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Introduction

We consider inverse problems with pointwise overdetermination for a parabolic system of the
form

Lu = ut +A(t, x,D)u = f(x, t), (t, x) ∈ Q = (0, T )×G, G ⊂ Rn, (1)

where

A(t, x,D)u = −
n∑

i,j=1

aij(t, x)uxjxj
+

n∑
i=1

ai(t, x)uxi
+ a0(t, x)u,

G is a bounded domain with boundary Γ ∈ C2, aij , ai are matrices of dimension h× h, and u is
a vector of length h. The system (1) is supplemented by the initial and boundary conditions

u|t=0 = u0, Bu|S = g, S = (0, T )× Γ, (2)

where Bu =
n∑

i=1

γi(t, x)uxi + γ0(t, x)u. The overdetermination conditions are as follows:

< u(xi, t), ei >= ψi(t), i = 1, 2, . . . , r, (3)

where the symbol < ·, · > stands for the inner product in Ch, {ei} is a collection of vectors of
unit length and among the points {xi} as well as the vectors {ei} can be coinciding points and
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vectors. The right-hand side is of the form f =
m∑
i=1

fi(x, t)qi(t) + f0(x, t). The problems is to

find the unknowns qi(t) occurring into the right-hand side and the operator A as coefficients
and a solution u to the system (1) satisfying (2) and (3). The conditions (3) generalized the
conventional pointwise overdetermination conditions of the form u(xi, t) = ψi(t). In particular,
it is possible that only part of the coordinates of the vector u at a point xi is given. These
problems arise of describing heat and mass transfer, diffusion, filtration, and in many other fields
(see [1–3]) and they are studied in many articles. First, we should refer to the fundamental ar-
ticles by A. I. Prilepko and his followers. In particular, an existence and uniqueness theorem for
solutions to the problem of recovering the source f(t, x)q(t) with the overdetermination condition
u(x0, t) = ψ(t) (x0 is a point in G) is established in [4,5]. Similar results are obtained in [6] for the
problem of recovering lower-order coefficient p(t) in the equation (1). The Hölder spaces serve as
the basic spaces in these articles. The results were generalized in the book [7, Sec. 6.6, Sec. 9.4],
where the existence theory for the problems (1)–(3) was developed in an abstract form with the
operator A replaced with −L, L is generator of an analytic semigroup. The main results employ
the assumptions that the domain of L is independent of time and the unknown coefficients occur
into the lower part of the equation nonlinearly. Under certain conditions, existence and unique-
ness theorems were proven locally in time in the spaces of functions continuously differentiable
with respect to time. We note also the article [8], where an existence and uniqueness theorem
in the problem of recovering a lower-order coefficient and the right-hand was established with
the overdetermination condition u(xi, t) = ψ(t) (xi are interior points of G, i = 1, 2). There are
many articles devoted to the problems (1)–(3) in model situations, especially in the case of n = 1

(see, for instance, [9–14]). In these articles different collections of coefficients are recovered with
the overdetermination conditions of the form (3), in particular, including boundary points xi. In
this case the boundary condition and the overdetermination condition define the Cauchy data at
a boundary point. Many results in the case of n = 1 are exhibited in [15]. Note the book [16],
where the solvability questions for inverse problems with the overdetermination conditions being
the values of a solution on some hyperplanes (sections of a space domain) are studied. The
problems (1)–(3) were considered in authors’ articles in [17, 18], where conditions on the data
were weakened in contrast to those in [7, Sec. 9.4] and the solvability questions were treated in
the Sobolev spaces. In contrast to the previous results, we examine the case of the points {xi}
lying on the boundary of G as well and the special overdetermination conditions (only some
combinations of the coordinate of a solution are given). These overdetermination conditions also
arise in applications (see [3]). Note that numerical methods for solving the problems (1)–(3)
have been developed in many articles (see [2, 3, 19]).

1. Preliminaries

First, we introduce some notations. Let E be a Banach space. Denote by Lp(G;E) (G
is a domain in Rn) the space of strongly measurable functions defined on G with values in
E and the finite norm ∥∥u(x)∥E∥Lp(G) [20]. We employ conventional notations for the space
of continuously differentiable functions Ck(G;E) and the Sobolev space W s

p (Q;E), W s
p (G;E),

etc. (see [20, 21]). If E = C or E = Cn then the latter space is denoted simply by W s
p (G).

Therefore, the membership u ∈W s
p (G) (or u ∈ Ck(G)) or a ∈W s

p (G) for a given vector-function
u = (u1, u2, . . . , uk) or a matrix function a = {aij}kj,i=1 mean that every of the components ui
(respectively, an entry aij) belongs to the space W s

p (G) (or Ck(G)). Given an interval J = (0, T ),
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put W s,r
p (Q) =W s

p (J ;Lp(G))∩Lp(J ;W
r
p (G)), Respectively, we have W s,r

p (S) =W s
p (J ;Lp(Γ))∩

Lp(J ;W
r
p (Γ)). The anisotropic Hölder spaces Cα,β(Q) and Cα,β(S) are defined by analogy.

The definition of the inclusion Γ ∈ Cs can be found in [22, Chapter 1]. In what follows we
assume that the parameter p > n + 2 is fixed. Let Bδ(xi) be a the ball of radius δ centered at
xi (see (3)). The parameter δ > 0 will be referred to as admissible if Bδ(xi) ⊂ G for interior
points xi ∈ G, Bδ(xi) ∩ Bδ(xj) = ∅ for xi ̸= xj , i, j = 1, 2, . . . , r, and, for every point xi ∈ Γ,
there exists a neighborhood U (the coordinate neighborhood) about this point and a coordinate
system y (local coordinate system) obtained by rotation and translation of the origin from the
initial one such that the yn-axis is directed as the interior normal to Γ at xi and the equation of
the boundary U ∩Γ is of the form yn = ω(y′), ω(0) = 0, |y′| < δ0, y′ = (y1, . . . , yn−1); moreover,
we have ω ∈ C3(B′

δ(0)) (B′
δ(0) = {y′ : |y′| < δ}) end G ∩ U = {y : |y′| < δ, 0 < yn − ω(y′) < δ1},

(Rn \G)∩U = {y : |y′| < δ,−δ1 < yn − ω(y′) < 0}. The numbers δ, δ1 for a given domain G are
fixed and without loss of generality we can assume that δ1 > (M + 1)δ, with M the Lipschitz
constant of the function ω. Assume that Qτ = (0, τ)×G, Gδ = ∪i(Bδ(xi)∩G), Qδ = (0, T )×Gδ,
Qτ

δ = (0, τ)×Gδ, Sδ = (0, T )× ∪i(Bδ(xi) ∩ Γ).
Consider the parabolic system

Lu = ut +A(t, x,D)u = f(t, x), (t, x) ∈ Q = (0, T )×G, G ⊂ Rn, (4)

where

A(t, x,D)u = −
n∑

i,j=1

aij(t, x)uxjxj
+

n∑
i=1

ai(t, x)uxi
+ a0(t, x)u,

aij , ai are matrices of dimension h× h, and u is a vector of length h. The system (4) is supple-
mented with the initial and boundary conditions (2). We assume that there exists an admissible
number δ > 0 such that

aij ∈ C(Q), ak ∈ Lp(Q), γk ∈ C1/2,1(S), aij ∈ L∞(0, T ;W 1
∞(Gδ)); (5)

ak ∈ Lp(0, T ;W
1
p (Gδ)), i, j = 1, 2, . . . , n, k = 0, 1, . . . , n. (6)

The operator L is considered to be parabolic and the Lopatiskii condition holds. State these

conditions. Introduce the matrix A0(t, x, ξ) = −
n∑

i,j=1

aij(t, x)ξiξj (ξ ∈ Rn), and assume that

there exists a constant δ1 > 0 such that the roots p of the polynomial

det
(
A0(t, x, iξ) + pE

)
= 0

(E is the identity matrix) meet the condition

Re p 6 −δ1|ξ|2 ∀ξ ∈ Rn ∀(x, t) ∈ Q. (7)

The Lopatinskii condition can be stated as follows: for every point (t0, x0) ∈ S and the operators

A0(x, t,D) and B0(x, t,D) =
n∑

i=1

γi(t, x)∂xi , written in the local coordinate system y at this

point
(
the axis yn is directed as the normal to S and the axes y1, . . . , yn−1 lie in the tangent

plane at (x0, t0)
)
, the system(
λE +A0(x0, t0, iξ

′, ∂yn)
)
v(z) = 0, B0(x0, t0, iξ

′, ∂yn)v(0) = hj , (8)

where ξ′ = (ξ1, . . . , ξn−1), yn ∈ R+, has a unique solution C
(
R+)

decreasing at infinity for all
ξ′ ∈ Rn−1, | arg λ| 6 π/2, and hj ∈ C such that |ξ′|+ |λ| ̸= 0.
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We also assume that there exists a constant ε1 > 0 such that

Re (−A0(t, x, ξ)η, η) > ε1|ξ|2|η|2 ∀ξ ∈ Rn, η ∈ Ch, (9)

where the brackets (·, ·) denote the inner product in Ch (see [22, Definition 7, Sec. 8, Ch. 7]).
Let ∣∣∣det( n∑

i=1

γiνi

)∣∣∣ > ε0 > 0, (10)

where ν is the outward unit normal to Γ, ε0 is a positive constant, and

u0(x) ∈W 2−2/p
p (G), g ∈W k0,2k0

p (S), B(x, 0)u0(x)|Γ = g(x, 0) ∀x ∈ Γ, (11)

where k0 = 1/2−1/2p. Fix an admissible δ > 0. Construct functions φi(x) ∈ C∞
0 (Rn) such that

φi(x) = 1 in Bδ/2(xi) and φi(x) = 0 in Rn \B3δ/4(xi) and denote φ(x) =
r∑

i=1

φi(x). Additionally

it is assumed that

φ(x)u0(x) ∈W 3−2/p
p (G), φg ∈W k1,2k1

p (S) (k1 = 1− 1/2p), (12)

Γ ∈ C2, γk ∈ C1,2(Sδ) (k = 0, 1, 2, . . . , n). (13)

The proof of the following theorem can be found in [18].

Theorem 1. Assume that the conditions (5)–(13) hold for some sufficiently small admissible
δ > 0 and the function φ, f ∈ Lp(Q

τ ), fφ ∈ Lp(0, τ ;W
1
p (G)), and τ ∈ (0, T ]. Then there exists

a unique solution u ∈ W 1,2
p (Qτ ) to the problem (4), (2). Moreover, φut ∈ Lp

(
0, τ ;W 1

p (G)
)

and
φu ∈ Lp

(
0, τ ;W 3

p (G)
)
. If g ≡ 0 and u0 ≡ 0 then we have the estimates

∥u∥W 1,2
p (Qτ ) 6 c∥f∥Lp(Qτ ),

∥u∥W 1,2
p (Qτ )+ ∥φut∥Lp(0,τ ;W 1

p (G))+ ∥φu∥Lp(0,τ ;W 3
p (G))6 c

[
∥f∥Lp(Qτ )+ ∥φf∥Lp(0,τ ;W 1

p (G))

]
,

(14)

where the constant c is independent of f , a solution u, and τ ∈ (0, T ].

2. Main results

Consider the problem (1)–(3), where

A = L0 −
r∑

k=m+1

qk(t)Lk, Lku = −
n∑

i,j=1

akij(t, x)uxjxj +

n∑
i=1

aki (t, x)uxi + ak0(t, x)u,

and k = 0,m + 1,m + 2, . . . , r. The unknowns qi are sought in the class C([0, T ]). Construct a
matrix B(t) of dimension r × r with the rows

< f1(t, xj), ej >, . . . , < fm(t, xj), ej >,< Lm+1u0(t, xj), ej >, . . . , < Lru0(t, xj), ej > .

We suppose that

ψj ∈ C1([0, T ]), < u0(xj), ej >= ψj(0) (j = 1, 2, . . . , r), γl ∈ C1/2,1(S) ∩ C1,2(Sδ), (15)

akij ∈ C(Q) ∩ L∞(0, T ;W 1
∞(Gδ)), akl ∈ Lp(Q) ∩ L∞(0, T ;W 1

p (Gδ)) (i, j = 1, . . . , n), (16)

– 466 –



Sergey G.Pyatkov, Vladislav A.Baranchuk On some Inverse Parabolic Problems . . .

fi ∈ Lp(Q) ∩ L∞(0, T ;W 1
p (Gδ)) (i = 0, 1, . . . ,m), (17)

foe some admissible δ > 0, p > n+ 2, and k = 0,m+ 1, . . . , r, l = 0, 1, . . . n;

aki (t, xl), fi(t, xl) ∈ C([0, T ]) (18)

for all possible values of i, k, l. We also need the condition
(C) there exists a number δ0 > 0 such that

|detB(t)| > δ0 a. e. on (0, T ).

Note that the entries of the matrix B belong to the class C([0, T ]). Consider the system

ψjt(0)+ < L0u0(0, xj), ej > − < f0(0, xj), ej >=

=

m∑
k=1

q0k < fk(0, xj), ej > +

m1∑
k=m+1

q0k < Lku0(0, xj), ej >, j = 1, . . . , r, (19)

where the vector q⃗0 = (q01, q02, . . . , q0r) is unknown. Under the condition (C), this system is

uniquely solvable. Let A1 = L0 −
r∑

k=m+1

q0kLk. Now we can state our main result.

Theorem 2. Let the conditions (9)–(13), (C), (15)–(18) hold. Moreover, we assume that the
conditions (7), (8) are fulfilled for the operator ∂t + A1. Then there exists a number τ0 ∈ (0, T ]

such that, on the interval (0, τ0), there exists a unique solution (u, q1, q2, . . . , qr) to the problem
(1)–(3) such that u ∈ Lp(0, τ

0;W 2
p (G)), ut ∈ Lp(Q

τ0

), qi(t) ∈ C([0, τ0]), i = 1, . . . , r. Moreover,
φu ∈ Lp(0, τ

0;W 3
p (Gδ)), φut ∈ Lp(0, τ

0;W 1
p (Gδ)).

Proof. First, we find a solution to the problem

Φt +A1Φ = f0 +

m∑
k=1

q0ifi ((x, t) ∈ Q), Φ|t=0 = u0(x), BΦ|S = g. (20)

By Theorem 1, Φ ∈W 1,2
p (Q), φΦt ∈ Lp(0, T ;W

1
p (G)), φΦ ∈ Lp(0, T ;W

3
p (G)). As a consequence

of Theorem III 4.10.2 in [24] and embedding theorems [20, Theorems 4.6.1,4.6.2.], we infer φΦ ∈
C([0, T ];W

3−2/p
p (G)) ⊂ C([0, T ];C3−2/p−n/p(G)). Hence, φΦ ∈ C([0, T ];C2(G)) after a possible

change on a set of zero measure. The equations (20) and (18) imply that Φt(t, xj) ∈ C([0, T ]).
Note that this function is defined, since every summand in (20) with the weight φ belongs to
Lp(0, T ;W

1
p (G)) ⊂ Cα(G;Lp(0, T )) (α 6 1− n/p) (see the embedding theorems in [25] and the

arguments below). Multiply the equation (20) scalarly by ej and take x = xj . We obtain the
equality

< Φt(0, xj), ej > + < L0u0(0, xj), ej > − < f0(0, xj), ej >=

=

m∑
k=1

q0k < fk(0, xj), ej > +

r∑
k=m+1

q0k < Lku0(0, xj), ej >, j = 1, . . . , r. (21)

The relations (19) and (21) imply that < Φt(0, xj), ej >= ψjt(0). After the change of variables
q⃗ = q⃗0 + q⃗1 and u = w +Φ in (1), we arrive at the problem

Lw = wt+A1w−
r∑

k=m+1

q1kLkw =

m∑
i=1

fiq1i+

r∑
i=m+1

q1iLiΦ = F, w|t=0 = 0, Bw|S = 0, (22)
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< w(t, xj), ej >= ψ̃j(t) = ψj(t)− < Φ(t, xj), ej >∈ C1([0, T ]), ψ̃j(0) = ψ̃jt(0) = 0. (23)

Fixing the vector q⃗1 = (q11, . . . , q1r) ∈ C([0, τ ]) and determining a solution w to the problem
(22) on (0, τ), we construct a mapping w = w(q⃗1) = L−1F . Demonstrate that there exists R0 > 0

such that, for q⃗1 ∈ BR0 , the problem

Lv = g, v|t=0 = 0, Bv|S = 0 (24)

for every g ∈ Hτ и τ ∈ (0, T ] has a unique solution in the class v ∈ W 1,2
p (Qτ ), φvt ∈

Lp(0, τ ;W
1
p (G)), φv ∈ Lp(0, τ ;W

3
p (G)) satisfying the estimate

∥v∥W 1,2
p (Qτ ) + ∥φvt∥Lp(0,τ ;W 1

p (G)) + ∥φv∥Lp(0,τ ;W 3
p (G)) 6 c∥g∥Hτ

(25)

where the constant c is independent of τ and the vector q⃗1 ∈ BR0
and the space Hτ is endowed

with the norm
∥f∥Hτ

= ∥f∥Lp(Qτ ) + ∥φf∥Lp(0,τ ;W 1
p (Q)).

In accord with Theorem 1, the problem

L01v = vt +A1v = g, v|t=0 = 0, Bv|S = 0

for every g ∈ Hτ has a unique solution such that v ∈ W 1,2
p (Qτ ), φvt ∈ Lp(0, τ ;W

1
p (G)), φv ∈

Lp(0, τ ;W
3
p (G)) and

∥v∥W 1,2
p (Qτ ) + ∥φvt∥Lp(0,τ ;W 1

p (G)) + ∥φv∥Lp(0,τ ;W 3
p (G)) 6 c1∥g∥Hτ , (26)

where the constant c1 is independent of τ . In this case the question of solvability of the problem
(24) is reduced to the same question for the equation

f −
r∑

i=m+1

q1iLiL
−1
01 f = g, (27)

where f = L01v. We have the estimate∥∥∥− r∑
i=m+1

q1iLiv
∥∥∥
Hτ

6 c∥q⃗1∥C([0,τ ])

(
∥v∥W 1,2

p (Qτ )+∥φvt∥Lp(0,τ ;W 1
p (G))+∥φv∥Lp(0,τ ;W 3

p (G))

)
, (28)

where the constant c depends on the coefficients of the operators Lk in Q and is independent of
τ and q⃗1. Indeed, the following estimate is obvious∥∥∥−

r∑
k=m+1

q1kLkv
∥∥∥
Hτ

6 ∥q⃗1∥C([0,τ ])

r∑
k=m+1

∥Lkv∥Hτ
. (29)

Estimate the quantity ∥Lkv∥Hτ
. To this aim, we estimate the norms of every of the summands

in this quantity. For example, estimate the norm

∥akijvxixj
∥Hτ

6 c0
(
∥akijvxixj

∥Lp(Qτ ) +

n∑
l=1

∥φ(akijvxixj
)xl

∥Lp(Qτ )

)
6

6 c1
(
∥v∥Lp(0,τ ;W 2

p (G)) + ∥φv∥Lp(0,τ ;W 3
p (G))

)
+

n∑
l=1

∥φakijxl
vxixj

∥Lp(Qτ ), (30)
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where the constant c1 depends on the norms ∥akij∥L∞(Q). The last summand here is estimated
as follows:

n∑
l=1

∥φakijxl
vxixj

∥Lp(Qτ ) 6 c2
(
∥φv∥Lp(0,τ ;W 2

∞(G)) + ∥v∥Lp(0,τ ;W 1
∞(G))

)
6

6 c3
(
∥φv∥Lp(0,τ ;W 3

p (G)) + ∥v∥Lp(0,τ ;W 2
p (G))

)
, (31)

where the constant c2 depends on the norms ∥∇akij∥Lp(0,T ;L∞(Gδ)). Thus, we infer

∥akijvxixj∥Hτ 6 c4
(
∥v∥Lp(0,τ ;W 2

p (G)) + ∥φv∥Lp(0,τ ;W 3
p (G))

)
, (32)

where the constant c4 is independent of τ . Similarly, we derive that

∥aki vxi∥Hτ 6 c0
(
∥aki vxi∥Lp(Qτ ) +

n∑
l=1

∥φ(aki vxi)xl
∥Lp(Qτ )

)
6

6 c1
(
∥∇v∥L∞(Qτ ) + ∥φv∥Lp(0,τ ;W 2

p (G))

)
, (33)

where the constant c1 depends on the norms of aki , akixl
in Lp(Q) and the norms of aki in L∞(Qδ).

However (see Lemma 3.3 in [22]), we have

∥∇v∥L∞(Qτ ) 6 c1∥v∥W 1,2
p (Qτ ),

where the embedding constant is independent of τ . Summing the estimates obtained we justify
(28). Using (28) and the estimate of Theorem 1, we conclude that

∥∥∥ r∑
i=m+1

q1iLiL
−1
01 f

∥∥∥
Hτ

6 c2∥q⃗1∥C([0,τ ])∥f∥Hτ
, (34)

where c2 is independent of τ and q⃗1 ∈ BR0
. Let R0 = 1/2c2. In this case c2∥q⃗1∥C([0,τ ]) 6 1/2

and thereby the equation (27) has a unique solution satisfying the estimate ∥f∥Hτ 6 2∥g∥Hτ ,

which along with Theorem 1 ensures (25).
Assume that w is a solution to the problem (22), (23). Take x = xj in (22) and multiply the

equation scalarly by ej . The traces of all function occurring into the equation exist. First, our
conditions for coefficients and embedding theorems yield φw ∈ C([0, T ];C2(G)) (see the above
arguments for the function Φ). Second, as we have indicated above, every of the summands
in (22) with the weight φ belongs to Lp(0, T ;W

1
p (G)) ⊂ Cα(G;Lp(0, T )) (α 6 1 − n/p) (see

embedding theorems in [25]). We arrive at the system

< ψ̃jt, ej > + < A1w(t, xj), ej > −
r∑

i=m+1

q1i < Liw(t, xj), ej >=

=

m∑
i=1

< fi(t, xj), ej > q1i(t) +

r∑
i=m+1

q1i < LiΦ(t, xj), ej > (j = 1, 2, . . . , r), (35)

which can be rewritten in the form

B̃q⃗1 = ψ⃗ +R(q⃗1),

– 469 –



Sergey G.Pyatkov, Vladislav A.Baranchuk On some Inverse Parabolic Problems . . .

where coordinates of the vectors ψ⃗ and R(q⃗1) agree with the functions < ψ̃jt, ej > and <

A0w(t, xj), ej > −
∑r

i=m+1 q1i < Liw(t, xj), ej > (w = w(q⃗1)); respectively, j-th row of the
matrix B̃(t) of dimension r × r is written as

< f1(t, xj), ej >, . . . , < fm(t, xj), ej >, < Lm+1Φ(t, xj), ej >, . . . , < LrΦ(t, xj), ej >,

where j = 1, . . . , r. This matrix differs from B by the entries < LiΦ(t, xj), ej >. It is easy to
prove that this matrix is nondegenerate as well on some segment [0, τ0]. Indeed, the embedding
theorems (see Lemma 3.3 of Chapter 1 in [22]) imply that ∇Φ,Φxixj ∈ Cβ/2,β(Qδ/2) for β <

1− (n+ 2)/p and all i, j and, therefore,

| < LkΦ(t, xj)− Lku0(t, xj), ej > | 6
n∑

i,k=1

sup
t∈[0,T ]

∥akik(t, xj)∥|Φxkxi(t, xj)− u0xkxi(xj)|+

+

n∑
i=1

sup
t∈[0,T ]

∥aki (t, xj)∥|Φxi
(t, xj)− u0xi

(xj)|+ sup
t∈[0,T ]

∥ak0(t, xj)∥|Φ(t, xj)− u0(xj)| 6 ctβ/2,

on [0, T ], where, by the norm of a matrix (for example, ∥aki (t, xj)∥), we mean the norm of the
corresponding linear operator aki (t, xj) : Ch → Ch. Taking the condition (C) into account, we
can say that there exists τ0 > 0 such that

|detB̃(t)| > δ0/2 ∀t 6 τ0. (36)

We thus obtain the integral equation

q⃗1 = B̃−1ψ⃗ +R0(q⃗1), R0(q⃗1) = B̃−1R(q⃗1), (37)

where the operator R0(q⃗1) : C([0, τ ]) → C([0, τ ]) (τ 6 τ0) is bounded. Check the conditions of
the fixed point theorem. Denote R0τ = 2∥B̃−1ψ⃗∥C([0,τ ]). Let q⃗01, q⃗02 be two vectors of length r

with coordinates qji (i = 1, 2, . . . , r, j = 1, 2) lying in the ball BR0
= {q⃗ : ∥q⃗∥C([0,τ ]) 6 R0}. The

functions w1 = w(q⃗01), w2 = w(q⃗02) are solutions to the equation (22) satisfying homogeneous
initial and boundary conditions. Let v = w1 − w2. We infer

Lv = vt +A1v −
r∑

i=m+1

q2iLiv =

m∑
i=1

fi(q
1
i − q2i ) +

r∑
i=m+1

(q1i − q2i )Liw1, v = w1 − w2. (38)

In view of (23) and the definition of R0τ , R0τ → 0 as τ → 0. Hence, there exists a parameter
τ1 6 τ0 such that, for τ 6 τ1, R0τ 6 R0. Let R = R0τ1 . We now derive that there exists a
parameter τ0 6 τ1 such that the equation (37) has a unique solution in the ball BR of the space
C([0, τ0]). Take τ 6 τ1. Let q⃗01, q⃗02 ∈ BR. We have

∥R0(q⃗01)−R0(q⃗02)∥C([0,τ ]) 6 c1∥R(q⃗01)−R(q⃗02)∥C([0,τ ]) 6

6 c2

r∑
j=1

(∥L0v(t, xj)∥C([0,τ ]) +

r∑
i=m+1

∥q2iLiv(t, xj)∥C([0,τ ])) 6

6 c3

r∑
j=1

(∥L0v(t, xj)∥C([0,τ ]) +

r∑
i=m+1

∥Liv(t, xj)∥C([0,τ ])), (39)

where v is a solution to the problem (38). Note that

∥Lkv(t, xj)∥C([0,τ ]) 6 cτβ(∥φ∇v∥W 1,2
p (Qτ ) + ∥v∥W 1,2

p (Qτ )), (40)
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where the constant c is independent of τ ∈ (0, T ] and β > 0. Validate this inequality. In view of
the conditions on the coefficients akil, a

k
il(t, xj) ∈ C([0, T ]). Fix an arbitrary s ∈ (n/p, 1 − 2/p).

The embedding W s
p (Gδ/2) ⊂ C(Gδ/2) [20, Theorems 4.6.1,4.6.2.] yields

∥akil(t, xj)vxixl
(t, xj)∥C([0,τ ]) 6 c∥vxixl

(t, xj)∥C([0,τ ]) 6 c1∥vxkxl
(t, x)∥L∞(0,τ ;W s

p (Gδ/2)) 6
6 c2∥∇v(t, x)∥L∞(0,τ ;W 1+s

p (Gδ/2))
. (41)

Next, we employ the interpolation inequality (see [20])

∥v∥W s0
p (G) 6 c∥v∥θ

W
s1
p (G)

∥v∥1−θ
W

s2
p (G)

, s1 < s0 < s2, θs1 + (1− θ)s2 = s0 (42)

and the inequality

∥g∥L∞(0,τ ;E) 6 τ (p−1)/p∥gt∥Lp(0,τ ;E), ∀g ∈W 1
p (0, τ ;E), g(0) = 0, (43)

resulting from the Newton-Leibnitz formula. Here E is a Banach space. We obtain that

∥∇v(t, x)∥L∞(0,τ ;W 1+s
p (Gδ/2))

6 c∥∇v(t, x)∥θ
L∞(0,τ ;W

2−2/p
p (Gδ/2))

∥∇v(t, x)∥(1−θ)
L∞(0,τ ;Lp(Gδ/2))

6

6 c1τ
(1−θ)(p−1)/p(∥φ∇v∥W 1,2

p (Q) + ∥v∥W 1,2
p (Q)), (2− 2/p)θ = 1 + s. (44)

Here we have used the inequality

∥∇v(t, x)∥
L∞(0,τ ;W

2−2/p
p (Gδ/2))

6 c∥∇v(t, x)∥W 1,2
p (Gδ/2))

, (45)

where the constant c is independent of τ (in the class of functions vanishing at t = 0). Estimate
the lower-order summands of the form aki vxi

(t, xj), ak0v(t, xj) in Liu(t, xj). We conclude that
(s ∈ (n/p, 1− 2/p), (2− 2/p)θ1 = 1 + s)

∥aki vxi
(t, xj)∥C([0,τ ]) 6 c∥vxi

(t, xj)∥C([0,τ ]) 6 c1∥v(t, x)∥L∞(0,τ ;W 1+s
p (Gδ/2))

6

6 ∥v(t, x)∥θ1
L∞(0,τ ;W

2−2/p
p (Gδ/2))

∥v(t, x)∥1−θ1
L∞(0,τ ;Lp(Gδ/2))

6 c2τ
(1−θ1)(p−1)/p∥v∥W 1,2

p (Qτ ). (46)

We have used the estimate (45) applied to v rather than ∇v. The second summand is estimated
similarly. The estimates (39)–(46) ensure that

∥R0(q⃗01)−R0(q⃗02)∥C([0,τ ]) 6 c4τ
β(∥φ∇v(t, x)∥W 1,2

p (Qτ ) + ∥v(t, x)∥W 1,2
p (Qτ )), (47)

where the constant c4 is independent of τ and β = min(1 − θ, (1 − θ1)(p − 1)/p). Since v is a
solution to the problem (38) and τ 6 τ1, we can employ (25) and obtain that

∥φ∇v(t, x)∥W 1,2
p (Qτ ) + ∥v(t, x)∥W 1,2

p (Qτ ) 6 c
∥∥∥ m∑

i=1

fi(q
1
i − q2i ) +

r∑
i=m+1

(q1i − q2i )Liw1

∥∥∥
Hτ

, (48)

where the constant c is independent of τ . Every of the functions w1, w2 is a solution to the
problem (22), where the right-hand side contains the components of the vector q⃗01 or q⃗02. The
estimate (25) yields

∥φ∇wj(t, x)∥W 1,2
p (Qτ ) + ∥wj(t, x)∥W 1,2

p (Qτ ) 6 c
∥∥∥ m∑

i=1

fiq
j
i +

r∑
i=m+1

qjiLiΦ
∥∥∥
Hτ

. (49)
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The estimate (48), (49) and the conditions on the coefficients imply that

∥φ∇wj(t, x)∥W 1,2
p (Qτ ) + ∥wj(t, x)∥W 1,2

p (Qτ ) 6 c1(R). (50)

∥φ∇v(t, x)∥W 1,2
p (Qτ ) + ∥v(t, x)∥W 1,2

p (Qτ ) 6 c2∥q⃗01 − q⃗02∥C([0,τ ]), (51)

where the constant ci are independent of τ . In turn, these estimates and those in (47) validate
the estimate

∥R0(q⃗01)−R0(q⃗02)∥C([0,τ ]) 6 c5τ
β∥q⃗01 − q⃗02∥C([0,τ ]) (52)

with a constant c5 independent of τ . Choose a parameter τ0 6 τ1 such that c5(τ0)β 6 1/2. The
fixed point theorem ensures solvability of the equation (37) in the ball BR.

Show that w satisfies the overdetermination conditions (23). Multiply the equation (22)
scalarly by ej and take x = xj in the equation. We obtain the equality

< w(t, xj), ej >t + < L0w(t, xj), ej > −
r∑

i=m+1

qi < Liw(t, xj), ej >=

=

m∑
i=1

< fi(t, xj), ej > qi(t) +

r∑
i=m+1

qi < LiΦ(t, xj), ej >, j = 1, 2, . . . , r, (53)

Subtracting this equality from (35), we obtain that ψ̃jt− < w(t, xj), ej >t= 0. Integrating this
equality from 0 to t, we derive that ψ̃j(t)− < w(t, xj), ej >= 0, since the agreement conditions
imply that ψ̃j(0) = 0, < w(0, xj), ej >= 0. Thus, we infer ψ̃j(t) =< w(t, xj), ej > and the
equality (23) holds. 2

In the case of the unknown lower-order coefficients, the results can be reformulated in a more
convenient form. In this case the operator A is assumed to be representable in the form

A = L0 −
r∑

i=m+1

qi(t)li, L0u = −
n∑

i,j=1

aij(t, x)uxjxj +

n∑
i=1

ai(t, x)uxi + a0(t, x)u,

liu =
n∑

j=1

bij(t, x)uxj
+ bi0(t, x)u. (54)

Moreover, the rows of the matrix B(t) of dimension r × r are as follows:

< f1(t, xi), ei >, . . . , < fm(t, xi), ei >,< lm+1u0(t, xi), ei >, . . . , < lru0(t, xi), ei > .

We suppose that

ψj ∈W 1
p (0, T ), < u0(xj), ej >= ψj(0), j = 1, 2, . . . , r, (55)

fi, bkj ∈ L∞(0, T ;W 1
p (Gδ)) ∩ L∞(0, T ;Lp(G)), f0 ∈ Lp(Q) ∩ Lp(0, T ;W

1
p (Gδ)), (56)

for some admissible δ > 0, where i = 1, . . . ,m, j = 0, 1, . . . , n, k = m+ 1, . . . , r. The remaining
coefficients satisfy the conditions

aij ∈ C(Q), ak ∈ Lp(Q), γk ∈ C1/2,1(S) ∩ C1,2(Sδ), aij ∈ L∞(0, T ;W 1
∞(Gδ)); (57)

ak ∈ Lp(Q) ∩ Lp(0, T ;W
1
p (Gδ)), i, j = 1, 2, . . . , n, k = 0, 1, . . . , n. (58)

The corresponding theorem is stated in the following form.
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Theorem 3. Assume that the parabolicity condition and the Lopatinskii condition (7), (8) for
the operator ∂t + L0, the conditions (9)–(13), (55)–(58), (С) for some admissible δ > 0 and
p > n + 2 hold. Then, for some γ0 ∈ (0, T ], on the interval (0, γ0), there exists a unique
solution (u, q1, q2, . . . , qr) to the problem (1)–(3) such that u ∈ Lp(0, γ0;W

2
p (G)), ut ∈ Lp(Q

γ0),
φu ∈ Lp(0, γ0;W

3
p (G)), φut ∈ Lp(0, γ0;W

1
p (G)), qi(t) ∈ Lp(0, γ0), i = 1, . . . , r.

The proof is omitted, since it is quite similar to that of the previous theorem.

References

[1] G.I.Marchuk, Mathematical Models in Environmental Problems, Studies in Mathematics
and its Applications, Vol. 16, Elsevier Science Publishers, Amsterdam, 1986.

[2] M.N.Ozisik, H.R.B.Orlande, Inverse Heat Transfer, Taylor & Francis, New York, 2000.

[3] O.M.Alifanov, E.A.Artyukhov, A.V.Nenarokom, Inverse problems of complex heat transfer,
Yanus-K, Moscow, 2009 (in Russian).

[4] A.I.Prilepko, V V.Solov’ev, Solvability theorems and Rothe’s method for inverse problems
for a parabolic equation. I, Differ. Equations, 23(1987), no. 10, 1230–1237.

[5] V.V.Solov’ev, Global existence of a solution to the inverse problem of determining the source
term in a quasilinear equation of parabolic type, Differ. Equations, 32(1996), no. 4, 538–547.

[6] A.I.Prilepko, V.V.Solov’ev, Solvability of the inverse boundary-value problem of finding a
coefficient of a lower-order derivative in a parabolic equation, Differ. Equations, 23(1987),
no. 1, 101-107.

[7] A.I.Prilepko, D.G.Orlovsky, I.A.Vasin, Methods for solving inverse problems in Mathematical
Physics, Marcel Dekker, Inc., New-York, 1999.

[8] M.A.Kuliev, Multidimensional inverse problem for a multidimensional parabolic equation in
a bounded domain, Nonlinear boundary value problem, 14(2004), 138–145 (in Russian).

[9] O.A.Afinogenova, Yu.Ya.Belov,I.V.Frolenkov, Stabilization of the solution to the identifi-
cation problem of the source function for a one-dimensional parabolic equation, Doklady
Mathematics, 79(2009), no. 1, 70–72.

[10] Yu.Ya.Belov, K.V.Korshun, An identification problem of source function in the Burgers-type
equation, J. Sib. Fed. Univ., Math. Phys., 5(2012), no. 4, 497–506 (In Russian).

[11] M.S.Hussein, D.Lesnic, M.I.Ivanchov, Simultaneous determination of time-dependent co-
efficients in the heat equation, Computers and Mathematics with Applications, 67(2014),
1065–1091.

[12] N.I. Ivanchov, N.V.Pabyrivska, On Determination of Two Time-Dependent Coefficients in a
Parabolic Equation, Siberian Mathematical Journal, 43(2002), no. 2, 323–329.

[13] D.Lesnic, M.Ivanchov, Determination of the time-dependent perfusion coefficient in the bio-
heat equation, Applied mathematics letters, 39(2015), 96–100.

– 473 –



Sergey G.Pyatkov, Vladislav A.Baranchuk On some Inverse Parabolic Problems . . .

[14] M.S.Hussein, D.Lesnic, Identification of time-dependent conductivity of an diffusive mate-
rial, Applied mathematics and computations, 269(2015), 35–58.

[15] M.Ivanchov, Inverse Problems for Equation of Parabolic Type, Math. Studies. Monograph
Series, Vol. 10, WNTL Publishers, Lviv, 2003.

[16] Ya.Ya.Belov, Inverse Problems for Parabolic Equations, VSP, Utrecht, 2002.

[17] S.G.Pyatkov, V.V.Rotko, On some parabolic inverse problems with the pointwise overde-
termination, AIP Conference Proceedings, 1907(2017), 020008.

[18] V.A.Baranchuk, S.G.Pyatkov, On some clases of inverse problems with pointwise overdeter-
mination for mathematical models of heat and nass transfer, Bulletin of Yugra State Univer-
sity, 3(2020), 38–48 (in Russian).

[19] A.V.Mamonov, Y-H.R.Tsai, Point source identification in nonlinear advection-diffusion-
reaction systems, Inverse Problems, 29(2013), no. 3, 035009.
DOI: 10.1088/0266-5611/29/3/035009

[20] H.Tribel, Interpolation Theory. Function Spaces. Differential Operators, Johann Ambrosius
Barth, Heidelberg, 1972.

[21] R.Denk, M.Hieber, J.Prüss, Optimal Lp −Lq-estimates for parabolic boundary value prob-
lems with inhomogeneous data, Math. Z., 257(2007), no. 1. 193–224.

[22] O.A.Ladyzhenskaya, V.A.Solonnikov, N.N.Ural’tseva, Linear and Quasilinear Equations of
Parabolic Type, American Math. Society, Providence, R.I., 1968.

[23] O.A.Ladyzhenskaya, V.Ya.Rivkind, N. N.Ural’tseva, Classical solvability of diffraction prob-
lems in the case of elliptic and parabolic equations, Sov. Math., Dokl., 5(1965), 1249–1252.

[24] H.Amann, Linear and Quasilinear Parabolic Problems. I, Monographs in Mathematics,
Vol. 89, Birkhauser Verlag, Basel, etc., 1995.

[25] H.Amann, Compact embeddings of vector-valued Sobolev and Besov spaces, Glasnik Mat.,
Ser. III, 35(55)(2000), no. 1, 161–177.

О некоторых классах параболических обратных задач
с точечным переопределением

Сергей Г.Пятков
Владислав А. Баранчук

Югорский государственный университет
Ханты-Мансийск, Российская Федерация

Аннотация. В работе рассматривается вопрос о корректности в пространствах Соболева обрат-
ных задач о восстановлении коэффициентов параболической системы, зависящих от времени. В
качестве условий переопределения рассматриваются значения решения в некотором наборе точек
области, лежащих как внутри области, так и на ее границе. Приведены условия, гарантирующие
существование и единственность решений задачи в классах Соболева.

Ключевые слова: параболическая система, обратная задача, конвекция-диффузия, точечное пе-
реопределение.
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