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Abstract. The paper is devoted to the construction of effective acoustic equations for a two-phase
layered viscoelastic material described by the Kelvin–Voigt model with fractional time derivatives. For
this purpose, the theory of two-scale convergence and the Laplace transform with respect to time are
used. It is shown that the effective equations are partial integro-differential equations with fractional
time derivatives and fractional exponential convolution kernels. In order to find the coefficients and the
convolution kernels of these equations, several auxiliary cell problems are formulated and solved.
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The study of macroscopic acoustic behavior of heterogeneous viscoelastic materials with peri-
odic microstructure is one of the most significant problems in acoustical engineering when dealing
with polymer based composites. The most rigorous and widely accepted mathematical tool for
the theoretical part of this study is the theory of homogenization. Using techniques of homog-
enization, the actual highly inhomogeneous periodic viscoelastic composite can be replaced by
the corresponding effective (homogenized) material with the similar acoustic properties.

It is well known that short memory effects in microheterogeneous viscoelastic Kelvin–Voigt
materials lead to the appearance of long memory effects in the corresponding effective media (see
[1–3]). In other words the acoustic equations for these materials, which are partial differential
equations, become partial integro-differential equations after homogenization. The same result
was observed for two-phase materials, in which the first phase is an elastic material whilst the
second one is a viscoelastic Kelvin–Voigt material [4, 5].

In recent years there has been an increasing number of papers devoted to the development
of fractional models in viscoelasticity (see, for instance, [6–8] and the reference therein). Such
models consist of differential or integro-differential equations with fractional derivatives. The
growing popularity of fractional models is explained by their ability of describing the complex
behaviour of viscoelastic materials using a small number of parameters.

In this paper, we consider a mathematical model describing small displacements of a two-
phase layered viscoelastic material whose behavior is described by the fractional Kelvin–Voigt
model. This model consists of a system of partial differential equations with fractional time
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derivatives and rapidly oscillating piecewise constant coefficients, conditions of ideal contact
between layers, and homogeneous initial and outer boundary conditions. Using the two-scale
convergence method [9, 10] and applying the Laplace transform, we show that the corresponding
effective model involves a system of partial integro-differential equations with fractional time
derivatives and constant coefficients. By solving a number of auxiliary cell problems, we calculate
these coefficients and find that the integral parts of the effective equations are of convolution type
and their kernels are fractional exponential Rabotnov’s functions. Thus, we rigorously establish
that long memory effects mentioned above also appear in the effective material that corresponds
to the fractional Kelvin–Voigt material.

1. Original acoustic equations

Consider a bounded domain Ω = (0, L)3 occupied by two-phase viscoelastic material with a
periodic microstructure. Let ε ≪ L be a small positive parameter characterizing the heterogene-
ity period of the viscoelastic material. We suppose that every phase is isotropic and consists of
the union of layers that are parallel to the Ox2x3 plane. More precisely, denote

D2ε = (0, L) ∩

( ∞⋃
k=0

(ε(h1 + k), ε(h2 + k))

)
, D1ε = (0, L) \D2ε,

h1 =
1− h

2
, h2 =

1 + h

2
, 0 < h < 1

and assume that the sets Ω1ε = D1ε × (0, L)2 and Ω2ε = D2ε × (0, L)2 are occupied by the first
and the second phase, respectively.

Note that the periodicity cell Yε of the above layered material may be extracted in different
ways. For our convenience, we will assume that Yε = εY , where Y = (0, 1)3 is a unite cube. The
cube Y can be decomposed into two parts Y1 and Y2 with a common boundary S as follows:

Y1 = ((0, h1) ∪ (h2, 1))× (0, 1)2, Y2 = (h1, h2)× (0, 1)2,

S = ({h1} ∪ {h2})× (0, 1)2.

It is obvious that Yε = εY1 ∪ εY2 ∪ εS. The part εY1 represents the first phase and consists of
two layers with the same thickness ε(1− h)/2 while the part εY2 represents the second phase of
the layered material and consists of one layer with the thickness εh (see Fig. 1).

The viscoelastic material we propose to study is described by the fractional Kelvin–Voigt
model. Its constitutive equations between the components of the stress and strain tensors have
the form

σε
ij = aεijkh(x)ekh(u

ε) + bεijkh(x)ekh (D
α
t u

ε) , 0 < α < 1, (1)

where uε(x, t) is the displacement vector, aε(x) = a(ε−1x) and bε(x) = b(ε−1x) are Yε-periodic
tensors describing the elastic and viscous properties of the material, σε and e(uε) are the stress
and strain tensors, and Dα

t is the Caputo fractional time derivative of order α,

ekh(u
ε) =

1

2

(
∂uε

k

∂xh
+

∂uε
h

∂xk

)
, Dα

t u
ε =

1

Γ(1− α)

∫ t

0

(t− τ)−α ∂u
ε

∂τ
dτ,

aijkh(y) = λsδijδkh + µs(δikδjh + δihδjk), y ∈ Ys,

bijkh(y) = ζsδijδkh + ηs(δikδjh + δihδjk), y ∈ Ys,

y = ε−1x, s = 1, 2, 1 6 i, j, k, h 6 3.
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Fig. 1. The first and the second phases of the layered material

Here λs and µs are the Lamé parameters of Ωsε, ζs and ηs are parameters describing the viscous
behavior of Ωsε, Γ(α) is Euler’s gamma function, and δij is Kroneker’s delta. Note that in (1)
and everywhere below we assume summation with respect to repeated indices.

The motion of the viscoelastic material in the phase Ωsε is described by the system of partial
differential equations with fractional time derivative

ρs
∂2uε

i

∂t2
=

∂σε
ij

∂xj
+ fi(x, t) in Ωsε × (0, T ), s = 1, 2, (2)

where ρs = const > 0 is the density of the material in Ωsε and fi(x, t) are the components of the
volume external force vector.

On the boundaries between the layers we assume the condition of ideal contact. It means the
continuity of displacements and normal stresses at each layer interface and is written as

[uε]|Sε = 0, [σε
i1]|Sε = 0, (3)

where the square brackets [·]|Sε
denote the jump in the enclosed quantity across the boundary

Sε = ∂Ω1ε ∩ ∂Ω2ε.
Finally, we accept that the boundary conditions on ∂Ω for displacements as well as the initial

conditions for displacements and velocities are homogeneous, i.e.

uε|∂Ω = 0, uε|t=0 = 0,
∂uε

∂t

∣∣∣
t=0

= 0. (4)

Problem (2)–(4) is a mathematical model describing the general motion of the two-phase
viscoelastic material. Our aim now is to deduce the corresponding effective (homogenized) model
that describes the limit dynamic behavior of the original two-phase viscoelastic material as ε → 0.

2. Effective acoustic equations

To construct the homogenized problem, we will use the method proposed in [5, 11, 12]. This
method was developed for the homogenization of acoustics equations in two-phase dissipative
media with periodic microstructure. Its main tools are the Laplace transform and the concept
of two-scale convergence introduced by G. Nguetseng [9].
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First, applying the Laplace transform uε(x, t) → uε
λ(x) and f(x, t) → fλ(x), we convert

the evolutionary problem (2)–(4) into the stationary one. As a result, we obtain the following
boundary value problem for Laplace transforms:

ρsλ
2uε

λi =
∂σλε

ij

∂xj
+ fλi(x) in Ωsε, s = 1, 2,

uε
λ|∂Ω = 0, [uε

λ]|Sε
= 0, [σλε

i1 ]|Sε
= 0,

(5)

where
σλε
ij =

(
aεijkh(x) + λαbεijkh(x)

)
ekh(u

ε
λ).

Next, using the basic properties of two-scale convergence and repeating the same arguments
as in [5, 11, 12], we can show that the homogenized problem that corresponds to problem (5) and
which is constructed for ε → 0 has the form

ρ0λ
2uλi =

∂σλ
ij

∂xj
+ fλi(x) in Ω, uλ|∂Ω = 0, (6)

where
ρ0 = ρ1(1− h) + ρ2h, σλ

ij = dλijkhekh(uλ),

dλijkh =

∫
Y

(
cλijkh(y) + cλijlm(y)eylm(Qkh

λ )
)
dy, (7)

cλijkh(y) = aijkh(y) + λαbijkh(y), eylm(Qkh
λ ) =

1

2

(
∂Qkh

λl

∂ym
+

∂Qkh
λm

∂yl

)
.

Here the vector-valued functions Qkh
λ (y) are Y -periodic solutions to the following cell problems:

∂

∂yj

(
cλijkh(y) + cλijlm(y)eylm(Qkh

λ )
)
= 0 in Y,

∫
Y

Qkh
λ dy = 0,

[Qkh
λ ]
∣∣
y1=hs

= 0,
[
cλijkh(y) + cλijlm(y)eylm(Qkh

λ )
]∣∣

y1=hs
= 0, s = 1, 2.

(8)

Now we apply the inverse Laplace transform to the homogenized stationary problem (6). We
have

ρ0
∂2ui

∂t2
=

∂σij

∂xj
+ fi(x, t) in Ω× (0, T ), (9)

u|∂Ω = 0, u|t=0 = 0,
∂u

∂t

∣∣∣
t=0

= 0

with
σij = dijkh(t) ∗ ekh(u), (10)

where the symbol ∗ denotes the operation of convolution with respect to time t.

3. Solutions of auxiliary cell problems

Passing to the inverse Laplace transforms in (8) we see that Qkh(y, t) depends on the Dirac
function δ(t) and cannot be expressed in explicit form without some additional explanations. In
order to do this and at the same time derive direct formula for calculation of components of
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the tensor d(t), we will proceed in the following way. Let us represent the solutions Qkh
λ (y) to

problems (8) in the form

Qkh
λ (y) = Zkh(y) +

V kh(y)

λα −Mkh
, Mkh = const, (11)

where vector-valued functions Zkh(y), V kh(y) and parameters Mkh are to be specified.
In a first step, let us define the vector-valued functions Zkh(y) as Y -periodic solutions to the

cell problems

∂

∂yj

(
bijkh(y) + bijlm(y)eylm(Zkh)

)
= 0 in Y,

∫
Y

Zkhdy = 0,

[Zkh]
∣∣
y1=hs

= 0,
[
bijkh(y) + bijlm(y)eylm(Zkh)

]∣∣
y1=hs

= 0, s = 1, 2.

(12)

In a second step, using the solutions Zkh(y) to problems (12), we define the vector-valued
functions V kh(y) as Y -periodic solutions to the cell problems

∂

∂yj

(
aijkh(y) + aijlm(y)eylm(Zkh) + bijlm(y)eylm(V kh)

)
= 0 in Y,[

aijkh(y) + aijlm(y)eylm(Zkh) + bijlm(y)eylm(V kh)
]∣∣

y1=hs
= 0, s = 1, 2,∫

Y

V khdy = 0, [V kh]
∣∣
y1=hs

= 0.

(13)

To write out solutions to problems (12) and (13), we introduce 1-periodic piecewise linear
function z(y1) defined by

z(y1) =



y1h

1− h
, y1 ∈ (0, h1),

−y1 +
1

2
, y1 ∈ (h1, h2),

(y1 − 1)h

1− h
, y1 ∈ (h2, 1).

It is easy to check that Zkh(y) = Zhk(y) and V kh(y) = V hk(y), so that we need only to find
Zkh(y) and V kh(y) for k 6 h. Solving problems (12) for k 6 h, we obtain

Z11(y) = (c1z(y1), 0, 0), Z22(y) = Z33(y) = (c2z(y1), 0, 0),

Z12(y) = (0, c3z(y1), 0), Z13(y) = (0, 0, c3z(y1)), Z23(y) = (0, 0, 0),

where

c1 =
1

b12
(1− h)(b2 − b1), c2 =

1

b12
(1− h)(ζ2 − ζ1), c3 =

1

η12
(1− h)(η2 − η1),

b12 = b1h+ b2(1− h), η12 = η1h+ η2(1− h), bs = ζs + 2ηs.

Substituting Zkh(y) into problems (13) and solving them for k 6 h, we derive

V 11(y) = (c4z(y1), 0, 0), V 22(y) = V 33(y) = (c5z(y1), 0, 0),

V 12(y) = (0, c6z(y1), 0), V 13(y) = (0, 0, c6z(y1)), V 23(y) = (0, 0, 0),
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where
c4 =

1

b212
(1− h)(b1a2 − b2a1), c5 =

1− h

b212
((λ2 − λ1)b12 − (ζ2 − ζ1)a12) ,

c6 =
1

η212
(1− h)(η1µ2 − η2µ1), a12 = a1h+ a2(1− h), as = λs + 2µs.

Now, after defining Zkh(y) and V kh(y) in (11), we can find parameters Mkh. It follows from
(8), (12), and (13) that Mkh satisfies the system

∂

∂yj

(
aijlm(y)elm(V kh) +Mkhbijlm(y)eylm(V kh)

)
= 0 in Y, (14)[

aijlm(y)elm(V kh) +Mkhbijlm(y)eylm(V kh)
]∣∣

y1=hs
= 0, s = 1, 2. (15)

Substitute V kh(y) found above into (14) and (15). It is easy to check that equations (14)
are always fulfilled for any parameters Mkh. Further, from the boundary conditions (15) we
calculate the required values of Mkh:

M11 = M22 = M33 = −a12
b12

,

M12 = M21 = M13 = M31 = −µ12

η12
.

Applying the inverse Laplace transform to (11), we get

Qkh(y, t) = δ(t)Zkh(y) +Rα−1(M
kh, t)V kh(y),

where Rν(β, t) denotes fractional exponential Rabotnov’s function [13]:

Rν(β, t) = tν
∞∑

n=0

βntn(1+ν)

Γ[(1 + n)(1 + ν)]
.

Next we substitute the decomposition (11) into (7) to obtain

dλijkh = Aijkh + λαBijkh +Gijkh(λ),

where the components of the tensors A, B, and G(λ) are given by the formulas

Aijkh =

∫
Y

(
aijkh(y) + aijlm(y)eylm(Zkh) + bijlm(y)eylm(V kh)

)
dy, (16)

Bijkh =

∫
Y

(
bijkh(y) + bijlm(y)eylm(Zkh)

)
dy, (17)

Gijkh(λ) =
1

λα −Mkh

∫
Y

(
aijlm(y)eylm(V kh) +Mkhbijlm(y)eylm(V kh)

)
dy.

Therefore, the constitutive equations (10) take the form

σij = Aijkhekh(u) +Bijkhekh(D
α
t u) +Gijkh(t) ∗ ekh(u), (18)

where Gijkh(t) are the inverse Laplace transforms of Gijkh(λ):

Gijkh(t) = Rα−1

(
Mkh, t

) ∫
Y

(
aijlm(y)elm(V kh) +Mkhbijlm(y)eylm(V kh)

)
dy. (19)

From (18) we see that the effective acoustic equations (9) are partial integro-differential
equations with fractional time derivative and constant coefficients. It is interesting to note
that their kernels are expressed via two different Rabotnov’s functions Rα−1(−a12/b12, t) and
Rα−1(−µ12/η12, t).
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4. Components of the tensors A, B, and G(t)

Before proceeding to the calculation of the tensors A, B, and G(t), let us note that

Aijkh = Ajikh = Akhij , Aijkh = 0 whenever δijδkh + δikδjh + δihδjk = 0,

A2222 = A3333, A1122 = A1133, A1212 = A1313, A2222 −A2233 = 2A2323

and similarly for the tensors B and G(t). Moreover, it is easy to see that

A2323 = µ1(1− h) + µ2h, B2323 = η1(1− h) + η2h, G2323(t) = 0.

Therefore, it is sufficient to find the components of A, B, and G(t) with indexes {1111},
{2222}, {1122}, and {1212}. To do this, we first substitute the found solutions to problems (12)
and (13) into formulas (16) and (17). This yeilds

A1111 = a1(1− h) + a2h+ c1h(a1 − a2) + c4h(b1 − b2),

A2222 = a1(1− h) + a2h+ c2h(λ1 − λ2) + c5h(ζ1 − ζ2),

A1122 = λ1(1− h) + λ2h+ c2h(a1 − a2) + c5h(b1 − b2),

A1212 = µ1(1− h) + µ2h+ c3h(µ1 − µ2) + c6h(η1 − η2),

B1111 = b1(1− h) + b2h+ c1h(b1 − b2), B2222 = b1(1− h) + b2h+ c2h(ζ1 − ζ2),

B1212 = η1(1− h) + η2h+ c3h(η1 − η2), B1122 = ζ1(1− h) + ζ2h+ c2h(b1 − b2).

Taking into account the above values of constants ci and using trivial transformations, we
obtain

A1111 =
1

b212

(
a2b

2
1h+ a1b

2
2(1− h)

)
, A1212 =

1

η212

(
µ2η

2
1h+ µ1η

2
2(1− h)

)
,

A2222 = a1(1− h) + a2h+
h(1− h)(ζ1 − ζ2)

b212
(a12(ζ1 − ζ2)− 2b12(λ1 − λ2)) ,

A1122 =
1

b12
(b1λ2h+ b2λ1(1− h)) +

h

b212
(1− h)(ζ2 − ζ1)(a1b2 − a2b1),

B1111 =
b1b2
b12

, B2222 = b1(1− h) + b2h− h

b12
(1− h)(ζ1 − ζ2)

2,

B1122 =
1

b12
(b1ζ2h+ b2ζ1(1− h)) , B1212 =

η1η2
η12

.

In order to find the components of G(t), we substitute the solutions V kh(y) to problems (13)
and the parameters Mkh into formulas (19). As a result, we get

G1111(t) = −h(1− h)

b312
(a1b2 − a2b1)

2Rα−1

(
−a12
b12

, t

)
,

G2222(t) = −h(1− h)

b312
((λ1 − λ2)b12 − (ζ1 − ζ2)a12)

2
Rα−1

(
−a12
b12

, t

)
,

G1122(t) = −h(1− h)

b312
(a1b2 − a2b1) ((λ1 − λ2)b12 − (ζ1 − ζ2)a12)Rα−1

(
−a12
b12

, t

)
,

G1212(t) = −h(1− h)

η312
(µ1η2 − µ2η1)

2Rα−1

(
−µ12

η12
, t

)
.
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To conclude, we note that our results can be considered as a generalization of those obtained
in the case of two-phase layered viscoelastic material described by a standard Kelvin-Voigt model
(α = 1). Indeed, the effective acoustic equations for the last material also have form (9) with the
constitutive equations (18), where Aijkh and Bijkh are defined by the same formulas as above.
Moreover, the components of G(t) are found by using the formulas presented here, in which we
should put α = 1 and take into account that

R0

(
−a12
b12

, t

)
= exp

(
−a12t

b12

)
, R0

(
−µ12

η12
, t

)
= exp

(
−µ12t

η12

)
.

This work was accomplished within the Russian State Assignment under contract no. АААА-
А20-120011690138-6.
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Эффективные уравнения акустики для слоистого
материала, описываемого дробной моделью
Кельвина-Фойгта

Алексей С. Шамаев
Владлена В. Шумилова

Институт проблем механики им. А.Ю. Ишлинского РАН
Москва, Российская Федерация

Аннотация. Статья посвящена построению эффективных уравнений акустики для двухфаз-
ного слоистого вязкоупругого материала, описываемого моделью Кельвина–Фойгта с дробными
производными по времени. Для этой цели используется теория двухмасштабной сходимости и
преобразование Лапласа по времени. Показано, что эффективные уравнения являются интегро-
дифференциальными уравнениями в частных производных с дробными производными по времени
и дробно-экспоненциальными ядрами свертки. Для того чтобы найти коэффициенты и ядра свер-
ток этих уравнений, сформулированы и решены несколько вспомогательных задач.

Ключевые слова: усреднение, уравнения акустики, вязкоупругость, дробная модель Кельвина–
Фойгта.
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