}\left(q_{i}^{1}-q_{i}^{2}\right)+\sum_{i=m+1}^{r}\left(q_{i}^{1}-q_{i}^{2}\right) L_{i} w_{1}, \quad v=w_{1}-w_{2} . \tag{38}
\end{equation*}
$$

In view of (23) and the definition of $R_{0 \tau}, R_{0 \tau} \rightarrow 0$ as $\tau \rightarrow 0$. Hence, there exists a parameter $\tau_{1} \leqslant \tau_{0}$ such that, for $\tau \leqslant \tau_{1}, R_{0 \tau} \leqslant R_{0}$. Let $R=R_{0 \tau_{1}}$. We now derive that there exists a parameter $\tau^{0} \leqslant \tau_{1}$ such that the equation (37) has a unique solution in the ball B_{R} of the space $C\left(\left[0, \tau^{0}\right]\right)$. Take $\tau \leqslant \tau_{1}$. Let $\vec{q}_{01}, \vec{q}_{02} \in B_{R}$. We have

$$
\begin{align*}
& \left\|R_{0}\left(\vec{q}_{01}\right)-R_{0}\left(\vec{q}_{02}\right)\right\|_{C([0, \tau])} \leqslant c_{1}\left\|R\left(\vec{q}_{01}\right)-R\left(\vec{q}_{02}\right)\right\|_{C([0, \tau])} \leqslant \\
& \leqslant c_{2} \sum_{j=1}^{r}\left(\left\|L_{0} v\left(t, x_{j}\right)\right\|_{C([0, \tau])}+\sum_{i=m+1}^{r}\left\|q_{i}^{2} L_{i} v\left(t, x_{j}\right)\right\|_{C([0, \tau])}\right) \leqslant \\
& \leqslant c_{3} \sum_{j=1}^{r}\left(\left\|L_{0} v\left(t, x_{j}\right)\right\|_{C([0, \tau])}+\sum_{i=m+1}^{r}\left\|L_{i} v\left(t, x_{j}\right)\right\|_{C([0, \tau])}\right), \tag{39}
\end{align*}
$$

where v is a solution to the problem (38). Note that

$$
\begin{equation*}
\left\|L_{k} v\left(t, x_{j}\right)\right\|_{C([0, \tau])} \leqslant c \tau^{\beta}\left(\|\varphi \nabla v\|_{W_{p}^{1,2}\left(Q^{\top}\right)}+\|v\|_{W_{p}^{1,2}\left(Q^{\top}\right)}\right), \tag{40}
\end{equation*}
$$

where the constant c is independent of $\tau \in(0, T]$ and $\beta>0$. Validate this inequality. In view of the conditions on the coefficients $a_{i l}^{k}, a_{i l}^{k}\left(t, x_{j}\right) \in C([0, T])$. Fix an arbitrary $s \in(n / p, 1-2 / p)$. The embedding $W_{p}^{s}\left(G_{\delta / 2}\right) \subset C\left(\overline{G_{\delta / 2}}\right)$ [20, Theorems 4.6.1,4.6.2.] yields

$$
\begin{align*}
\left\|a_{i l}^{k}\left(t, x_{j}\right) v_{x_{i} x_{l}}\left(t, x_{j}\right)\right\|_{C([0, \tau])} \leqslant c\left\|v_{x_{i} x_{l}}\left(t, x_{j}\right)\right\|_{C([0, \tau])} \leqslant & c_{1}\left\|v_{x_{k} x_{l}}(t, x)\right\|_{L_{\infty}\left(0, \tau ; W_{p}^{s}\left(G_{\delta / 2}\right)\right)} \leqslant \\
& \leqslant c_{2}\|\nabla v(t, x)\|_{L_{\infty}\left(0, \tau ; W_{p}^{1+s}\left(G_{\delta / 2}\right)\right)} \tag{41}
\end{align*}
$$

Next, we employ the interpolation inequality (see [20])

$$
\begin{equation*}
\|v\|_{W_{p}^{s_{0}(G)}} \leqslant c\|v\|_{W_{p}^{s_{1}(G)}}^{\theta}\|v\|_{W_{p}^{s_{2}}(G)}^{1-\theta}, \quad s_{1}<s_{0}<s_{2}, \theta s_{1}+(1-\theta) s_{2}=s_{0} \tag{42}
\end{equation*}
$$

and the inequality

$$
\begin{equation*}
\|g\|_{L_{\infty}(0, \tau ; E)} \leqslant \tau^{(p-1) / p}\left\|g_{t}\right\|_{L_{p}(0, \tau ; E)}, \quad \forall g \in W_{p}^{1}(0, \tau ; E), g(0)=0 \tag{43}
\end{equation*}
$$

resulting from the Newton-Leibnitz formula. Here E is a Banach space. We obtain that

$$
\begin{align*}
\|\nabla v(t, x)\|_{L_{\infty}\left(0, \tau ; W_{p}^{1+s}\left(G_{\delta / 2}\right)\right)} \leqslant c\|\nabla v(t, x)\|_{L_{\infty}\left(0, \tau ; W_{p}^{2-2 / p}\left(G_{\delta / 2}\right)\right)}^{\theta}\|\nabla v(t, x)\|_{L_{\infty}\left(0, \tau ; L_{p}\left(G_{\delta / 2}\right)\right)}^{(1-\theta)} \leqslant \\
\leqslant c_{1} \tau^{(1-\theta)(p-1) / p}\left(\|\varphi \nabla v\|_{W_{p}^{1,2}(Q)}+\|v\|_{W_{p}^{1,2}(Q)}\right),(2-2 / p) \theta=1+s \tag{44}
\end{align*}
$$

Here we have used the inequality

$$
\begin{equation*}
\|\nabla v(t, x)\|_{L_{\infty}\left(0, \tau ; W_{p}^{2-2 / p}\left(G_{\delta / 2}\right)\right)} \leqslant c\|\nabla v(t, x)\|_{\left.W_{p}^{1,2}\left(G_{\delta / 2}\right)\right)} \tag{45}
\end{equation*}
$$

where the constant c is independent of τ (in the class of functions vanishing at $t=0$). Estimate the lower-order summands of the form $a_{i}^{k} v_{x_{i}}\left(t, x_{j}\right), a_{0}^{k} v\left(t, x_{j}\right)$ in $L_{i} u\left(t, x_{j}\right)$. We conclude that $\left(s \in(n / p, 1-2 / p),(2-2 / p) \theta_{1}=1+s\right)$

$$
\begin{align*}
& \left\|a_{i}^{k} v_{x_{i}}\left(t, x_{j}\right)\right\|_{C([0, \tau])} \leqslant c\left\|v_{x_{i}}\left(t, x_{j}\right)\right\|_{C([0, \tau])} \leqslant c_{1}\|v(t, x)\|_{L_{\infty}\left(0, \tau ; W_{p}^{1+s}\left(G_{\delta / 2}\right)\right)} \leqslant \\
& \quad \leqslant\|v(t, x)\|_{L_{\infty}\left(0, \tau ; W_{p}^{2-2 / p}\left(G_{\delta / 2}\right)\right)}^{\theta_{1}}\|v(t, x)\|_{L_{\infty}\left(0, \tau ; L_{p}\left(G_{\delta / 2}\right)\right)}^{1-\theta_{1}} \leqslant c_{2} \tau^{\left(1-\theta_{1}\right)(p-1) / p}\|v\|_{W_{p}^{1,2}\left(Q^{\tau}\right)} . \tag{46}
\end{align*}
$$

We have used the estimate (45) applied to v rather than ∇v. The second summand is estimated similarly. The estimates (39)-(46) ensure that

$$
\begin{equation*}
\left\|R_{0}\left(\vec{q}_{01}\right)-R_{0}\left(\vec{q}_{02}\right)\right\|_{C([0, \tau])} \leqslant c_{4} \tau^{\beta}\left(\|\varphi \nabla v(t, x)\|_{W_{p}^{1,2}\left(Q^{\tau}\right)}+\|v(t, x)\|_{W_{p}^{1,2}\left(Q^{\tau}\right)}\right) \tag{47}
\end{equation*}
$$

where the constant c_{4} is independent of τ and $\beta=\min \left(1-\theta,\left(1-\theta_{1}\right)(p-1) / p\right)$. Since v is a solution to the problem (38) and $\tau \leqslant \tau_{1}$, we can employ (25) and obtain that

$$
\begin{equation*}
\|\varphi \nabla v(t, x)\|_{W_{p}^{1,2}\left(Q^{\tau}\right)}+\|v(t, x)\|_{W_{p}^{1,2}\left(Q^{\tau}\right)} \leqslant c\left\|\sum_{i=1}^{m} f_{i}\left(q_{i}^{1}-q_{i}^{2}\right)+\sum_{i=m+1}^{r}\left(q_{i}^{1}-q_{i}^{2}\right) L_{i} w_{1}\right\|_{H_{\tau}}, \tag{48}
\end{equation*}
$$

where the constant c is independent of τ. Every of the functions w_{1}, w_{2} is a solution to the problem (22), where the right-hand side contains the components of the vector \vec{q}_{01} or \vec{q}_{02}. The estimate (25) yields

$$
\begin{equation*}
\left\|\varphi \nabla w_{j}(t, x)\right\|_{W_{p}^{1,2}\left(Q^{\tau}\right)}+\left\|w_{j}(t, x)\right\|_{W_{p}^{1,2}\left(Q^{\tau}\right)} \leqslant c\left\|\sum_{i=1}^{m} f_{i} q_{i}^{j}+\sum_{i=m+1}^{r} q_{i}^{j} L_{i} \Phi\right\|_{H_{\tau}} \tag{49}
\end{equation*}
$$

The estimate (48), (49) and the conditions on the coefficients imply that

$$
\begin{gather*}
\left\|\varphi \nabla w_{j}(t, x)\right\|_{W_{p}^{1,2}\left(Q^{\tau}\right)}+\left\|w_{j}(t, x)\right\|_{W_{p}^{1,2}\left(Q^{\tau}\right)} \leqslant c_{1}(R) . \tag{50}\\
\|\varphi \nabla v(t, x)\|_{W_{p}^{1,2}\left(Q^{\tau}\right)}+\|v(t, x)\|_{W_{p}^{1,2}\left(Q^{\tau}\right)} \leqslant c_{2}\left\|\vec{q}_{01}-\vec{q}_{02}\right\|_{C([0, \tau])} \tag{51}
\end{gather*}
$$

where the constant c_{i} are independent of τ. In turn, these estimates and those in (47) validate the estimate

$$
\begin{equation*}
\left\|R_{0}\left(\vec{q}_{01}\right)-R_{0}\left(\vec{q}_{02}\right)\right\|_{C([0, \tau])} \leqslant c_{5} \tau^{\beta}\left\|\vec{q}_{01}-\vec{q}_{02}\right\|_{C([0, \tau])} \tag{52}
\end{equation*}
$$

with a constant c_{5} independent of τ. Choose a parameter $\tau^{0} \leqslant \tau_{1}$ such that $c_{5}\left(\tau^{0}\right)^{\beta} \leqslant 1 / 2$. The fixed point theorem ensures solvability of the equation (37) in the ball B_{R}.

Show that w satisfies the overdetermination conditions (23). Multiply the equation (22) scalarly by e_{j} and take $x=x_{j}$ in the equation. We obtain the equality

$$
\begin{align*}
&<w\left(t, x_{j}\right), e_{j}>_{t}+<L_{0} w\left(t, x_{j}\right), e_{j}>-\sum_{i=m+1}^{r} q_{i}<L_{i} w\left(t, x_{j}\right), e_{j}>= \\
&= \sum_{i=1}^{m}<f_{i}\left(t, x_{j}\right), e_{j}>q_{i}(t)+\sum_{i=m+1}^{r} q_{i}<L_{i} \Phi\left(t, x_{j}\right), e_{j}>, \quad j=1,2, \ldots, r, \tag{53}
\end{align*}
$$

Subtracting this equality from (35), we obtain that $\tilde{\psi}_{j_{t}}-\left\langle w\left(t, x_{j}\right), e_{j}>_{t}=0\right.$. Integrating this equality from 0 to t, we derive that $\tilde{\psi}_{j}(t)-\left\langle w\left(t, x_{j}\right), e_{j}\right\rangle=0$, since the agreement conditions imply that $\tilde{\psi}_{j}(0)=0,\left\langle w\left(0, x_{j}\right), e_{j}\right\rangle=0$. Thus, we infer $\left.\tilde{\psi}_{j}(t)=<w\left(t, x_{j}\right), e_{j}\right\rangle$ and the equality (23) holds.

In the case of the unknown lower-order coefficients, the results can be reformulated in a more convenient form. In this case the operator A is assumed to be representable in the form

$$
\begin{align*}
A=L_{0}-\sum_{i=m+1}^{r} q_{i}(t) l_{i}, \quad L_{0} u=-\sum_{i, j=1}^{n} a_{i j}(t, x) u_{x_{j} x_{j}} & +\sum_{i=1}^{n} a_{i}(t, x) u_{x_{i}}+a_{0}(t, x) u \\
l_{i} u & =\sum_{j=1}^{n} b_{i j}(t, x) u_{x_{j}}+b_{i 0}(t, x) u . \tag{54}
\end{align*}
$$

Moreover, the rows of the matrix $B(t)$ of dimension $r \times r$ are as follows:

$$
<f_{1}\left(t, x_{i}\right), e_{i}>, \ldots,<f_{m}\left(t, x_{i}\right), e_{i}>,<l_{m+1} u_{0}\left(t, x_{i}\right), e_{i}>, \ldots,<l_{r} u_{0}\left(t, x_{i}\right), e_{i}>
$$

We suppose that

$$
\begin{gather*}
\psi_{j} \in W_{p}^{1}(0, T), \quad<u_{0}\left(x_{j}\right), e_{j}>=\psi_{j}(0), \quad j=1,2, \ldots, r, \tag{55}\\
f_{i}, b_{k j} \in L_{\infty}\left(0, T ; W_{p}^{1}\left(G_{\delta}\right)\right) \cap L_{\infty}\left(0, T ; L_{p}(G)\right), \quad f_{0} \in L_{p}(Q) \cap L_{p}\left(0, T ; W_{p}^{1}\left(G_{\delta}\right)\right), \tag{56}
\end{gather*}
$$

for some admissible $\delta>0$, where $i=1, \ldots, m, j=0,1, \ldots, n, k=m+1, \ldots, r$. The remaining coefficients satisfy the conditions

$$
\begin{gather*}
a_{i j} \in C(\bar{Q}), \quad a_{k} \in L_{p}(Q), \quad \gamma_{k} \in C^{1 / 2,1}(\bar{S}) \cap C^{1,2}\left(\overline{S_{\delta}}\right), \quad a_{i j} \in L_{\infty}\left(0, T ; W_{\infty}^{1}\left(G_{\delta}\right)\right) ; \tag{57}\\
a_{k} \in L_{p}(Q) \cap L_{p}\left(0, T ; W_{p}^{1}\left(G_{\delta}\right)\right), \quad i, j=1,2, \ldots, n, k=0,1, \ldots, n . \tag{58}
\end{gather*}
$$

The corresponding theorem is stated in the following form.

Theorem 3. Assume that the parabolicity condition and the Lopatinskii condition (7), (8) for the operator $\partial_{t}+L_{0}$, the conditions (9)-(13), (55)-(58), (C) for some admissible $\delta>0$ and $p>n+2$ hold. Then, for some $\gamma_{0} \in(0, T]$, on the interval $\left(0, \gamma_{0}\right)$, there exists a unique solution $\left(u, q_{1}, q_{2}, \ldots, q_{r}\right)$ to the problem (1)-(3) such that $u \in L_{p}\left(0, \gamma_{0} ; W_{p}^{2}(G)\right), u_{t} \in L_{p}\left(Q^{\gamma_{0}}\right)$, $\varphi u \in L_{p}\left(0, \gamma_{0} ; W_{p}^{3}(G)\right), \varphi u_{t} \in L_{p}\left(0, \gamma_{0} ; W_{p}^{1}(G)\right), q_{i}(t) \in L_{p}\left(0, \gamma_{0}\right), i=1, \ldots, r$.

The proof is omitted, since it is quite similar to that of the previous theorem.

References

[1] G.I.Marchuk, Mathematical Models in Environmental Problems, Studies in Mathematics and its Applications, Vol. 16, Elsevier Science Publishers, Amsterdam, 1986.
[2] M.N.Ozisik, H.R.B.Orlande, Inverse Heat Transfer, Taylor \& Francis, New York, 2000.
[3] O.M.Alifanov, E.A.Artyukhov, A.V.Nenarokom, Inverse problems of complex heat transfer, Yanus-K, Moscow, 2009 (in Russian).
[4] A.I.Prilepko, V V.Solov'ev, Solvability theorems and Rothe's method for inverse problems for a parabolic equation. I, Differ. Equations, 23(1987), no. 10, 1230-1237.
[5] V.V.Solov'ev, Global existence of a solution to the inverse problem of determining the source term in a quasilinear equation of parabolic type, Differ. Equations, 32(1996), no. 4, 538-547.
[6] A.I.Prilepko, V.V.Solov'ev, Solvability of the inverse boundary-value problem of finding a coefficient of a lower-order derivative in a parabolic equation, Differ. Equations, 23(1987), no. 1, 101-107.
[7] A.I.Prilepko, D.G.Orlovsky, I.A.Vasin, Methods for solving inverse problems in Mathematical Physics, Marcel Dekker, Inc., New-York, 1999.
[8] M.A.Kuliev, Multidimensional inverse problem for a multidimensional parabolic equation in a bounded domain, Nonlinear boundary value problem, 14(2004), 138-145 (in Russian).
[9] O.A.Afinogenova, Yu.Ya.Belov,I.V.Frolenkov, Stabilization of the solution to the identification problem of the source function for a one-dimensional parabolic equation, Doklady Mathematics, 79(2009), no. 1, 70-72.
[10] Yu.Ya.Belov, K.V.Korshun, An identification problem of source function in the Burgers-type equation, J. Sib. Fed. Univ., Math. Phys., 5(2012), no. 4, 497-506 (In Russian).
[11] M.S.Hussein, D.Lesnic, M.I.Ivanchov, Simultaneous determination of time-dependent coefficients in the heat equation, Computers and Mathematics with Applications, $\mathbf{6 7}(2014)$, 1065-1091.
[12] N.I. Ivanchov, N.V.Pabyrivska, On Determination of Two Time-Dependent Coefficients in a Parabolic Equation, Siberian Mathematical Journal, 43(2002), no. 2, 323-329.
[13] D.Lesnic, M.Ivanchov, Determination of the time-dependent perfusion coefficient in the bioheat equation, Applied mathematics letters, 39(2015), 96-100.
[14] M.S.Hussein, D.Lesnic, Identification of time-dependent conductivity of an diffusive material, Applied mathematics and computations, 269(2015), 35-58.
[15] M.Ivanchov, Inverse Problems for Equation of Parabolic Type, Math. Studies. Monograph Series, Vol. 10, WNTL Publishers, Lviv, 2003.
[16] Ya.Ya.Belov, Inverse Problems for Parabolic Equations, VSP, Utrecht, 2002.
[17] S.G.Pyatkov, V.V.Rotko, On some parabolic inverse problems with the pointwise overdetermination, AIP Conference Proceedings, 1907(2017), 020008.
[18] V.A.Baranchuk, S.G.Pyatkov, On some clases of inverse problems with pointwise overdetermination for mathematical models of heat and nass transfer, Bulletin of Yugra State University, 3(2020), 38-48 (in Russian).
[19] A.V.Mamonov, Y-H.R.Tsai, Point source identification in nonlinear advection-diffusionreaction systems, Inverse Problems, 29(2013), no. 3, 035009.
DOI: 10.1088/0266-5611/29/3/035009
[20] H.Tribel, Interpolation Theory. Function Spaces. Differential Operators, Johann Ambrosius Barth, Heidelberg, 1972.
[21] R.Denk, M.Hieber, J.Prüss, Optimal $L_{p}-L_{q}$-estimates for parabolic boundary value problems with inhomogeneous data, Math. Z., 257(2007), no. 1. 193-224.
[22] O.A.Ladyzhenskaya, V.A.Solonnikov, N.N.Ural'tseva, Linear and Quasilinear Equations of Parabolic Type, American Math. Society, Providence, R.I., 1968.
[23] O.A.Ladyzhenskaya, V.Ya.Rivkind, N. N.Ural'tseva, Classical solvability of diffraction problems in the case of elliptic and parabolic equations, Sov. Math., Dokl., 5(1965), 1249-1252.
[24] H.Amann, Linear and Quasilinear Parabolic Problems. I, Monographs in Mathematics, Vol. 89, Birkhauser Verlag, Basel, etc., 1995.
[25] H.Amann, Compact embeddings of vector-valued Sobolev and Besov spaces, Glasnik Mat., Ser. III, 35(55)(2000), no. 1, 161-177.

О некоторых классах параболических обратных задач с точечным переопределением

Сергей Г. Пятков
Владислав А. Баранчук
Югорский государственный университет
Ханты-Мансийск, Российская Федерация

Abstract

Аннотация. В работе рассматривается вопрос о корректности в пространствах Соболева обратных задач о восстановлении коэффициентов параболической системы, зависящих от времени. В качестве условий переопределения рассматриваются значения решения в некотором наборе точек области, лежащих как внутри области, так и на ее границе. Приведены условия, гарантирующие существование и единственность решений задачи в классах Соболева. Ключевые слова: параболическая система, обратная задача, конвекция-диффузия, точечное переопределение.

[^0]: *s_pyatkov@ugrasu.ru http://orcid.org/0000-0002-7238-9559
 \dagger vladinho@mail.ru
 (C) Siberian Federal University. All rights reserved

