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Abstract. For the numerical solution of the Navier-Stokes equations, written in an integral form,
an implicit of finite-volume algorithm is proposed, which is a generalization of previously proposed
differences schemes. Using the integral form of equations allowed to ensure its conservatism, and the
technology of splitting — the economy of the algorithm. The numerical test of the algorithm on the
exact solution, in problems about the viscosity flow in the cavern with a moving lid and the current of
the heated walls of the channel, confirmed the sufficient accuracy of the algorithm and its effectiveness.
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Introduction
The Navier–Stokes equations of a viscous incompressible fluid are the basic model for solv-

ing various classes of problems in hydromechanics [1, 2]. They are nonlinear and their solutions
contain areas of high gradients, boundary layers, separation zones, etc., which imposes addi-
tional difficulties in their study. Therefore, the problem of constructing economical numerical
algorithms for solving the Navier–Stokes equations is still relevant today. Some approaches for
constructing finite-difference and finite-volumes schemes are given, for example, in [3–11]. When
solving multidimensional problems, including those in curvilinear and multiply connected do-
mains, the method of finite volumes [2, 8, 9], based on the approximation of equations in integral
form, may turn out to be more convenient. It has the property of conservatism, the approxima-
tion of the equations in it, is constructed for each cell, the shape of which is easier to adapt to
the boundaries of the region.

The use of explicit schemes in solving the Navier–Stokes equations leads to large expenditures
of computer resources, especially in the multidimensional case, due to strict restrictions on the
ratio of the temporal and spatial steps of the grid. Implicit unfactorized algorithms are also
uneconomical due to the need to invert large matrices (see, for example, [5, 11]). An alternative to
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this approach is the splitting and factorization methods [3], which make it possible to reduce the
solution of a multidimensional problem to the solution of its one-dimensional analogs or simpler
problems. In [11], a difference scheme was proposed for solving the Navier–Stokes equations for
a viscous incompressible fluid in physical variables "velocity, pressure", based on the method
of splitting into physical processes and spatial directions. This made it possible to simplify the
implementation of the algorithm.

Below we generalize it to the finite volume method. The properties of the algorithm in
terms of the accuracy of calculations and the rate of convergence are investigated when finding a
stationary solution by the established method. The algorithm was tested on the solution of the
Poisson flow problem, which has an exact solution, on the problems of fluid flow in a square cavity
with a moving cover and flow in a rectangle with heated walls. The results obtained illustrate
the capabilities of the proposed method and allow us to conclude about its effectiveness.

1. Initial equations. Algorithm for solving
the Navier–Stokes equations

When studying the flows of a viscous incompressible fluid, taking into account the effects
of heat conduction, one usually uses models described by the Navier–Stokes equations of an
incompressible fluid, supplemented by the heat conduction equation. Let us consider them in
gas-dynamic variables "velocity–pressure" in the form of a system of integral conservation laws
in gas-dynamic variables [1]:

M
∂

∂t

∫
V

UdV +

∮
S

(W n⃗)ds =

∫
V

F dV, (1)

∂

∂t

∫
V

TdV +

∮
S

(WT n⃗)ds = 0, (2)

where V the volume of the computational domain, S its boundary, n⃗ the external normal to the
boundary area, U , T the vector of the sought functions and temperature, W , WT are matrices
composed of columns of flows at the boundaries of the volume, µ , k the coefficients of viscosity and
thermal conductivity, g the acceleration coefficient, and F the force of gravity. The algorithm will
be presented using the example of two-dimensional equations in Cartesian coordinates written
in dimensionless form in the absence of external forces. Then:

U =

 p
v1
v2

 , W =

 v1 v2
v21 + p− σ1

1 v1v2 − σ1
2

v1v2 − σ2
1 v22 + p− σ2

2

 , F =

00
d

 , M =

0 0 0
0 1 0
0 0 1

 , (3)

σi
j = µ

∂vi
∂xj

, σ3
j = k

∂T

∂xj
, W T =

[
v1T − σ3

1 v2T − σ3
2

]
, d = agT, µ = const.

Let’s set the grid step τ = T/N , where N is the number of time steps. U , T the functions
will be set at the nodes i, j of the cell, and the flows W at the boundaries of the cells at the
nodes i± 1/2, j and i, j ± 1/2 (Fig. 1).

We introduce the averaging of the sought functions over the elementary volume

Vi,j = ω, U i,j =
1

ω

∫
ω

U∂ω, Ti,j =
1

ω

∫
ω

T∂ω, F i,j =
1

ω

∫
ω

F ∂ω,

and we approximate the integral operators in cells by grid operators by the formulas

∂

∂t

∫
V

Udω ≈ ω
Un+1 −Un

τ
,

∮
S

(WSn)dS ≈ Ω =

2∑
m=1

∆m(WmS),
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Fig. 1.

∮
S

(WT n⃗)ds ≈
2∑

m=1

∆m(WTmS),

where

SW =

 v1S1 + v2S2

(v21 + p− σ1
1)S1 + (v1v2 − σ2

1)s2

(v1v2 − σ2
1)S1 + (v21 + p− σ2

2)S2

 ,

∆m(WS)m = [Sm+1/2(Wm+1 +Wm)− Sm−1/2(Wm +Wm−1)]/2

is the flows through opposite faces of a cell, m = 1 corresponding to index i, m = 2 index j.
We construct an algorithm for solving the system of equations (1), (2), at first for equations (1),
assuming that the temperature value is known. Finite-volume scheme with weights

M
Un+1 +Un

τ
+

1

ω

2∑
m=1

∆m(αW n+1
m + βW n

m)Sn = F (4)

approximates the original equations (1), (3) with order O(τ2 + h2) for α > 0.5 and at α ̸= 0,
it is nonlinear. Here h = ω1/2. Operators σl

m on the boundaries contain directional derivatives
with respect to xm, that cannot coincide with the direction of the cell faces, so we introduce
parameterization xi = xi(qj), qj = qj(xi) where 0 6 qj 6 1. Then:

∂

∂xj
=

2∑
l=1

zlj
∂

∂ql
, zlj =

∂ql
∂xj

, σi
j = µ

2∑
l=1

zlj
∂vi
∂ql

(5)

and in new variables σi
j contain derivatives with respect to normals q1 and tangents q2 to the

cell boundaries ω. We approximate them at the nodes i± 1/2 or j± 1/2 by symmetric operators

σi
j = µ

2∑
m=1

zmj ∆mvi, ∆m±1/2v = ±(vm±1j − vm) and linearize the vector W n+1 with respect to

U and known values µ, zlm:

W n+1
m = W n

m + τ
∂W n

m

∂U

∂Un

∂t
+O(τ2) = W n

m + τBm
Un+1 −Un

τ
+ . . . ,

where Bm =

 0 S1 S2

S1 V − tmk 0
S2 0 V − tmk

 , tmk = µ
2∑

k=1

zkmSk∆k, V = v1S1 + v2S2 the projection

of the velocity vector V times the normal to the face area. To construct economical algorithms,
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we introduce an operator Bm in which only derivatives with respect to the normals are stored in
the coefficients tmk, and represent it in the form of a splitting into physical processes:

Bm = B1m +B2m, B1m =

0 0 0
0 V − tm 0
0 0 V − tm

 , B2m =

 0 S1 S2

S1 0 0
S2 0 0

 ,

tm = µzmmSm∆m

the finite-volume scheme:

C
Un+1 −Un

τ
= − 1

ω
Ωn + F n, C = M +

τα

ω

2∑
m=1

∆m(Bn
1m +Bn

2m), (6)

Ωn =

2∑
m=1

∆m(W nSn)

linear, but approximates the original equations with order O(τ + h2). Note that the matrix M
is degenerated, which does not allow standard factorization methods. However, there is a special
splitting of the operator C in the physical process and spatial directions (see [11]), in which it
can be factorized in the form:

C = C +O(τ), C =

2∏
m=1

(I + d∆mBn
1m) · (M + d

2∑
m=1

∆mBn
2m), d =

τα

ω

Then the scheme of approximate factorization:

C
Un+1 −U

τ
= − 1

ω
Ωn + F n (7)

or it equivalent scheme in fractional steps:

ξn = − 1

ω
Ωn + F n, (I + d∆1B

n
11)ξ

n+1/3 = ξn, (I + d∆2B
n
12)ξ

n+2/3 = ξn+1/3, (8)

(M + d

2∑
m=1

∆mBn
2m)ξn+1 = ξn+2/3, Un+1 = Un + τξn+1

Where ξ = (ξp, ξ1, ξ2)
T the residuals of the solution at fractional steps approximate Eqs. (1), (2)

with the same order as (6). The values ξn are computed explicitly. At the first (m = 1) and
second (m = 2) fractional steps of the equation scheme

[1 + d∆m(V − tm)]ξ
n+m/3
l = ξ

n+(m−1)/3
l (l = 1, 2)

are solved by scalar sweeps independently for each component of the velocity residual ξn+m/3
l ,

and ξ
n+m/3
p = ξnp . At the third fractional step of scheme (8), the system of equations is solved

d[∆1S1ξ
n+1
1 +∆2S2ξ

n+1
2 ] = ξ

n+2/3
p , ξn+1

1 = ξ
n+2/3
1 − d∆1S1ξ

n+1
p ,

ξn+1
2 = ξ

n+2/3
2 − d∆2S2ξ

n+1
p .

(9)

Eliminating the velocity components from the continuity equation, we obtain the equation for it

∆ξn+1
p = f, (10)
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where ∆ = ∆11 +∆22, ∆mm = ∆mSm∆mSm, f =

[
2∑

m=1
∆mSmξnm

]
/d− ξnp /d

2. The solution to

the Poisson equation can be obtained by various iterative algorithms [12], for example, by the
iterative approximate factorization scheme

(I − τ0∆11)(I − τ0∆22)(ξ
ν+1 − ξν)/τ0 = ∆(ξn+1/3

p )ν − f

or an equivalent scheme in fractional steps

(I + τ0∆11)η1 = ∆(ξn+1/3
p )ν − f, (I − τ0∆22)η = η1, ξν+1 = ξν + τ0η.

Realized with fractional steps, also by scalar sweeps. The solution is carried out until the
iterations converge, i.e., until the condition ∆ξν−f = O(τ0h

2) is met in all cells. Then, from (9),
the new values of the velocity residuals ξn+1

l are clearly found. The new values of the functions
U are explicitly calculated from (8) and, if necessary, the calculation process is repeated.

2. Algorithm for solving the heat equation
We approximate the integral operators in (2) by the grid operators

∂

∂t

∫
V

Tdω ≈ ω
Tn+1 − Tn

τ
,

∮
S

(WT n⃗)ds ≈
2∑

m=1

∆m[S1(v1T − σ3
1) + S2(v2T − σ3

2)]

and, like scheme (7), we consider the finite-volume scheme of approximate factorization

2∏
m=1

[I + d∆m(V − tm)]
Tn+1 − Tn

τ
= − 1

ω

2∑
k=1

∆mWn
T (11)

or the equivalent of a scheme in fractional steps

ξnT = − 1

ω

∑2
m=1 ∆mWn

T , [I + d∆1(V − t1)]ξ
n+1/2
T = ξnT ,

[I + d∆2(V − t2)]ξ
n+1
T = ξ

n+1/2
T , Tn+1 = Tn + τξn+1

T .

(12)

Here tm = k(zm1 S1+zm2 S2)∆m, σ3
m = k

2∑
k=1

zkm∆kT, W
n
T = [V T−(σ3

1S1+σ3
2S2)]. It approximates

the thermal conductivity equation (2), (5) with order O(τ2+h2) when α = 0.5+O(τ) . The values
ξnT are calculated explicitly, then the equations are solved at fractional steps by scalar sweeps in
each direction. The new temperature values are calculated explicitly from the last equation in
scheme (12). This completes one step of the calculations and, if necessary, the process continues
to find a solution at subsequent points in time.

3. Examples of numerical calculations
The proposed algorithm was tested on a number of problems. Testing was carried out on

three problems, the numerical solution of which was obtained by different authors and different
numerical algorithms (see, for example, [5, 7–9]). This made it possible to compare and evaluate
the properties of the algorithm. When carrying out numerical calculations, equations (2), (3)
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were reduced to dimensionless form [1]. This led to the appearance in the equations of the di-
mensionless parameters of the Reynolds numbers Re, Rayleigh Ra and Prandtl Pr, respectively:
Re = 1/µ, Ra = ag, Pr = µ/k. Then the characteristic size of length L ≈ 1, speed |v| = 1, and
pressure p = 1 (it is set up to a constant).

In the first problem, the stationary flow of a viscous incompressible fluid in a channel was
investigated in the framework of the Navier Stokes model (1) where F = 0. Its solution is reduced
to the Poiseuille flow, the exact solution of which is: v2 = 0, v1 = 1− x2

2, p = 1− 2µx1.
In the computational domain, a square grid with a number of cells J = I × I was used. The

velocity and pressure v2 = 0, v1 = 1 − x2
2, p = 1 were set at the channel inlet, and v1 = v2 = 0

for the adhesion conditions on the channel walls. At the initial moment of time, constant values
of velocity and pressure were set inside the region. The stationary solution of the problem was
found by the establishment method. The establishment criterion was set in the form:

max |pn+1 − pn| 6 K(τω), K ≈ 0.1− 1.0

for all interior points. Since the sought functions are specified at the centers of the cells, and the
flows are determined at the boundaries of the cells, the implementation of the algorithm requires
the introduction of near-boundary dummy cells and the specification of functions in them. On
the upper and lower walls of the channel at dummy points, the velocity components are set equal
in magnitude, but opposite in sign, and at the input, their values are set equal to those at the
input. To evaluate the accuracy of the algorithm and to estimate the rate of convergence of the
solution to the stationary one, we performed calculations on grids with different numbers of cells.
Tab. 1 shows estimates of the errors of solutions

Table 1

τ h1 = h2 ∆p ∆v1 ∆v2
0.1 0.1 0.008817 0.009947 0.006017
0.05 0.05 0.002204 0.002487 0.001505
0.025 0.025 0.000551 0.000622 0.000376
0.0125 0.0125 0.000138 0.000155 0.000094

As follows from the calculation results, an increase in the number of cells (decrease in grid
steps) by 2 times in each direction leads to a decrease in the error by 4 times, which confirms the
second order of accuracy of the algorithm. The number of iterations before stopping depends
on the initial guess and the number of nodes J . Their typical number is given in Tab. 2 on a
J = 80× 80 grid at various values of the viscosity coefficients µ.

Table 2

µ 0.01 0.025 0.001
iterations 1111 2731 3652

In the second problem, the fluid flow in a square cavity with a moving cover in the absence
of gravity was studied. No-slip conditions v1 = v2 = 0 were set on the stationary walls of the
channel. At the initial moment of time v = 0. At t > 0, the lid begins to move at a constant
speed (Fig. 2).

The stationary solution of the problem was found by the establishment method. The calcu-
lations were carried out on a sequence of grids at various values of the Reynolds number Re.

Fig. 3 shows the distribution of the longitudinal and transverse velocity components on
various grids at Re = 3 · 103.
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Fig. 2

Fig. 3

The convergence of solutions is observed with an increase in the number of grid steps. Its
further refinement practically did not lead to differences in values on the 81×81 grid. At numbers
Re > 102, a vortex appears in the cavity, the center of which is shifted to the right, and two
small vortices at the corners of the cavity. With an increase in Re, the angular vortices increase,
their intensity increases, which follows from theoretical estimates and calculations using other
algorithms [11, 13–15]. A typical flow pattern is shown in Fig. 4.

Comparison of the results obtained with the calculations in [5, 7–9] shows the visual coinci-
dence of the flow fields.

In the third problem, some results of calculations of fluid flows in a closed flat cavity with
heating of one of the sides are presented. The system of Navier–Stokes equations (1) was sup-
plemented by the equation for temperature (2), and a term of the form d = RaT was added to
the equation of motion. At t = 0, the liquid was assumed to be stationary, and the adhesion
conditions were set at the boundaries of the region. On the left and right walls of the region,
T = 1 and T = 0 respectively, and on the upper and lower walls, according to a linear law
T = 1 − x1. Due to the temperature difference in the region, a rotational motion of the liquid
occurs, its intensity is determined by the numbers Re and Ra. The numerical solution of the
problem was found according to schemes (7), (11) on various grids. The calculations for various
values of the parameters of the problem and comparison with the calculations [13–15] showed the
identity of the solutions obtained. For example, in Fig. 5 streamlines for Ra = 1 Re = 3 · 102(a)
and 103(b) are shown.

A large central region of the circulation flow ("central vortex") and secondary "corner vor-
tices" in the lateral part of the cavity are distinguished. Note the increase in the vortex velocity
with the increase in the Re numbers. A change in the Pr numbers for fixed Re and Ra also leads
to a significant rearrangement of the flow pattern, and a change in the Ra numbers in a wide
range of parameters has little effect on convection, as follows from calculations by other authors
(see [11, 13–15]).
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Fig. 4

Fig. 5

Conclusion
The paper proposes a generalization of the finite difference splitting scheme for the numerical

solution of the Navier–Stokes equations of a viscous incompressible fluid to the finite volume
method. It has been tested for solving a number of problems (Poiseuille flows, in a cavity with
a moving cover, and in a square region with heated sides). The performed comparisons in terms
of the accuracy of the algorithm and the rate of convergence when finding a stationary solution
by the establishmed method showed the efficiency of the algorithm and its sufficient accuracy.
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Алгоритм расщепления в методе конечных объемов
для численного решения уравнений Навье-Стокса вязкой
несжимаемой жидкости
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Аннотация. Для численного решения уравнений Навье–Стокса, записанных в интегральной фор-
ме, предложен неявный конечно-объемный алгоритм, являющийся обобщением предложенных ра-
нее разносных схем. Использование интегральной формы уравнений позволило обеспечить его
консервативность, а технологии расщепления — экономичность алгоритма. Проведена численная
апробация алгоритма на точном решении, в задачах о течении жидкости в каверне с движущейся
крышкой и течении с подогревом стенок канала, подтвердившая достаточную точность алгоритма
и его эффективность. Работа представлена в выпуск памяти профессора Ю.Я.Белова.

Ключевые слова: уравнения Навье-Стокса, вязкие течения, конечно-объемный метод, алгоритмы
расщепления.
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