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Abstract. The paper considers the problem of identification for a source function in one of two equations
of parabolic quasilinear system. The case of Cauchy data in an unbounded domain and the case of
boundary conditions of the first kind in a rectangular domain are considered. The question of the
existence and uniqueness of the solution is studied. The proof uses a differential level splitting method
known as the weak approximation method. The solution is obtained on a small time interval in the class
of sufficiently smooth bounded functions.
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This work is dedicated to the memory of our teacher, Doctor of Physical and Mathematical
Sciences, Yuri Yakovlevich Belov, who was a recognized and famous specialist in inverse problems
of mathematical physics. A number of his latest papers were devoted to the study of solvability
of inverse problems for parabolic-elliptic semi-evolutionary systems of differential equations. To
study the existence of solutions to such inverse problems, Yu.Belov suggested using the well-
known ε-approximation method. The essence of the method for a system of parabolic and elliptic
equations, for example, is to replace the elliptic equation with a parabolic one, which contains
a small parameter ε at the time derivative. The method was proposed by N.N. Yanenko who
suggested replacing the Navier-Stokes equations of a viscous incompressible fluid with equations
of the Cauchy-Kovalevskaya type with a small parameter ε. Thus, as ε approaches to zero, the
approximating equations become the original ones.

The main part of the mentioned works by Yu.YaBelov is devoted to the study of linear
parabolic-elliptic systems. The case when the unknown component of the source vector function
is in an equation that does not contain a small parameter, under the first and second boundary
conditions were studied in [1, 2]. In [3], a one-dimensional system is considered, in which the
unknown component of the source vector function is in the equation containing the ε parameter.
In the case when the components of the vector function are unknown in each equation of the
system, the Cauchy problem and the first boundary value problem are investigated in [4].
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The research scheme in these works, as a rule, assumes that we first have to investigate the
solvability of the auxiliary approximating problem (in an unbounded domain with Cauchy data
and / or in a bounded domain with boundary conditions of the first or second kind), since these
problems are nonclassical problems for loaded equations, and investigate the necessary properties
of solutions that obviously depend on the parameter ε. And then the second step is to obtain
estimates that will guarantee the convergence of the sequence of solutions of the approximating
problem to the solution of the original problem as ε approaches zero.

In this paper, a quasilinear system of two parabolic equations with one unknown coefficient of
the source function is considered. The question of a solution existence to this problem is studied.
This is a model problem in which the authors set the goal of working out the splitting algorithm
and obtaining a priori estimates for quasilinear systems, which is much more complicated than in
the linear case. It is also important to note that the system under consideration contains a small
fixed parameter ε > 0, which does not affect the study of the question of a solution existence, but
allows using this system subsequently as an approximating model for the problem of identifying
the source function in a quasilinear parabolic-elliptic system.

1. Formulation of the problem and reduction it to the direct
problem

Consider in the strip G[0,T ] = {(t, x) | 0 6 t 6 T, x ∈ E1} the problem of determining
real-valued functions

(
u(t, x), v(t, x), r(t)

)
, satisfying the system of equationsut(t, x) + a11(t)u(t, x) + a12(t)v(t, x) = µ1uxx(t, x) + v(t, x)ux(t, x) + r(t)f(t, x),

εvt(t, x) + a21(t)u(t, x) + a22(t)v(t, x) = µ2vxx(t, x) + u(t, x)vx(t, x) + g(t, x),
(1)

where ε ∈ (0, 1] is a const, with initial conditions

u(0, x) = u0(x), v(0, x) = v0(x), (2)

and the over determination condition

u(t, x0) = φ(t), (3)

where φ(t) is a given function on [0, T ], 0 6 t 6 T , x0 is a fixed point.
System (1), for example, can be an approximation of the parabolic-elliptic system of equationsũt(t, x) + a11(t)ũ(t, x) + a12(t)ṽ(t, x) = µ1ũxx(t, x) + ṽ(t, x)ũx(t, x) + r̃(t)f(t, x),

a21(t)ũ(t, x) + a22(t)ṽ(t, x) = µ2ṽxx(t, x) + ũ(t, x)ṽx(t, x) + g(t, x).

Note that the study of the behavior of the solution when ε approaches zero is beyond the
scope of this study, and in our work ε is a nonnegative fixed constant.

Let the functions aij(t), i, j = 1, 2, be defined on [0, T ] and let the functions f(t, x), g(t, x)
be defined on G[0,T ]. Let µ1, µ2 > 0 be given constants.

Let the relationship ∣∣f(t, x0)∣∣ > δ > 0, t ∈ [0, T ] (δ is a const) (4)

hold.

– 484 –



Vera G. Kopylova, Igor V. Frolenkov On the Solvability of the Identification Problem a Source . . .

Assume that the following consistency condition is fulfilled

u0(x
0) = φ(0). (5)

Reduce the inverse problem (1)–(2) to an auxiliary direct problem. In system (1) we set
x = x0:φ

′(t) + a11(t)φ(t) + a12(t)v(t, x
0) = µ1uxx(t, x

0) + v(t, x0)ux(t, x
0) + r(t)f(t, x0),

εvt(t, x
0) + a21(t)φ(t) + a22(t)v(t, x

0) = µ2vxx(t, x
0) + φ(t)vx(t, x

0) + g(t, x0).
(6)

From (6) we obtain

r(t) =
ψ(t) + a12v(t, x

0)− µ1uxx(t, x
0)− v(t, x0)ux(t, x

0)

f(t, x0)
. (7)

where ψ(t) = φ′(t) + a11(t)φ(t) is known.
Substituting expression for r(t) in (1) we obtain the following direct problem:

ut(t, x) + a11(t)u(t, x) + a12(t)v(t, x) = µ1uxx(t, x) + v(t, x)ux(t, x)+

+
ψ(t) + a12(t)v(t, x

0)− µ1uxx(t, x
0)− v(t, x0)ux(t, x

0)

f(t, x0)
f(t, x),

εvt(t, x) + a21(t)u(t, x) + a22(t)v(t, x) = µ2vxx(t, x) + u(t, x)vx(t, x) + g(t, x),

(8)

u(0, x) = u0(x), (9)

v(0, x) = v0(x). (10)

2. Proof of solvability of the problem (1)–(3)

To prove the existence of a solution to the auxiliary problem (1)–(3), we use the weak ap-
proximation method [5, 6]. We split the problem (8)–(10) and linearize it by shifting in time
by

τ

4
. u

τ
t (t, x) = 4µ1u

τ
xx(t, x),

εvτt (t, x) = 4µ2v
τ
xx(t, x), jτ < t 6

(
j +

1

4

)
τ,

(11)

u
τ
t (t, x) + 4a11(t)u

τ (t, x) = 0,

εvτt (t, x) + 4a22(t)v
τ (t, x) = 0,

(
j +

1

4

)
τ < t 6

(
j +

1

2

)
τ,

(12)


uτt (t, x) = 4vτ

(
t− τ

4
, x

)
uτx(t, x),

εvτt (t, x) = 4uτ
(
t− τ

4
, x

)
vτx(t, x),

(
j +

1

2

)
τ < t 6

(
j +

3

4

)
τ,

(13)



uτt (t, x) + 4a12(t)v
τ (t− τ

4
, x) =

= 4
ψ(t) + a12(t)v

τ (t− τ
4 , x

0)− µ1u
τ
xx(t− τ

4 , x
0)− vτ (t− τ

4 , x
0)uτx(t− τ

4 , x
0)

f(t, x0)
f(t, x),

εvτt (t, x) + 4a21(t)u
τ
(
t− τ

4
, x

)
= 4g(t, x),

(
j +

3

4

)
τ < t 6 (j + 1) τ,

(14)
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uτ (t, x)|t60 = u0(x), (15)

vτ (t, x)|t60 = v0(x). (16)

Here j = 0, 1, . . . , N − 1; τN = T.

Concerning the input data, assume that they are sufficiently smooth, have all continuous
derivatives occurring in the next lower relations of (17)–(19) and satisfy them:

|aij(t)| 6 C, i = 1, 2, j = 1, 2, (17)∣∣∣∣ ∂k∂xk f(t, x)
∣∣∣∣+ ∣∣∣∣ ∂k∂xkF (t, x)

∣∣∣∣+ ∣∣∣∣ dkdxk u0(x)
∣∣∣∣+ ∣∣∣∣ dkdxk v0(x)

∣∣∣∣ 6 C, k = 0, . . . , p+ 6, (18)

|φ(t)|+
∣∣∣φ′

(t)
∣∣∣ 6 C, (t, x) ∈ G[0,T ]. (19)

Below, for convenience, we consider some proofs assuming that the constant C is greater than 1
and that the constant p > 6 is an even number.

For the solution uτ (t, x), vτ (t, x) of the split linearized problem (9)–(12) are obtained a priori
estimates uniform in τ for j = 0, 1, . . . , p+ 1, k = 0, 1, . . . , p, (t, x) ∈ G[0,T ]∣∣∣∣ ∂p+4

∂xp+4
uτt (t, x)

∣∣∣∣+ ∣∣∣∣ ∂p+4

∂xp+4
vτt (t, x)

∣∣∣∣ 6 C, (t, x) ∈ G[0,t∗], (20)

where t∗ does not depend on τ and depends on ε.
By virtue of the (20), the theorem of Arzela [7] and the convergence theorem of the weak

approximation method [6], it follows that the limit functions u(t, x), v(t, x) for τ → 0 are a
solution to the direct problem (8)–(10), and u(t, x), v(t, x) and r(t, x) defined by relation (7) are
solutions of problem (1), (2).

The uniqueness of the found solution is proved in a standard way, by obtaining estimates
showing that the difference of two possible solutions in G[0,t∗] is equal to zero.

The following theorem gives sufficient conditions for the existence and uniqueness of a solu-
tion.

Theorem 2.1. Let the conditions (4), (5), (17)–(19) hold. Then there exists a unique solution
u(t, x), v(t, x), r(t) of problem (1)–(3) in the class

Z(t∗) =
{
u(t, x), v(t, x), r(t)|u(t, x) ∈ C1,p+4

t,x (G[0,t∗]), v(t, x) ∈ C1,p+4
t,x (G[0,t∗]),

r(t) ∈ C([0, t∗])} ,

and the following relations hold

p+4∑
k=0

(∣∣∣∣ ∂k∂xk u(t, x)
∣∣∣∣+ ∣∣∣∣ ∂k∂xk v(t, x)

∣∣∣∣)+ ||r(t)||C1[0,t∗] +

∣∣∣∣ ∂∂tu(t, x)
∣∣∣∣+ ∣∣∣∣ ∂∂tv(t, x)

∣∣∣∣ 6 C(ε),

(t, x) ∈ G[0,t∗]. (21)

where

C1,p+4
t,x (G[0,t∗]) =

{
u(t, x)|ut ∈ C(G[0,t∗]),

∂k

∂xk
u ∈ C(G[0,t∗]), k = 0, . . . , p+ 4

}
.

Obviously, the solution depends on the constant ε, just as the constant C(ε) depends on ε

and the input data.
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3. Periodicity

In the domain Qt∗ = {(t, x) | 0 < t < t∗, 0 < x < l} consider the boundary value problemut(t, x) + a11(t)u(t, x) + a12(t)v(t, x) = µ1uxx(t, x) + v(t, x)ux(t, x) + r(t)f(t, x),

εvt(t, x) + a21(t)u(t, x) + a22(t)v(t, x) = µ2vxx(t, x) + u(t, x)vx(t, x) + g(t, x),
(22)

ε is a const, ε ∈ (0, 1],

u(0, x) = u0(x), x ∈ [0, l], (23)

v(0, x) = v0(x), x ∈ [0, l], (24)

u(t, 0) = u(t, l) = v(t, 0) = v(t, l) = 0, t ∈ [0, t∗], (25)

u(t, x0) = φ(t), 0 < x0 < l, (26)

u0(x
0) = φ(0). (27)

Let us extend the functions u0(x), v0(x), f(t, x), g(t, x) to the segment [−l, l]:

u0(x) = −u0(−x), for − l 6 x < 0,

v0(x) = −v0(−x), for − l 6 x < 0.

Then we continue the functions from [−l, l] to ℜ in a periodic manner.
Extend the functions f(t, x) and g(t, x) from [0, t∗]× [0, l] to [0, t∗]× ℜ to periodic and odd

in x functions.
Note that the functions u0(x), v0(x), f(t, x), g(t, x), according to the construction method,

satisfy the conditions:

u0(−x) = −u0(x), u0(l − x) = −u0(l + x), (28)

v0(−x) = −v0(x), v0(l − x) = −v0(l + x), (29)

f(t,−x) = −f(t, x), f(t, l − x) = −f(t, l + x), (30)

g(t,−x) = −g(t, x), g(t, l − x) = −g(t, l + x), (31)

The functions u0(x), v0(x), f(t, x), g(t, x) continued in this way are used as the input data for
the Cauchy problemut(t, x) + a11(t)u(t, x) + a12(t)v(t, x) = µ1uxx(t, x) + v(t, x)ux(t, x) + r(t)f(t, x),

εvt(t, x) + a21(t)u(t, x) + a22(t)v(t, x) = µ2vxx(t, x) + u(t, x)vx(t, x) + g(t, x),
(32)

ε is const, ε ∈ (0, 1],
u(0, x) = u0(x), x ∈ (−∞,+∞), (33)

v(0, x) = v0(x), x ∈ (−∞,+∞). (34)

Split the problem (32)–(34):
uτt (t, x) = 4µ1u

τ
xx(t, x),

εvτt (t, x) = 4µ2v
τ
xx(t, x), jτ < t 6

(
j +

1

4

)
τ,

(35)
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u
τ
t (t, x) + 4a11(t)u

τ (t, x) = 0,

εvτt (t, x) + 4a22(t)v
τ (t, x) = 0,

(
j +

1

4

)
τ < t 6

(
j +

1

2

)
τ,

(36)


uτt (t, x) = 4vτ

(
t− τ

4
, x

)
uτx(t, x),

εvτt (t, x) = 4uτ
(
t− τ

4
, x

)
vτx(t, x),

(
j +

1

2

)
τ < t 6

(
j +

3

4

)
τ,

(37)


uτt (t, x) + 4a12(t)v

τ
(
t− τ

4
, x

)
=

= 4
ψ(t) + a12(t)v

τ
(
t− τ

4 , x
0
)
− µ1u

τ
xx

(
t− τ

4 , x
0
)
− vτ

(
t− τ

4 , x
0
)
uτx

(
t− τ

4 , x
0
)

f(t, x0)
f(t, x),

εvτt (t, x) + 4a21(t)u
τ
(
t− τ

4
, x

)
= 4g(t, x),

(
j +

3

4

)
τ < t 6 (j + 1) τ,

(38)
uτ (0, x) = u0(x), (39)

vτ (0, x) = v0(x). (40)

Let uτ (t, x), vτ (t, x) be a solution to the split problem. Let us show that uτ (t, x), vτ (t, x)
satisfy the conditions

uτ (t,−x) = −uτ (t, x), uτ (t, l − x) = −uτ (t, l + x), (41)

vτ (t,−x) = −vτ (t, x), vτ (t, l − x) = −vτ (t, l + x). (42)

At the first fractional step, using the integral representation, we obtain

uτ (t, x) =

∫ +∞

−∞
u0(ξ)

1

4
√
πtµ1

e−
(x−ξ)2

12µ1t dξ. (43)

vτ (t, x) =

∫ +∞

−∞
v0(ξ)

1

4
√
πtµ2

e−
(x−ξ)2

12µ2t dξ. (44)

Let us check the first conditions from (41) and (42)

uτ (t,−x) + uτ (t, x) =

∫ +∞

−∞
u0(ξ)

1

4
√
πtµ1

(e−
(x−ξ)2

12µ1t + e−
(x+ξ)2

12µ1t )dξ. (45)

vτ (t,−x) + vτ (t, x) =

∫ +∞

−∞
v0(ξ)

1

4
√
πtµ2

(e−
(x−ξ)2

12µ2t + e−
(x+ξ)2

12µ2t )dξ. (46)

The integrand changes sign when ξ is replaced by −ξ, therefore, the integrals are equal to
0. The second conditions from (41) and (42) are verified similarly by replacing η = l − ξ the
variable of integration.

At the second fractional step, uτ (t, x), vτ (t, x) have the form

uτ (t, x) = uτ
(τ
4
, x

)
e
4

t∫
τ
4

a11(η)dη

,
τ

2
< t 6 τ

4
, (47)

vτ (t, x) = vτ
(τ
4
, x

)
e
4

t∫
τ
4

a22(η)dη

,
τ

2
< t 6 τ

4
. (48)
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Consequently,

uτ (t,−x) + uτ (t, x) =
(
uτ

(τ
4
,−x

)
+ uτ

(τ
4
, x

))
e
4

t∫
τ
4

a11(η)dη

,
τ

2
< t 6 τ

4
, (49)

vτ (t,−x) + vτ (t, x) =
(
vτ

(τ
4
,−x

)
+ vτ

(τ
4
, x

))
e
4

t∫
τ
4

a22(η)dη

,
τ

2
< t 6 τ

4
. (50)

The conditions (41) and (42) follows from the first fractional step.
At the third fractional step, we use Lemma 1.

Lemma 1. Let the function u(t, x) be a solution to the equation ut = a(t, x)ux in the domain
D = {(t, x)|t0 < t < t1, x ∈ ℜ} with the initial condition u(t0, x) = u0(x). Let the function
(a, t, x) satisfy the Lipschitz condition in x and the relations

a(t, c+ x) = −a(t, c− x), u0(c+ x) = u0(c− x), c is a const

hold. Then the function u(t, x) satisfies the relation u(t, c+ x) = −u(t, c− x).

The proof of Lemma 1 is presented in [8].
Where do we get the fulfillment of the conditions (41) and (42).
At the fourth fractional step, we get

uτ (t, x) = uτ
(3τ
4
, x

)
+ 4

∫ t

3τ
4

(a12(η)v
τ
(
η − τ

4
, x

)
+

+
ψ(η) + a12(t)v

τ
(
η − τ

4 , x
0
)
− µ1u

τ
xx

(
η − τ

4 , x
0
)
− vτ

(
t− τ

4 , x
0
)
uτx

(
t− τ

4 , x
0
)

f(η, x0)
f(η, x))dη, (51)

vτ (t, x) = vτ
(3τ
4
, x

)
+ 4

1

ε

∫ t

3τ
4

(
a21(η)u

τ
(
η − τ

4
, x

)
+ g(η, x)

)
dη, (52)

Let us check the first conditions from (41) and (42)

uτ (t,−x) + uτ (t, x) = uτ
(3τ
4
, x

)
+ uτ

(3τ
4
,−x

)
+

+ 4

∫ t

3τ
4

(a12(η)
(
vτ

(
η − τ

4
, x

)
+ vτ

(
η − τ

4
,−x

))
+

+
ψ(η) + a12(t)v

τ
(
η − τ

4 , x
0
)
− µ1u

τ
xx

(
η − τ

4 , x
0
)
− vτ

(
t− τ

4 , x
0
)
uτx

(
t− τ

4 , x
0
)

f(η, x0)
×

× (f(η, x) + f(η,−x)))dη = 0, (53)

vτ (t,−x) + vτ (t, x) = vτ
(3τ
4
, x

)
+ vτ

(3τ
4
,−x

)
+

+ 4
1

ε

∫ t

3τ
4

(
a21(η)

(
uτ

(
η − τ

4
, x

)
+ uτ

(
η − τ

4
,−x

))
+

(
g(η, x) + g(η,−x)

))
dη = 0. (54)

The second conditions from (41) and (42) are obviously also satisfied.
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We have proved that the conditions (41) and (42) are satisfied at the zero integer step.
Arguing in the same way at the next steps, we obtain that the conditions (41) and (42) are
satisfied for all t ∈ [0, t∗]. Substituting x = 0 in (41) and (42), we get

uτ (t, 0) = uτ (t, l) = 0, t ∈ [0, t∗] (55)

vτ (t, 0) = vτ (t, l) = 0, t ∈ [0, t∗]. (56)

Theorem 3.1. Let conditions (28)-(31) and the conditions of Theorem 1 hold. The components
u, v of the solution (u, v, r) to problem (1)–(3) are periodic functions in the variable x with period
2l and satisfy

∂2mu(t, 0)

∂x2m
=
∂2m+1u(t, l)

∂x2m
=
∂2m+1v(t, 0)

∂x2m
=
∂2m+1v(t, l)

∂x2m
= 0, m = 0, 1, . . . ,

p+ 4

2
. (57)
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О разрешимости задачи идентификации функции
источника в квазилинейной параболической системе
уравнений в ограниченных и неограниченных областях

Вера Г.Копылова
Игорь В. Фроленков

Сибирский федеральный университет
Красноярск, Российская Федерация

Аннотация. В работе рассматривается задача идентификации функции источника в одном из
двух уравнений квазилинейной системы двух параболических уравнений. Рассматривается случай
данных Коши в неограниченной области, а также случай краевых условий первого рода в пря-
моугольной области. Изучен вопрос существования и единственности решения. Для доказатель-
ства используется метод расщепления на дифференциальном уровне, известный как метод слабой
аппроксимации. Решение получено на малом временном интервале в классе достаточно гладких
ограниченных функций.

Ключевые слова: обратная задача, система квазилинейных уравнений, определение функции
источника, метод слабой аппроксимации, малый параметр.
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