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Introduction

The article is devoted to the study of the solvability of boundary value problems for differential
equations

3

o _

Diu+Y " AyDfu = f(,t) (Df =g k= 0,4) (%)
k=0

with operators Ay of the form

0 y 0
ij,k
5 (7@ ) + a0t

(here and below, summation over repeated indices from 1 to n is carried out).

The differential equations (x) are recently attributed to the class of Sobolev-type equations.
Various aspects of the theory of Sobolev-type equations are reflected in monographs [1-7] and
also in numerous journal articles (it is impossible to mention even a small part of such articles
just because they are numerous).

For Sobolev-type differential equations, best studied is the solvability of the Cauchy problem
and initial boundary value problems. At the same time, as is shown in [3,8], in some case,
for Sobolev-type equations, simultaneously with initial boundary value problems, other problems
can also be well-posed; these include problems with data both at the initial and final time
moments. In the present article, for equations (%), we study the solvability both of initial
boundary value problems and problems with data at different time moments.

Clarify that the goal of the present article is to prove the solvability of some problem for equa-
tions (*) in the classes of regular solutions, i.e., solutions having all weak derivatives in the sense
of Sobolev [9-11] occurring in the equation.

Formally, equation (x) with the above operators is a fifth-order equation. The use of the term
"fourth-order Sobolev equation" in the title and the article means that the equations under study
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are fourth-order equations with respect to the time (distinguished) variable, which is the leading
variable and defines the statements of the problems.

One more remark: Equations (*) have model and the simplest form. We will speak of some
more general equations and of generalizations of the results at the end of the article.

1. Statements of the Problems

Suppose that €2 is a bounded domain in R™ with smooth (for simplicity, infinitely differen-
tiable) boundary I', @ is the cylinder Q x (0, T') of finite height T', and S = I"x (0, T') is the lateral
boundary of Q. Furthermore, let a¥*(z), a4 (), i,j = 1,...,n, k =0,...,3, f(x,t) be given
functions defined for x € Q and t € [0,7] and let Ay and L be the differential operators whose
action at a given function v(x,t) is defined by the equalities

Ao = 2 (@ @)o,) + an (e

%
3

Lv = va + ZAkva.
k=0
Boundary Value Problem I: Find a function u(x,t) that is a solution to the equation

Lu = f(z,t) (1)

in the cylinder @ such that
u(z,t)|s =0, (2)
Diu(z,t)],_g yeq =0, k=0,1,2,3. (3)

Boundary Value Problem II: Find a function u(x,t) that is a solution to equation (1) in Q and
satisfies conditions (2) and also the condition

DFu(z,t) =0, k=0,1,2, Dju(

|t:0,x€$2 u(z,1) ’t r.2eq = 0 (4)

Boundary Value Problem III: Find a function u(z,t) that is a solution to equation (1) in @Q that
satisfies conditions (2) and also the condition

u(z, t)|i=0, veq = Dfu(x,t)|t 0,060 = = Diu(x,t)],¢ peq = D}u(x,t) ’t 0.0cq = 0- (5)

Boundary Value Problem I is a usual initial boundary value problem for nonstationary dif-
ferential equations of the fourth order (with respect to time). Boundary Value Problem IT is
a modified V.N. Vragov’s problem (see [12-14]) for fourth-order quasihyperbolic equations. Fi-
nally, Boundary Value Problem III is in fact an elliptic boundary value problem.

In the present article, we propose sufficient conditions on the coefficients of (1) new com-
pared to the previous works that guarantee the existence and uniqueness of regular solutions
to boundary value problems I, II, or III.

2. Solvability of boundary value Problems I-II1

Theorem 1. Suppose the fulfillment of the conditions

aij’k(a:) cCl(Q), i,j=1,...,n, ap k(x) € c), k=0,1,2; (6)
a3(z) € C*(QY), a3 (x) =a""3(2), i,j=1,...,n, aga(z) € C(Q), (7)
—a3(2)6:& = molé’, mo >0, z€Q, ¢eR™ (8)

Then, for every function f(x,t) in La(Q), Boundary Value Problem I has a solution u(x,t) such
that DFu(z,t) € Lo(0, T; W2(Q) N W A(Q)), k = 0,1,2,3, Diu(z,t) € La(Q).
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Proof. Make use of the method of continuation in a parameter. Let A € [0,1]. Consider
the following problem: Find a function u(x,t) that is a solution to the equation

2
Diu+ AsD}u+ XY ADfu = f(x,t) (9)
k=0

and @ that satisfies conditions (2) and (3). Note that, for A = 0, this problem has a solu-
tion u(x,t) belonging to the desired class; this follows from the fact that, for A = 0, equa-
tion (9) is a usual parabolic equation with respect to usy(x,t). Furthermore, by the theorem
on the method of extension in a parameter (see [15, Chapter III, Sec. 14], the boundary value
problem (9), (2), (3) has a regular solution u(x,t) if f(x,t) € L2(Q) and problem (9), (2), (3) is
solvable in the class of regular solutions for A = 0 if all derivatives occurring in (9) are uniformly
bounded in Lo(Q).
For proving the desired boundedness, let us first consider the equality

!

Integrating by parts, applying Young’s inequality and the inequality

2 ¢
Diu+ AsD3u + X Z Aleﬁu] D3udx dr = / / fD3udzxdr. (10)
k=0 0 JQ

t
/wz(x,t)dng/ /wE(I,T)dxdT, (11)
Q 0o Jo

which is valid for functions w(z,t) vanishing for ¢ = 0, and using conditions (6)—(8) and Gron-
wall’s lemma, it is not hard to obtain from (10) the estimate

nooat
/ [Ddu(z,1)]” do + Z/ / (D3u,,)’ dzdr < Cl/ £2 dw dt, (12)
Q —1Jo Ja Q

where the constant C; is defined only by the functions a™*(z), i,j = 1,...,n, agx(z),
k=0,1,2,3, and the number T'.
Now, consider the equality

t 2 t
_ / / (Dfu + AsD3u + X Z Aleﬁu> AgDiu drdr = — / / ngDiu dx dr.
0 JQ 0 JQ

k=0

Integrating by parts once again, applying Young’s inequality, inequality (11), estimate (12),
conditions (6)—(8), and also the second main inequality for elliptic operators (see [10, Chap-
ter III, Stc. 8], and Gronwall’s lemma, we conclude that solutions u(z,t) to the boundary value
problem (9), (2), (3) satisfy the second a priori estimate

n n t
Z/ [Dt‘rf”ugl.i(x,t)}2 dx + Z / / (Dfuijf drdr < C’z/ f*dx dt, (13)
= Jo 0 Jo Q

i,j=1

where the constant C, is defined only by the functions a/F(z), apr(z), 4,7 = 1,...,n,
k=0,1,2,3, the domain €, and the number T.
Estimates (12) and (13) imply the obvious third estimate

t
/O /Q(Dﬁu)2 dxdTgcg/Qﬁ dx dt, (14)
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of solutions u(z, t) to the boundary value problem (9), (2), (3); the constant C5 in this estimate is
again defined only by the functions a***(z), ag x(z), 4,7 =1,...,n, k= 0,1,2,3, the domain ,
and the number T'.

Estimates (12)—(14) give the desired uniform boundedness over A in L2(Q) of all derivatives
occurring in (9). As we already said above, this boundedness and the solvability of the boundary
value problem (9), (2), (3) for A = 0 give the solvability of this problem in the desired class also
for A = 1. This exactly means the validity of the theorem.

The theorem is proved. O

Before proving the following theorem on the solvability of Problem I in the class of regular
solutions, we formulate an auxiliary assertion on the nonnegativity of the scalar product of a pair
of second-order differential operators.

Let A and B be differential operators whose action is defined by the equality

Av = % (a¥ (2)va,) + ao(z)v,
Bv = % (b (2)vg,) + bo(a)v.

Proposition 1. Suppose the fulfillment of the conditions
a¥(z) € C*(Q), b¥(x) € C*(Q), da“(z)=d"(x), bI(x)=V'(2), 2€Q, i,j=1,...,n;
ap(r) € C1(Q), bo(x) € CH(Q), ao(r) < —ap <0, bo(z) < —by<0, z€
Jal(z): oi(z) €C(Q), a'(x)=0, 2€Q, i=1,...,n
o' (2)€ < a¥(2)&i&; < Moo’ ()&}, z€Q, ER™
la¥ (z)] < Myy/od(z), z€Q, i,5,k=1,...,n;
a¥(x)viv; =0 for €T}
b (2)&&5 = molél, mo >0, z€Q, (eR

[ao ()03 (@) + bo () (x) + 5 (al, @B (2), + 5 (b2 ()a"(2)),,, —

~ (@ (@b (@) |66 <0, e, geR™

ag(2)bo(z) + % (aos, (z)b" (), + % (bow, (:U)aij(x))m >0, zeq.

J

Then every function v(z) € WZ(Q) N I/Io/é(Q) satisfies the inequality

/ AvBvdx >0
Q

This assertion is proved in [16].

We say that operators A and B of the above form satisfy the (A, B)—condition if the coeffi-
cients of these operators satisfy all conditions of Proposition 1.

Theorem 2. Suppose the fulfillment of the (—As, —As)—condition and also of the condition
k() e CYQ), i,j=1,...,n, aor(z)€C(Q), k=01 (15)

Then, for every function f(x,t) such that f(z,t) € La(Q), fi(z,t) € L2(Q), f(x,0) = 0 for
x € Q, Boundary Value Problem I has a solution u(x,t) such that DFu(z,t) € Loo(0,T; W2(2)N

W 3(Q)), k= 0,1,2,3, Diu(z,t) € Loo(0,T; L(£)).
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Proof. Observe first of all that the (—Ajs, —As)—condition in particular means that —Aj is
an elliptic-parabolic operator in () and — A, is an elliptic operator.
Let € be a positive number. Define operators As . and L.:

A3,€ = A3 + 5142, Ls =L+ €A2D?.

Consider the following boundary value problem: Find a function u(x,t) that is a solution
to the equation Leu = f in Q that satisfies conditions (2) and (3). Obviously, this bound-
ary value problem is Boundary Value Problem I and that it satisfies all conditions of Theorem 1.
Moreover, due to the condition f(z,t) € L2(Q), fi(x,t) € La(Q), a solution u(z,t) to this
problem satisfies the memberships

DFu(x,t) € Loo(0,T; W2(Q) N v?/%(ﬂ)), k=0,1,2,3,4, Dju(x,t) € Lo(Q) (16)

(this fact stems from its validity for the “shortened” equation Dju + Asz.Dju = f(z,t) and
the corresponding a priori estimates).

Differentiate the equation L.u = f(x,t) with respect to ¢ (this is possible due to memberships
(16)), multiply it by D}u(x,t), and integrate it over the cylinder {z € Q, 0 < 7 < t}. Involving
the ellipticity of the operators —As . and —As, applying Young’s inequality, inequality (11), and
Gronwall’s lemma, we obtain the estimate

t n
5/ / (Ang_u)2 dx dr —G—Z/ [Diu,, (m,t)]zdx +/ [Ang’u(nc,lf)]2 dx < C4/ fRdxdt, (17)
0 Jo = Ja Q Q

where the constant Cj is defined only by the functions a”*(z), ag x(z), 4,7 =1,...,n, k=0, 1,
and also the number 7T'.

Let {em}5°_1 be a sequence of positive numbers converging to zero and let {u,,(z,t)}50_4
be a sequence of solutions to the equation L. u = f satisfying (2) and (3). Estimate (17),
the second main inequality for elliptic operators, and the reflexivity of a Hilbert space mean
that there exists a sequence {uy,, (z,t)}7°, and a function u(z,t) that satisfy the following weak
convergences as | — oo in Ly(Q):

Em, Ao D}u(z,t) — 0,

D}y, (z,t) — Diu(z,t),
ApDFy,, (z,t) = ApDFu(z,t), k=0,1,2,3.

Obviously, the limit function u(x,t) is a solution to Boundary Value Problem I and this solution
still satisfies (17). Therefore, the function w(z,t) is the desired solution to the problem under
study.

The theorem is proved. O

Turn to investigating the solvability of Boundary Value Problem II.

The main difference of Boundary Value Problem II from Boundary Value Problem I is that,
in its study, it is impossible to use Gronwall’s lemma. Gronwall’s lemma can be replaced by small-
ness conditions.

We will give the simplest version of the theorem in the solvability of a Boundary Value
Problem II, whose prove involves smallness conditions. B

Let operators Ap and A; be defined with the use of the parameter 3 and the operators Ag
and Aq:

Ao=po, M=ph, A= (@@ ) b, k=01 ()

i 81‘]‘
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Theorem 3. Suppose the fulfillment of the conditions
aPk(z) e C?(Q), aF(z) =d* (), i,j=1,...,n, k=2,3;

Ak (r) e CY(Q), dq,j=1,...,n, daoxr(z)€C@Q), k=0,1;

a R ()& = mol€)?, me >0, 2€Q, £€R™ k=23;

ao’k(l') S O(Q), k=0,1,2,3, ao,k(l') <0, k=23

Then there exists a positive number By such that for |8] < Bo and f(x,t) € L2(Q), Bound-

ary Value Problem II has a solution u(x,t) such that DFu(x,t) € Lo(0,T; W2(Q) N I/Iofé(Q)),
k=0,1,2,3, D}u(z,t) € La2(Q).

Proof. For A = 0, Boundary Value Problem II for equation (9) has a solution u(z, t) in the desired
class; this follows from the fact that for A = 0 equation (9) is an inverse parabolic equation
with respect to Dju(z,t). Further, consider (10). Integrating by parts and estimating the last
two summands on the left-hand side (10) from above with the use of (11), we infer that there
exists a positive number 57 such that for |5| < By we have the a priori estimate

Z/Q (D}u,,)? dxdt<05/Qf2dxdt (19)
i=1

with the constant C5 defined only by the coefficients of the operators A, k =0,1,2,3.
At the next step, consider the equality

J

Reckoning with the ellipticity of As and A3 and using the second main inequality for a pair
of elliptic operators [10, Chapter III, Sec. 8], it is not hard to show that there exists a number S
such that 0 < By < B4, and for |8] < fBo, for solutions u(x,t) to Boundary Value Problem II
for equation (9), estimate (13) holds with some constant Cg on the right-hand side that is defined
only by the coefficients of the operators Ay, k = 0,1, 2,3, and the domain €.

Estimate (14) with the corresponding constant C7 on the right-hand side obviously follows
from the previous estimates.

The obtained estimates of solutions to Boundary Value Problem II for equation (9) and
the theorem on the method of continuation in a parameter and give the solvability of Boundary
Value Problem II for equation (1) in the desired class.

The theorem is proved. O

2
Diu+ AsDju+ > ApDfu
k=0

Ay Dudz dt = / fAyD3udx dt.
Q

Theorem 4. Suppose the fulfillment of the conditions

aPk(z) € C?(Q), ak(x) = aPF (z), ao k() €C(Q), i,j=1,...,n, k=0,1,2,3; (20)

aij’k(x)&ﬁj > m0|f|2, mo >0, €, €£eR", apr(z) <0, k=23; (21)
—aij’k(x)&{j > m1|§|27 m1 >0, €, €£eR", apr(z) 20, k=0,1; (22)
Ay = BA,. (23)

Then there is a positive number By such that, for |8| < o and f(x,t) € La(Q), Boundary Value

Problem IIT has a solution u(z,t) such that Dfu(z,t) € Lo(0,T; W2(Q) NW 4(2)), k=0,1,2,3,
Diu(z,t) € La(Q).
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Proof. Show that solutions wu(z,t) to Boundary Value Problem III of the class mentioned
in the statement of the theorem satisfy the desired a priori estimates.

Multiply equation (1) by D?u(x,t). Integrating over @, applying integration by parts, and
using (20)—(22), it is not hard to obtain the first a priori estimate for solutions u(z, t) to Boundary
Value Problem III:

3U2 Y 2U 2 €T 2 X ;
/Q{(Dt )"+ (Diua,) }d dtgcg/Qf da dt; (24)

i=1

here the constant Cy is defined only by the coefficients of the operators Ay, k =0,1,2,3.

At the next step, multiply equation (1) by AsD3u(x,t) and integrate it over Q. Using
conditions (20)—(23), inequality (11), and also the second main inequality for a pair of elliptic
operators, we conclude that there exists a number 5y such that for |3] < 5y we have a second
estimate

> / (D3ty,0,)” dwdt < Cy / £ da dt; (25)
ij=1"@Q Q
with the constant Cy defined only by the coefficients of the operators Ay, kK = 0,1,2,3, and

the domain €.
The last a priori estimate

/Q (Diu)? da dt < Cyo /Q f?du dt (26)

obviously stems of the previous two estimates.
Using estimates (24)—(26) and the method of continuation in a parameter (for example,
with the use of the equation

Diu+ Ay Dju+ A(AsD}u+ A1 Dyu+ Agu) = f(z,1)),

it is not hard to obtain the desired solvability of Boundary Value Problem III.
The theorem is proved. m|

3. Conclusion.

Observe first of all that the conditions of Proposition 1 are fulfilled, for instance, if the num-
bers ag and by are large.

Furthermore, it is not hard to generalize the obtained results to equations more general
than (1); for example, to equations with general second-order elliptic operators Ay.

Some of the conditions of the proven theorems can be changed: for example, we can discard
the sign-definiteness of the operator Ay from Theorem 4. B _

Observe finally that conditions (18) and (23) mean that A; and Ay are fixed operators,
whereas the number S is a parameter (namely, a smallness parameter).

The work of the author was carried out in the framework of the State Contract of the Sobolev
Institute of Mathematics (Project 0314—2019-0010).
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KpaeBble 3aj1aum gy ypaBHEeHUIl COO0JIEBCKOTO TUTIA
4eTBEPTOro MOPAIKA

Anekcanap . KoxxaHoB
Nucturyt maremaruku um. C. JI. Cobosesa CO PAH

Novosibirsk, Poccuiickast @enepanus

Awnnoranusi. [leqpio craThu SBASETCS UCCIEIOBAHUE PA3PEIUMOCTU B mpocTpancTBax CoboseBa Kpa-
€BBbIX 3aJ[a4 JIJIsi HEKOTOPBIX KJIACCOB JIMHEHHBIX yPABHEHUN YETBEPTOI'O IIOPsiJIKa CODOJIEBCKOIO THIIA.
JokazkeM, 9TO Ha4YaJIbHO-KpaeBble 3aJla4l C JAHHBIMU KaK B HAYAJbHBI MOMEHT BPEMEHW, TaK U B
KOHEYHBbIE MOMEHTBHI BDEMEHU MOTYT OBITh KOPPEKTHBIMH IS UCCIETYEMbIX YPABHEHUN.

KurouesBrsie cioBa: nuddepennnaabHOe ypaBHEHNE YE€TBEPTOrO MOPSIIKA COOOIEBCKOrO THIIA, KPaeBas
3a/1a4a, CylIeCTBOBAHUE, €JIMHCTBEHHOCTD.
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