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Abstract. The paper is devoted to the construction of effective acoustic equations for a two-phase

layered viscoelastic material described by the Kelvin—Voigt model with fractional time derivatives. For
this purpose, the theory of two-scale convergence and the Laplace transform with respect to time are
used. It is shown that the effective equations are partial integro-differential equations with fractional
time derivatives and fractional exponential convolution kernels. In order to find the coefficients and the
convolution kernels of these equations, several auxiliary cell problems are formulated and solved.
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The study of macroscopic acoustic behavior of heterogeneous viscoelastic materials with peri-
odic microstructure is one of the most significant problems in acoustical engineering when dealing
with polymer based composites. The most rigorous and widely accepted mathematical tool for
the theoretical part of this study is the theory of homogenization. Using techniques of homog-
enization, the actual highly inhomogeneous periodic viscoelastic composite can be replaced by
the corresponding effective (homogenized) material with the similar acoustic properties.

It is well known that short memory effects in microheterogeneous viscoelastic Kelvin—Voigt
materials lead to the appearance of long memory effects in the corresponding effective media (see
[1-3]). In other words the acoustic equations for these materials, which are partial differential
equations, become partial integro-differential equations after homogenization. The same result
was observed for two-phase materials, in which the first phase is an elastic material whilst the
second one is a viscoelastic Kelvin-Voigt material [4, 5].

In recent years there has been an increasing number of papers devoted to the development
of fractional models in viscoelasticity (see, for instance, [6-8] and the reference therein). Such
models consist of differential or integro-differential equations with fractional derivatives. The
growing popularity of fractional models is explained by their ability of describing the complex
behaviour of viscoelastic materials using a small number of parameters.

In this paper, we consider a mathematical model describing small displacements of a two-
phase layered viscoelastic material whose behavior is described by the fractional Kelvin—Voigt
model. This model consists of a system of partial differential equations with fractional time
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derivatives and rapidly oscillating piecewise constant coefficients, conditions of ideal contact
between layers, and homogeneous initial and outer boundary conditions. Using the two-scale
convergence method [9, 10] and applying the Laplace transform, we show that the corresponding
effective model involves a system of partial integro-differential equations with fractional time
derivatives and constant coefficients. By solving a number of auxiliary cell problems, we calculate
these coeflicients and find that the integral parts of the effective equations are of convolution type
and their kernels are fractional exponential Rabotnov’s functions. Thus, we rigorously establish
that long memory effects mentioned above also appear in the effective material that corresponds
to the fractional Kelvin—Voigt material.

1. Original acoustic equations

Consider a bounded domain Q = (0, L)? occupied by two-phase viscoelastic material with a
periodic microstructure. Let ¢ < L be a small positive parameter characterizing the heterogene-
ity period of the viscoelastic material. We suppose that every phase is isotropic and consists of
the union of layers that are parallel to the Ozsxz3 plane. More precisely, denote

DQ& = (OvL) N <U (E(hl + k),f(hQ + k))) ) DlE = (OaL) \ﬁQE?
k=0
1—h 1+h
hy = ——, hg—L 0<h<1

2 2
and assume that the sets Q1. = Dy x (0, L)? and Qo = Do, x (0, L)? are occupied by the first
and the second phase, respectively.

Note that the periodicity cell Y. of the above layered material may be extracted in different
ways. For our convenience, we will assume that Y. = €Y, where Y = (0, 1)? is a unite cube. The
cube Y can be decomposed into two parts Y7 and Y5 with a common boundary S as follows:

Y1 = ((0,h1) U (ho, 1)) x (0,1)%, Yy = (hy1, ha) x (0,1)%

S = ({h1} U{hy}) x (0,1)%

It is obvious that Y. = €Y; UeYs UeS. The part €Y7 represents the first phase and consists of
two layers with the same thickness €(1 — h)/2 while the part €Y represents the second phase of
the layered material and consists of one layer with the thickness eh (see Fig. 1).

The viscoelastic material we propose to study is described by the fractional Kelvin—Voigt
model. Its constitutive equations between the components of the stress and strain tensors have
the form

05 = aiipn(T)ern(u®) + b5k (v)exn (Dfu®), 0 <a <1, (1)
where u®(z,t) is the displacement vector, a®(z) = a(e~'z) and b°(z) = b(e~1z) are Y.-periodic
tensors describing the elastic and viscous properties of the material, o and e(u®) are the stress
and strain tensors, and Dy* is the Caputo fractional time derivative of order «,

1 [(0ug  Ous, 1 K o Ouf
=2k Diuf = ——— | (t—7)"T=d
ekn(u”) 2 <8wh + (‘3xk) e I'(l-a) /0 (t=7) ar 47

@ijkn(Y) = As0ijOrn + ts(0in0jn + 0indjx), y € Yy,
bijkn(y) = Cs0ij0kn + Ns(dirdjn + dindjx), y € Y,
y=¢c¢ 'z, s=1,2, 1<i,5,kh<3.
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Fig. 1. The first and the second phases of the layered material

Here A and s are the Lamé parameters of ., (; and 7 are parameters describing the viscous
behavior of Qg., I'(«v) is Euler’s gamma function, and §;; is Kroneker’s delta. Note that in (1)
and everywhere below we assume summation with respect to repeated indices.
The motion of the viscoelastic material in the phase €2, is described by the system of partial
differential equations with fractional time derivative
0*us  0Jof

Ps o = 8%7 + filz,t) in Qe x (0,T), s=1,2, (2)

where ps = const > 0 is the density of the material in Q. and f;(z,t) are the components of the
volume external force vector.

On the boundaries between the layers we assume the condition of ideal contact. It means the
continuity of displacements and normal stresses at each layer interface and is written as

[wlls. =0, [o71]s. =0, 3)

where the square brackets [-]|s. denote the jump in the enclosed quantity across the boundary
Se = 001 N O0Ng,.

Finally, we accept that the boundary conditions on 0f) for displacements as well as the initial

conditions for displacements and velocities are homogeneous, i.e.
ou®

ulon =0, ufli—og =0, — =0. 4

jon =0 wlmo =0, S| (@

Problem (2)—(4) is a mathematical model describing the general motion of the two-phase

viscoelastic material. Our aim now is to deduce the corresponding effective (homogenized) model

that describes the limit dynamic behavior of the original two-phase viscoelastic material as ¢ — 0.

2. Effective acoustic equations

To construct the homogenized problem, we will use the method proposed in [5,11,12]. This
method was developed for the homogenization of acoustics equations in two-phase dissipative
media with periodic microstructure. Its main tools are the Laplace transform and the concept
of two-scale convergence introduced by G. Nguetseng [9].
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First, applying the Laplace transform u®(z,t) — u5(x) and f(z,t) — fa(z), we convert
the evolutionary problem (2)—(4) into the stationary one. As a result, we obtain the following
boundary value problem for Laplace transforms:

pAZUE,:agg\js_~_fA,<x) in O s=1,2
s i 85Ej 7 SE» 9 <y (5)

uloa =0, [u5]ls. =0, [03¥]ls. =0,

where
A
o= (afjkh(x) + )\abfjkh(l")) exn(uy)-
Next, using the basic properties of two-scale convergence and repeating the same arguments

as in [5, 11, 12], we can show that the homogenized problem that corresponds to problem (5) and
which is constructed for € — 0 has the form

A

9 80'ij )
poXux = ==+ fri(z) in Q, uslon =0, (6)
J

where

po = p1(1 = h) + pah, 075 = djppern(un),

dl\jkh = /Y (Ci\jkh(y) + Ci\jlm(y)e%n( ’;h)) dy, (7)
N 1 /0Q5  aQkh
Ci\jkh(y) = aien(y) + Xbijrn(y), el (Q5") = 5 ( ay;l + ay’\l) .

Here the vector-valued functions Q’ih(y) are Y -periodic solutions to the following cell problems:

0 .
g (i) + i)t (@51) =0 i ve [ @y =0,
" Y (8)

(@8], =0 [n®) + Num @)l (@ED]] _, =0, s=1.2

Now we apply the inverse Laplace transform to the homogenized stationary problem (6). We
have

PO 5 3 + fi(z,t) in Qx(0,7), (9)
ou
= =20 — =
uloo =0, uli=o =0, 3 o
with
Oij = dijkh(t) * ekh(u), (10)

where the symbol * denotes the operation of convolution with respect to time t.

3. Solutions of auxiliary cell problems

Passing to the inverse Laplace transforms in (8) we see that Q*"(y,t) depends on the Dirac
function §(¢) and cannot be expressed in explicit form without some additional explanations. In
order to do this and at the same time derive direct formula for calculation of components of
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the tensor d(t), we will proceed in the following way. Let us represent the solutions Q’f\h(y) to
problems (8) in the form

VER(y)

W, Mkh = COI’lSt7 (11)

N(y) = 2" (y) +

where vector-valued functions Z*"(y), V¥ (y) and parameters M*" are to be specified.
In a first step, let us define the vector-valued functions Z*"(y) as Y-periodic solutions to the
cell problems

0 .
B (bijrn(y) + bijim (v)eq,, (Z) =0 in Y, / ZMdy =0,
Y Y

[Zkh] ’

(12)

=0, [bijkh(y) + bijlm(y)e?m(Z’“h)] ‘ =0, s=1,2.

y1=hs y1=hs

In a second step, using the solutions Z*”(y) to problems (12), we define the vector-valued
functions V*"(y) as Y-periodic solutions to the cell problems

0 .
gy (@t (0) + aigim W)ed (2) 4 bigin (y)el (V1) =0 i Y,
J

[aijin (y) + Qijim (V) €l (ZF") + bijim (y)el, (V)] | =0, s=1,2, (13)

y1=hs
kh _ kh —
/YV dy=0, [V ]yylzhs =0.

To write out solutions to problems (12) and (13), we introduce l-periodic piecewise linear

function z(y;) defined by
y1h

1_ha yle(oahl)a
1
z2(y1) = —v1 + 3 WnE€ (h1,h2),
—1h
%, 1 € (ha,1).

It is easy to check that Z*(y) = Z"*(y) and V¥ (y) = V¥ (y), so that we need only to find
ZFh (y) and V*"(y) for k < h. Solving problems (12) for k < h, we obtain

Z%(y) = (e12(11),0,0), Z*(y) = Z%(y) = (c22(11),0,0),

Z2(y) = (0,e32(11),0), Z'(y) = (0,0,¢32(11)), Z**(y) = (0,0,0),
where

el == =), = (=G - ) e = (L= B~ ),
12 12 n2

b12:b1h+b2(1—h), 1’]12:771h+1’]2(1—h), bS:<S+2’I75.

Substituting Z*"(y) into problems (13) and solving them for k& < h, we derive
Vll(y) = (C4Z(y1),0,0)7 V22(y) = V33(y) = (C5z(y1)a070)7

V12(y> = (Ovcﬁz(yl),o)v V13(y> = (0’07063(91»7 VQS(:U) = (0,0,0),
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where ) 1—h
= bT(l —h)(biaz — baa1), c5 = —5— (A2 — A1)bi2 — (G2 — C1)aa2),
12

C4
btz

1
co = nT(l —h)(mpz —m2p1), a1z =ath+ax(l —h), a;= A+ 2p,.
12

Now, after defining Z*"(y) and V¥ (y) in (11), we can find parameters M*". Tt follows from
(8), (12), and (13) that M*" satisfies the system

0 .
dy; (@ijim (V) etm (V") + MM bjim (y)ef,, (V")) =0 in Y, (14)
J

[aijlm (y)elm(vkh) + Mkhbijlm (y)e?m(vkh)] |

Substitute V*"(y) found above into (14) and (15). It is easy to check that equations (14)
are always fulfilled for any parameters M*". Further, from the boundary conditions (15) we

pen, =0, s=1,2. (15)

calculate the required values of M*":
ML= 22— 33— M2
biz’

M2 — g2t gt — g3 = _H12
2
Applying the inverse Laplace transform to (11), we get

Q™" (y,t) = 6() 2" (y) + Raa(M™ )V (y),

where R, (3,t) denotes fractional exponential Rabotnov’s function [13]:

R
R,(B,t) =t ;m(Hn)(Hv)]'

Next we substitute the decomposition (11) into (7) to obtain
den = Aijin + A Bijin + Gijen(N),

where the components of the tensors A, B, and G()\) are given by the formulas

Aijkn = / (aijin(y) + aijim ()el, (Z") + bijim (y)e,,, (VF")) dy, (16)
Y

Bijkn = / (bijen(y) + bijlm(y)e?m(zkh)) dy, (17)
y

1
Gijen(A\) = o /Y (@ijim (Y)el, (V") + M bijun (y)ef,, (V")) dy.

Therefore, the constitutive equations (10) take the form
Oij = Aijkhekh(u) + Bijkhekh(Df‘u) + Gijkh(t) * ekh(u), (18)
where G;,n(t) are the inverse Laplace transforms of Gjjrn(N):

Gijkn(t) = Ra—1 (M*" 1) /Y (aijim(y)ewm (V") + M* b1 ()€l (VE)) dy. (19)

From (18) we see that the effective acoustic equations (9) are partial integro-differential
equations with fractional time derivative and constant coefficients. It is interesting to note
that their kernels are expressed via two different Rabotnov’s functions R,_1(—aj12/b12,t) and

Ro—1(—p12/ma2,t).
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4. Components of the tensors A, B, and G ()

Before proceeding to the calculation of the tensors A, B, and G(t), let us note that
Aijen = Ajikn = Aknij,  Agjen =0 whenever 0;;05n + 03051 + dindjx = 0,

Ago00 = Assss, Airi22 = Ar13s, Ai212 = Aiziz, Aosse — Aoz = 249303

and similarly for the tensors B and G(t). Moreover, it is easy to see that
Azzoz = (1 — h) + p2h, Basaz =m1(1 — h) +m2h, Gazzs(t) = 0.

Therefore, it is sufficient to find the components of A, B, and G(t) with indexes {1111},
{2222}, {1122}, and {1212}. To do this, we first substitute the found solutions to problems (12)
and (13) into formulas (16) and (17). This yeilds

A = a1(1 = h) + agh + cih(ay — az) + csh(by — b2),

Agzza = a1(1 = h) + azh + cah(A1 — A2) + csh(G1 — C2),

A1122 = M (1 = h) + Aah + coh(ar — az) + csh(by — ba),

Ar212 = p1(1 = h) + poh + esh(pr — p2) + cgh(m — n2),
Bii11 = bi(1 — h) + boh + c1h(by — b2), Baaze = b1(1 — h) + bah + c2h(C1 — C2),
Bi212 = m(1 = h) +n2h + czh(m —n2), Biiaz = Gi(1 = h) + G2h + cah(b1 — b2).

Taking into account the above values of constants ¢; and using trivial transformations, we
obtain

1 1
Ausns = - (axbth+ (L= ), Az = — (ot (1 - 1),
12 12

h(1—h)(¢1 —¢2)
b3y
1
— (b1 Aoh + b2 A1 (1 — h)) +
b12
b1b h
Bii11 = —2, By = bi(1 —h) + baoh — E(l —h) (G — )2,

b12
1
. (b1Cah + b2¢1(1 = h)), DBioiz = iz
12 2

A2222 = a1(1 — h) + agh —+

(a12(C1 — C2) — 2b12(A1 — A2)),

A1122 =

By =

In order to find the components of G(t), we substitute the solutions V*"(y) to problems (13)
and the parameters M*" into formulas (19). As a result, we get

h(l1—nh a
Gii(t) = — ( 3 )(a1b2 — agh1)*Ra—1 (—m,t) ;
by, bi2
h(1—nh a
Gaooa(t) = —¥ (M = A2)bri2 — (C1 — G2)a12)” Rai <—127t) ;
biy bia
h(l1—nh a
Gri2a(t) = — (b3 )(albz —azb1) (M — A2)biz — (C1 — (2)a12) Ra—1 <—b127t> ;
12 12
h(l—nh
Gi212(t) = —¥(M1772 — pom1)?Ra—1 (-m,t> :
Uip) N2
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To conclude, we note that our results can be considered as a generalization of those obtained
in the case of two-phase layered viscoelastic material described by a standard Kelvin-Voigt model
(a = 1). Indeed, the effective acoustic equations for the last material also have form (9) with the
constitutive equations (18), where A;;x;, and B, are defined by the same formulas as above.
Moreover, the components of G(t) are found by using the formulas presented here, in which we
should put oo = 1 and take into account that

t t
Ry (—am,t> = exp (_m) , Ry (—'ulz,t> = exp (_lﬂz) .
b2 bi2 2 UiP)

This work was accomplished within the Russian State Assignment under contract no. AAAA-
A20-120011690158-6.
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DddeKkTnBHBbIE ypaBHEHUSI aKYCTUKM JIJIs CJIOUCTOTO
MaTepHaJia, ONNCbIBAEMOT0 JAPOOHOIN MOIEJIbIO
KembBuna-®Poiirra

Agekceir C. ITTamaes

Baangnena B. IIlymunaoBa
NucruryT npobiem mexanuku um. A. FO. Unumnackoro PAH
Mocksa, Poccuniickast @enepariust

Awnnoranusi.  CrarTbsi HOCBsileHa MOCTPOEHUIO Y(MMEKTUBHBIX yPABHEHUN aKyCTUKU s JIByXdas-
HOT'O CJIONCTOTO BSI3KOYIIPYIOTO MaTepuaJa, OMUChIBaeMoro Mojesbio Kembpuna—Poiirra ¢ ApoOHBIMU
MPOU3BOAHBIMU IO BpeMmeHHu. J[jisi 9TO#l mesm MCIoIb3yeTcs TeOphsi ABYXMACIITAOHONW CXOJUMOCTH U
npeobpazosanue Jlammaca no Bpemenu. llokazano, uto addekTUBHbIE YPABHEHUS SABJISIOTCS HHTETPO-
muddepeHITNATBHBIMEA YPABHEHUSIMU B 9aCTHBIX MPOU3BOIHBIX C JPOOHBIMY ITPOW3BOIHBIMIY IO BPEMEHH
¥ TIPOOHO-IKCIIOHEHITHAIBHBIMA SApaMu CBepTKU. /Iyt Toro 9Tobnl HaiiTu KOI(MMUIMEHTHI U siIpa CBep-
TOK 9THX ypaBHEHUil, cOPMYIUPOBAHbI U PEIIEHbl HECKOJIBLKO BCIIOMOIATE/bHBIX 3a/1a4.

KuroueBbie cjioBa: ycpe/lHeHMEe, YPABHEHUsT aKYCTUKY, BSI3KOYIPYTOCTh, IpobHast Mojenb KeabpBuHna—
®Doiirra.
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