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Abstract. We study a conjugacy between two critical circle homeomorphisms with irrational rotation
number. Let fi, i = 1,2 be a C* circle homeomorphisms with critical point xgz,) of the order 2m; + 1.
We prove that if 2m1 + 1 # 2mg + 1, then conjugating between fi and fs is a singular function.
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1. Introduction and preliminaries

Denjoy’s classical theorem [4] states, that if the C? circle diffeomorphism f and irrational
rotation number p = py then f is topologically conjugate to the linear rotation f,, that is, there
exists a circle homeomorphism ¢ with f = ¢ 1o f,0¢.

It is well known that a circle homeomorphisms f with irrational rotation number is strictly
ergodic, i.e. it has a unique f-invariant probability measure v¢. A remarkable fact is that the con-
jugacy ¢ can be defined by ¢(z) = v¢([0, z]), which shows, that the regularity properties of con-
jugacy ¢ and the absolute continuity of invariant measure vy are closely related. The problem of
smoothness of the conjugacy ¢ for diffeomorphisms is one of the important problems of circle dy-
namics. The fundamental results were obtained by V.I. Arnold [1] , J. Moser [15], M. Herman [9],
J. Yoccoz [17], Ya. G. Sinai and K. Khanin [12], Y. Katsnelson and D. Ornstein [13]. Notice that
for sufficiently smooth circle deffeomorphisms f with a typical irrational rotation number the con-
jugacy ¢ is C''-diffeomorphism. Consequently, the invariant measure vy is absolutely continuous
with respect to Lebesgue measure p on S*.

Since the works of Mostow, Margulis, Sullivan, and others, rigidity problems occupy a central
place in the theory of holomorphic dynamical systems. This type of problems is classical in
dynamics: a rigidity theorem postulates that in a certain class of dynamical systems equivalence
(combinatorial, continuous, smooth, etc.) automatically has a higher regularity. The dynamical
systems considered in this paper are critical circle maps, that is smooth homeomorphisms of
the circle with a single critical point having an odd type. These maps have been a subject of
intensive study since the early 1980’s as one of the two main examples of universality in transition
to chaos. Yoccoz in [17] generalized Denjoy’s classical result, a critical circle homeomorphism
with irrational rotation number is topologically conjugate to an irrational rotation.
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Definition 1.1. The point z., € S* is called non-flat critical point of a homeomorphism f with
order (2m+1), m € N, if for a some d-neighborhood Us(z..), the function f belongs to the class
of C*™+L(Us(z.,)) and

f/(zcr) = f//(xcr) == f(zm)(xcr) =0, f(2m+1)(-rcr) 7é 0.

The order of the critical point ., is 2m+ 1. By a critical circle map we define an orientation
preserving circle homeomorphism with exactly one non-flat critical point of odd type.

An important one-parameter family of examples of critical circle maps are the Arnold’s maps
defined by

1
fo(z) =z +0+ 2—sin27rx (modl), =€ S*.
™

For every 6 € R' the map fy is a critical map with critical point 0 of cubic type.

Graczyk and Swiatek in [7] proved that if f is C3 smooth circle homeomorphism with finitely
many critical points of polynomial type and an irrational rotation number of bounded type, then
the conjugating map ¢ is singular function on S* i.e. ¢'(x) = 0 a.e. on S'. Consequently,
the invariant measure of critical circle homeomorphisms is singular w.r.t. Lebesque measure
on S'. Hence the problem of regularity of the conjugacy between two critical maps with identical
irrational rotation number arises naturally. This is called the rigidity problem for critical circle
homeomorphisms. For the critical circle maps the rigidity problem is developed by de Faria, de
Melo, Yampolsky, Khanin and Teplinsky, Guarino among others.

The first result concerning on rigidity for critical maps was proven by de Melo and de Faria [6].

Theorem 1.1 (see [6]). If f1, fa are C? critical circle mappings with the same irrational rotation
number of bounded type and the same power-law at the critical point, then there exists a C1+
conjugacy h between f1 and fo for some universal a > 0.

The following result of D. Khmelev and M. Yampolski [14] seemed to indicate that the analytic
case could be different.

Theorem 1.2 ([14]). There exists a universal constant o > 0 such that the following holds. Let
f1 and fa be two analytic critical circle maps with the same irrational rotation number. Denote
h : S — S conjugacies between f1 and fo fizing the critical points. Then h is C't* at the
critical point.

K. Khanin and A. Teplinskii [11] proved that any two f; and f analytic critical circle maps
with the same order of critical points and the same irrational rotation number are C'-smoothly
conjugate to each other. Later, A. Avila [2] showed, that there exist f; and fy analytic homeo-
morphisms with the same irrational rotation number such that h is not C'*® for any a > 0.

Next we formulate the result of P. Guarino, M. Martens, and W. de Melo [8].

Theorem 1.3 ([8]). Let fi and fo be two analytic C*-circle homeomorphisms with the same
wrrational rotation number and with a unique critical point of the same odd type. Then they are
C'-smoothly conjugate to each other. The conjugacy is C1T for Lebesque almost every rotation
number.

The present work continuous and completes the above results. Namely we show that if the
rotation numbers of two critical homeomorphisms coincide but the orders of critical points are
different then the conjugacy h is a singular function. Now we formulate our main result.

Theorem 1.4. Let fi and fo be C? critical circle maps with the same irrational rotation number.
Suppose that the orders of critical points of f1 and fo are different i.e. 2mq+1 # 2mo+1. Then
the conjugacy h between fi and fs is a singular function on S'.
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2. Notations, terminalogy, background

Let f be a circle homeomorphism that preserves orientation, i.e. f(z) = F(x)(modl), x €
S ~[0,1), where F is continuous, strictly increasing on R! and F(x+1) = F(z)+1 for any x € R.
F is called lift of homeomorphism f. The important characteristic of the circle homeomorphism

FTL
f is it’s rotation number (see for instance [6]) py which defined by py = lim ﬂ(mod 1),
here and later F'™ denotes the n-th iteration of F'. The rotation number p; is rational if and

only if f has periodic orbits.

2.1. Dynamical partition. Let f be an orientation preserving homeomorphism of the circle
with lift F' and irrational rotation number p = py. We denote by {a,,n € N} the sequence
of entries in the continued fraction expansion of p, i.e. p = [a1,az2,...,an,...]. Denote by
Pn/Gn = [a1,a2,...,a,] the convergents of p. Their denominators ¢, satisfy the recurrence
relation, that is gn+1 = ap+i1gn + gn—1, n 21, @ =1, g1 = a;.

For an arbitrary point 29 € S' we define Aé")(zg) the closed interval on S' with endpoints
zo and x4, = f9(x¢). Note that for odd n the point z,, lies to the left of ¢ and for even
n to the right. Denote by A" (x0) the iterates of the interval A (20) under f:A™ (z0) =
FUAS (z0)), i > 1.

Lemma 2.1 (see [12|). Consider an arbitrary point xo € S'. A finite piece {z;, 0 < i <
Gn + Gn-1} of the trajectory of this point divides the circle into the following disjoint (except for
the endpoints) intervals: A("_l)(xo), 0<i<qp, Ag.") (z0), 0<J < qn-1-

(3

We denote the obtained partition by &,(xg) and call it n-th dynamical partition of the cir-
cle. 'We now briefly describe the process of transition from &, (zg) to &,4+1(zo). All intervals
A;n)(mo), 0 < j < gu_1, are preserved, and each of the intervals Agnfl)(xo) is divided into
Gn+1 + 1 sub intervals:

ant1—1

AP (@) = A" V@ u ) Al (wo)-
s=0

it+qn—1+5qn

Obviously one has & (z9) < &a(z0) < ... < &nlzp) < .. ..

Definition 2.1. Let K > 1 be a constant. We call two intervals I and I, of S' are K-
comparable, if the inequalities K~ 1p(Iy) < u(l1) < Ku(ls) hold.

Next we formulate the lemma, that is proved in the similar way as in [16].

Let x.. € S' be a critical point of homeomorphism f. For any zo € S!, consider the
dynamical partition &,(zg). For definiteness we assume that n is odd. Then x4, < 2o < 24, _,.
The structure of the dynamical partition implies that Z., = f~?(zcr) € [2q,,2,,_,], for some
p, 0 < p < q,. Let I} and I be any elements of a dynamical partition &, (Z.-), m = n having a
common endpoints.

Lemma 2.2. Let f € C3(SY) be a critical circle homeomorphism with irrational rotation number.
Then there exists a constant K > 1 depending only on f such that the intervals I; and Is are
K -comparable.

It follows from the Lemma 2.2 that the trajectory of each point is dense in S'. Hence it
follows that there exists conjugation map ¢ between f and f,, i.e. p(f(x)) = f,(p(z)) for any
re St
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We assume that A(™+k) is element of partitioning &, (%), while A(™) is an element of
partitioning &, (Z.,) that contains A(m+k),

Lemma 2.3 (see [10]). There exist constants A1 (f) < Xo(f) <1 such that
AT < const AE(HLAM™), (AT > const AT (f).
2.2. Cross-ratio tools. In the proof of our main theorem the tool of cross-ratio plays a key
role.
Definition 2.2. The cross-ratio of four points (21, 22, 23, 24), 21 < 22 < 23 < 24 18 the number

(22 — 21)(24 — 23)
(23 — 21)(2a — 22)

CT(31,227Z3,Z4) =

Definition 2.3. Given four real numbers (21, 29, 23, 24) with z1 < 29 < 23 < 24 and a strictly
increasing function F : RY — R'. The distortion of their cross-ratio under F is given by

CT(F(’Zl)vF(ZQ)vF(Z3)aF(Z4))
Cr(z1, 22, 23, 24)

Dist(z1, 22, 23,243 F) =

For m > 3 and z; € S', 1 < i < m, suppose that z; < 23 < -+ < z,, < 21 (in the sense of
the ordering on the circle). Then we set 21 := z; and

5 .= Z; if 21 < z; < 1,
Tl 142 if0<z < 2.
for2<i<m.
Obviously, 21 < 23 < ... < Zp. The vector (21, 22,...,%,) is called the lifted vector of

(21,22, ..., 2m) € (SH™.

Let f be a circle homeomorphism with lift . We define the cross-ratio distortion of
(21,22,23,24), 21 < 22 < 23 < z4 < 21 with respect to f by Dist(z1,29,23,24;f) =
= Dist(21, 29, 23, 24; F), where (21, 22, 23, 24) is the lifted vector of (21, 22, 23, 24). We need the
following lemma.

Lemma 2.4 (|5]). Let z; € S',i =1,2,3,4, 21 < 23 < 23 < 24. Consider a circle homeomor-
phism f with f € C**%([21,24]), € > 0, and f'(z) > const > 0 for x € [z1,24]. Then there is a
positive constant Cy = C1(f) such that

‘ DiSt(Zl,227Z3aZ4; f) -1 |< Cl|24 - 21|1+€7
where (21, 22, 23, 24) is the lifted vector of (21, 22, 23, 24).-

We now consider the case when the interval [z1, z4] contains a critical point z, of the home-
omorphism f. More precisely, suppose that zo = x... We define numbers «, 3, v, £ and n as

follows:
B B

Q=29 — 21, [Bri=1Z3— 2o, 7= 24— Z3, f::a, ni= =,

where (21, 22, 23, 24) is the lifted vector of (21, 22, 23, 24).
Thus we need the following lemma.
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Lemma 2.5. Suppose that a homeomorphism f with lift F has a critical point x.. with order
2m+ 1, m € N. Then for any € > 0, there exist 6 = §(e) > 0, such that for all z; € Us(zr),
i=1,1m, 21 < %2 = Ter < 23 < 24 ONE has

1 eomn*™ + €am_1m?" e+ 1

< Rye,
L—€4+& - 1em ™ ypmy ol pam—1 4. 4 o214 0

Dist(z1, 22, 23, 245 f) —

where the constants eaym = 2m + 1, ¢; = C4, + C;r_nl_l +--+C8 . and Ry depends only on
function f.

Proof. Fix a number ¢. It is easy to check that for any z; € S', i =1,n, 21 < 22 < 23 < 24 one

has
(2m) (3 29
F(z1) = F(2)—F'(22) (22— 21)+- -+ F27m(‘2)(22 —2)%™m — ﬁ A FCHD () (y — 21)?™dy,
(2m) (3
F(2) =F(e2) + F'(a)(z0 — 22) + o4 T 5, oy
" (2.1)
b / FOTW)E )y, s =34
By the assumption of the lemma, 23 = 2., and using the (2.1) we write
Cr(f(z1), f(22), f(23), f(24)) as follows
_ (F(%2) — F(%1))(F(24) — F(3s)) _
C’I"(f(Zl)7f(ZQ),f(Zg),f(Z4)) - (F(ZA’g) . F(él))(F(é4) o F(Y:’Q)) -
7‘2F(2'm+1)(y)(y _ 21)2"Ldy
= — 1 _ X
JFCmI(y) (25 — y)>mdy + [ FEmD (y)(y — £1)>mdy (2.2)
JEEm )z g)mdy - [ FEm )25 - y)mdy

X = )

24

[ F@m+D(y) (24 — y)2mdy

22
where (21, 22, 23, 24) is the lifted vector of (21, 29, 23, 24). Since FQIHY) ¢ C(Uy(xer)), there exist
§(g) > 0, such that for any z,y € (2er — w, Ter +w) the inequality |FCm+D () — FCmH (1) < ¢
is true.

Hence from (2.2) we have

Cr(f(z1), f(z2), f(23), f(24)) =

[ FCmD (2,)(y — 21)?™dy(1 + O(e))

2y

= N = ><
(JPema)ea =gy + [ FEmeD )y - 2mdy ) 14+ 06)

(TF(QWH)(%T)(% — y)?2mdy — jSF(QmH)(fEcr)(éS - y)zmdy> o+ o)
X = - B

JFemD (20 (24— y)Pmdy(1 4 O())

ED)
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a2m+1 (,.y + 5)2m+1 _ ﬂ2m+1
= a2m+1 + 527n+1 ’ ('7 i B)Q"H_l (]- + 0(5))

From the last equality it follows that

1
:1_€+§2_,,,+£27rnx

(L+n)2"+ 1A +n)* I+ 4 (L4+n)p> L+ 9™

Dist(z1, 22, 23, 245 f)

X 14+ 0(e)) =
T (1+0()
i eamn®™ + Camo11P™ Loty + 1
= 2 2m X e 1 It 2m—1177 (1+0(e)).
]_7£+£ 7+€m n2m_|_02m772m—1_|_...+c2m 77+1
Thus Lemma 2.5 is proved. O

Next suppose the interval [z1, z4] is a subset of the interval U, (z..) but does not contain a
critical point x., of the homeomorphism f. Let d = 11r<ni£14 0([zs,Zcr]). We now state an assertion
IS%

from [10].

Lemma 2.6 (see [10]). Suppose that a homeomorphism f satisfies the conditions of Lemma 2.5.
Then the following equality holds

2
Dist(z1,22,23,24; ) =14+ 0O <<a+dﬂ+7) ) .

3. Proof of Theorem 1.4

In order to prove Theorem 1.4 we need several lemmas which we formulate next. Their proofs
will be given later. We consider two copies of the unit circle S'. The homeomorphism f; acts
on the first circle and f> acts on the second one. Assume that f;, ¢ = 1,2 satisfies the conditions
of Theorem 1.4.

Let 1 and @2 be conjugations of f; and fa to linear rotation f,, i.e. w10 fi = f, 01 and
w20 fo = f,0p. It is easy to check that the homeomorphisms f; and f, are conjugated by
h = @2 Ogofl, i. e. hofi(x) = faoh(x),Vz € S*. Recall that every ¢;, i = 1,2 is unique up to an
additional constant. This gives us a possibility to choose h with initial condition h(xg)) =z

Notice the conjugation h(z) is continuous function on S'. It suffices to show that h'(x) = 0
for almost all 2 with respect to the Lebesgue measure. The derivative h/(x) = 0 exists for almost
all z with respect to the Lebesgue measure because the function h is monotonic. Let us show
that h’(xz) = 0 at all points where the derivative is defined.

Lemma 3.1 (see [5]). Assume, that the conjugating homeomorphism h(x) has a positive deriva-
tive h'(zo) = wo at some point xog € S, and that the following conditions hold for the points
2z €8, i=1,...,4, with 21 < 29 < 23 < 24, and some constant R; > 1:

(a) the intervals [z1, 22, 22, 23], [#3, 24] are pairwise Ry-comparable;

(b) max f([zﬁ,ro]) g le([zl,zﬂ).

1<i<4
Then for any € > 0 there exists 6 = 6(¢) > 0 such that
|Dist(z1, 22, 23, z4; h) — 1] < Cae, (3.1)

if zi € (ko — 9, mo+ ) for all i =1,2,3,4, where the constant Cy > 0 depends only on Ry, wp
and not on €.
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Suppose that h/(z¢) = wo, where o € S1. Let &,(x¢) be its n-th dynamical partition. Put
to := h(zg) and consider the dynamical partition 7, (o) of ¢y on the second circle determined by
the homeomorphism fs, i.e.

Talto) = {17V (to), 0<i<qn—13U{IM(t0), 0<j<guor—1}

with Ién) (to) the closed interval with endpoints ¢ and f3"(¢9). Choose an odd natural number
n1 = n(f1, f2) such that the n;-th renormalization neighborhoods [z, , 7, _,]and [tg, %4, ]
do not contain critical point of f; and fo respectively. Since the identical rotation number p of
f1 and fy is irrational, the order of the points on the orbit {fF(x¢), k € Z} on the first circle will
be precisely the same as the one for the orbit {f¥(¢y), k € Z} on the second one. This together
with the relation h(fi(z)) = f2(h(z)) for z € S implies that

h(A(_nlfl)) _ I_(nlfl)

2 2 )

0<i<qn —1, AAM) =" 0<j<gu-1—-1. (32

The structure of the dynamical partitions implies that Z(r (nl) 1 (.Tcr ) € [®g, »Tqn, 1]

where [ € (0, ¢y, —1) if xgr)(nl) € [vq, o], and I € (0,qy,) if xgr)(nl) € [vo, 7, _,]. Since h

conjugation between f; and f5, we get
F(ED)) = 57 (f2(h(@))) = 5 (B(AED)) = - = h(f1@)) = h(=l) = 28).

Hence x( )( 1) = fo (xcr) [t

Gn,-pre-images of the critical points xy

stg,, 1] The points T (n1) and T2 (n1) are called the

(1) and :Eg), respectively.

Gny o

Next we introduce the concept of a "regular" cover of the critical point. Let z; € 81, i =1, 4,
21 < 29 < 23 < z4 < z1. Define for each j, 0 < j < qn

O (z2), H (23)])
0([f(z1), fi (22)])

Definition 3.1. Let M > 1, ¢ € (0,1), § > 0 be constant numbers, n is a positive integer and
xo € St. We say that a triple of intervals ([z1, 2], [22, 23], [23, 24]), 2: € S, i = 1,2,3,4, covers
the critical point of x( ) "(M,(,0,0;xq)-reqularly ", if the following conditions hold:

1) [21,24] C (x0 — 8,20 + 0), and the system of intervals {fi([z1,24]), 0 < j < qn — 1} cover
critical point ;vci only once;

2) 2z = f1 (xcr ) for some l, 0 <1 < qn;

3) Ep (1) < ¢ andny, (1) = M.

e([f

N Ll

£ (d) = (22), fz(z3)]) .

J
1 .
7 y nfl(.j):
1

Denote
L = min{2m; + 1, 2mqo + 1, 2|my — mal}.

Lemma 3.2. Suppose that the homeomorphisms f;, i = 1,2 satisfy the conditions of Theo-
rem 1.4. Then for any xog € S* and 6 > 0 there exist constant My > 1 and {y € (0,1), such that
for all triples of intervals [z, zs41] C (xo— 0, xo+9), s =1,2,3, and [h(zs), h(2zs41)], s =1,2,3,
covering the critical points 25 and 22 regularly with constants My and (o the following in-
equalities hold:

1 62m177]2cm1 (1) + e2m, — 177fm1 1(1) R | ) X I
1— l 2my x 2my cl 2mqy—1 1 ] - ( mi + ) < ]_767
ffl() +€ () T]fl ()+ 2m1nf1 ()+ +
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2m 2mo—1
1 eamy Ny > (1) + €amy—1mp, (1) + - + 1
ma 2722 1 2m2J:1 —(2ms +1)| < T
l_ng(l)+.'.+§f2 () N, (l)+02m277f2 +--+1 6

where my and my are orders of critical points xg) and x&i) respectively.

Assume that the homeomorphism f; satisfies the conditions of Theorem 1.4. Let &, (x&})) be

a dynamical partition of the circle by fi;. We take a natural number r, such that Aér) (xg)) U
Agﬂ*l)(mg}n)) c U, (mg«)) Suppose that h/(z¢) = po > 0 for some zo € S'. Consider the
dynamical partition &,(z) of the point xg under f;. Suppose that n > r an odd natural
number. Let T4 = f’l(xg«)) € [Tg, Tqn_ 1]

Let {§n+k(f£i))},;“;0 be a sequence of dynamical partitions of the point Z... We define the
points z;, i = 1,2, 3,4 as follows

2y = fintko (Egi))’ 29 = f((;)7 23 = fintkoth (fﬁp), 24 = fqn+k0+k1+qn+k2 (f((:p)

Lemma 3.3. Suppose that the homeomorphisms fi and fo satisfies the conditions of Theo-
rem 1.4. Let W (zo) = po > 0 for some zg € S*, § € (0,1) and ko € N. Then there exist natural
numbers ki, ko such that for sufficiently large n, the triple of intervals [zs, zs4+1] C (x0—0, xo+9),
s = 1,2,3 satisfies the following properties:

(1) the intervals {[f](z1), f1(24)], 0 < j < qn} cover each point at most once;

(2) the intervals [zs, zs11] and [f{"(zs), 1" (zs+1)], s = 1,2,3 satisfy conditions (a) and (b)
of Lemma 3.1 with some constant Ry > 1 depending on kg, k1, ko;

(3) the triples of intervals ([zs, zs+1], $ = 1,2,3) and ([h(zs), h(zs41)], s = 1,2,3) cover the
critical points a:éi), xg), "(Moy, Co, 0; o) -regularly " and "(My, Co, 6; h(xo))-regularly ", respectively.
Lemma 3.4. Suppose the circle homeomorphisms f1 and fo satisfy the conditions of Theo-
rem 1.4. Then there exists natural number ko such that for intervals [zs,zs41], s = 1,2,3 sat-
isfying conditions (1)-(8) of Lemma 3.3, and for sufficiently large n the following inequality

holds
Dist(z1, z2, 23, 243 [1")

Dist(h(z1), h(z2), h(23), h(24); f3")

where the constant Re depends only on f1 and f.

—1/ >Ry >0, (3.3)

Proof of Theorem 1.4. Let f; and fs be circle homeomorphisms satisfying the conditions of
Theorem 1.4. The lift H(z) of the conjugating map h(z) is a continuous and monotone increasing
function on R'. Hence H (x) has a finite derivative H'(z) for almost all z with respect to Lebesgue
measure. We claim that h'(z) = 0 at all points x where the finite derivative exists. Suppose
h'(xp) > 0 for some point zp € S'. Fix ¢ > 0. We take a triple of intervals [zs,zs41] C
(xo — 0, o+ 0), s=1,2,3, satisfying the conditions of Lemma 3.4.

Using the assertion of Lemma 3.1 we obtain

‘Dist(zl, 29,23, 243 h) — 1‘ < Cse, (3.4)

[ Dist(£" (21), £ (22), F1" (z0), Fi" ()3 ) = 1| < Ce (3:5)

Hence )
DZSt(Zla 292,23, 24, h)

‘D’Lst(fln(21), fln (22), fln (23)7 fln (Z4>, h)

where the constant C4 > 0 does not depend on ¢ and n.

- 1‘ < Ce, (3.6)
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Since h is conjugating f; and fo we can readily see that
Cr(h(fi" (1)), h(fi" (22)), h(fi" (23)), h(fi" (24))) =
= Cr(f3" (h(21)), f3" (h(22)), f3" (h(23)), f3" (h(24))).

Hence we obtain )
Dist(f{" (z1), f{" (22), f{" (23), f{" (24);h)

Dist(z1, 22, 23, 243 h) -

_ Cr(af1" (1)), AU (22)), U (23)), (U (24))
Cr(fi" (z1), fi" (z2), fi" (2 ),ff (24))

o Cr(z1, 2, 23, 24) _ Cr(f5"(h ( 1), 3" (h(22)), 3" (h(23)), f3" (A(24)))
Cr(h(z1), h(z2), h(23), h(z4)) Cr(h ( s h(22), h(z3), h(24)) '

1)
 Or(fi" (1), [ (z2), S (28), 1" (z0)) _ Dist(h(z1), h(z2), h(z3), h(Z4);f2")'

2),
CT(Z1722a23;Z4) B Dist (21,22723,24,f1 )
This, together with (3.6) obviously implies that

Dist(z1, z2, 23, 243 [1")
Dist(h(z1), h(z2), h(z3), h(z4); f5™)

—1 <C5E,

where the constant Cs >0 does not depend on € and n. This contradicts equation (3.3). Therefore
Theorem 1.4 is completely proved. O

4. The proofs of Lemmas 3.2-3.4

Proof of Lemma 3.2. Denote

1 (gfl (Z)) =

L&)+ -+ M0

and ) 1
e2m, Ny (1) + ey -1y (D) + o+ 1

) =
w2(77f1()) 77J2¢1m1()+02m1 2mq — 1(l)+ S+ 1

It is easy to check that for ny, (I) > 0 the function 12(ny, (1)) is monotone increasing and 1 <
¥2(ns, (1)) < 2mq + 1. Obviously

lim 1, lim =9y + 1.
et ! 18 ) = nh(l)%O%(Uﬁ( ) 1

Taking these remarks into account and using the explicit form of the functions (€, (1)) and
2(ny, (1)) we can now estimate | 11 - 2 — (2mq + 1) |. Firstly, we estimate 1) for large value of
Ny, (1). Using the explicit form of the function ¥2(ny, (1)), we see that the inequality
1
|¢2—(2m1+1)|20< ><R3

15 (1) <77f11(l)> ’ (4.1)

where the constant R > 0 depends only on fi. If we choose 1y, (I) satisfying the inequality

Ry (nfll(l)) < 3%, then

ol () — (2m1 + 1)) < o,
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32R.
for ny, (1) > 7 2.

We next estimate |11 — 1| for small value of £, (I). Using the explicit form of the function
Y1 (&p, (1), we see that |¢1(Er, (D) — 1] = O(&f, (1)) < R4y, (1). Tt follows from this together with

(4.1) that |1 -2 — (2my + 1) < |2 — 2my + 1)| + |¢2] - |1 — 1| < 3% + (2my 4+ 1)Ra&y, (1). If

we take I oR
= mi —,1}, M = {75,1},
¢1 3= min { 32(2my + 1)Rs e )
where R5; = max{Rj3, R4}, then for all &, (1) < {; and ny, (1) > M; the following inequality holds
L
|11 - ah2 — (2ma + 1) < —.
16
Similarly it can be shown that with
L 32Rg
S TR R VR 2
Gz = min { 32(2ms + 1)Rg 7 (4.2)

and &¢, (1) < (2 and 1y, (1) > My, the second assertion of Lemma 3.2 holds. In (4.2) the constants
R > 0 depends only on fs. Finally, if we set (o := min{¢1, (2} and My := max{M;, M>}, then
Lemma 3.2 holds for &y, (1), &7, (1) € [0,¢o) and 5y, (1), ns, (1) > My. Lemma 3.2 is proved. 0

Proof of Lemma 3.3. Firstly, we prove the third assertion of the lemma. By the construction of
the points z;, i = 1,2,3,4, it implies that the intervals [z, z511] and [h(zs), h(2zs41)], s = 1,2,3
satisfy the 1) and 2) conditions of definition of "regularly" covering. We consider dynamical
partition §n(:cg«)) According to Lemma 2.2 the intervals Aén) (xgp) and Ag"‘”(zﬁi)) are K-
comparable, i.e. there exist constant K > 1 such that K*%(Aé”‘”(x&?)) < K(A(()") (acg))) <
K Z(Aénil)(xg))). Thus it follows that there exists k%l) € N such that the following inequality
holds

q X (1)
(2, £ @)

. 4.3
(@) .

Indeed, it is clear that

(Al () 1 1 K

el (1Y) e(agm e ) Tl g KL
(AT )

Hence K(A(()q”k(’“’)(xgn))) < KLHE(AEJQ"M““)(xg))). Using the last inequality we obtain that

for any k
K

Haf o @) < (s

k
Vo)

cr

Since Aéq’L+k“+l)(xg~)) and Aéq’L+k°)(33£71~)) are K-comparable, there exists a k%l) € N such that
the inequality (4.3) is true. Similarly, we can show that there exists a kgl) € N such that the
following inequality holds

(25, flmrroia (200)

£<[ffn+ko+kl (xg)), ffn+ko+k§1)+qn+ké1) (a:Ep)])

> Mp.
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)

Similarly, it can be shown that with natural numbers k:§2) and k:§2 the inequalities

2 qn (2) 2 9 qn . (2) 2
E([z&)v : +ho+k| (gg((jr))]) <é E([x&r)’ 2 +Eo+k] (zgr))])

(U @), ) (1 @), 1 )

cr )y J2

> My

hold. If we take k; = max{k‘gl),k‘gz)} and ky = max{kgl),k;gz)} then the third assertion of
Lemma 3.3 holds for k; and k3. By the definition of the points z;, i = 1,2, 3 it implies the first

assertion of the lemma.

Let &, (Eg)) be a dynamical partition of the point fg) According to Lemma 2.2 the in-
tervals A(()n) (fg)) and AE,”‘”(E&P) are K-comparable. Hence, it implies that the intervals
[2s,zs+1], s = 1,2,3 are pairwise Kkitk2_ comparable. It is easy to see that the intervals

[fIm (25), fi" (2s41)], s = 1,2,3 are pairwise K*1T*2_comparable. Obviously,

L _UATER) pen LA @)
KRS i(lnzl) 0 KR A GO G

Since the intervals A(()"_l)(ig)) and Aén_l)( N q"—l(f&}))) are K-comparable and
2o € ALV (5 (310)) U AP (7 we get

max {([f% (), x0]), ([zi, zo])} < (K + 1)Kk°+1€([z1,22]).

1<ig4

ko+1

If we take Ry = (K +1)K*+Fi+k2 then we obtain the proof of the second assertion of Lemma 3.3
with constant R;. Lemma 3.3 is proved. O

Proof of Lemma 3.4. Suppose, the triples of intervals ([zs, zs+1], $s=1,2,3) and ([h(2s), h(zs4+1)];
s = 1,2,3) satisfy the conditions of Lemma 3.3. We want to compare the distortion
Dist(z1, 22, 23, z4; f{) and Dist(h(z1), h(22), h(z3), h(z4); f3"). We estimate only the first dis-
tortion, the second one can be estimated analogously. Obviously

n—1

Dist(z1, 22, 23, 221 fi*) = [ Dist(fi(z1). fi(22). fi(23), fi(za): 1)
1=0
We denote
To(@1) = AP @) U AT (@D), A= {i: (fi(z1), fi(za) N T (2D)) = 0},

B ={i: (fi(z1), fi(z)) N Jp(x(})) # 0}.
It is clear that AUB ={0,1,...,qn}.
Next we rewrite Dist(z1, 22, 23, 24; f{") in the form

Dist(21, 22, 23, 24; [1*) = [ [ Dist(fi(z1), fi(22), fi(23), fi(2); 1) %

i
x [ Dist(fi(=1), fi(z2), fi(z), fi(z0)i fo)- (4.4)
We estimate the first factor 121613(4.4). Using the Lemmas 2.4 we obtain
| [T Dist(fiCe0. i), i), Ko f) = 1 =| [T (1+ otetsiten. sita) ™) - 1| =
= max (U(f{(=1). A=) O D (A=), fi(z0)]) ) = OO,

i€EA
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where v > 0 and 0 < Ay, < 1. We fix € > 0. There exists Ny = Ng(e) > 1 such that for any
n > Ny the estimate

| TL Dist(fiCa), FiCza) FiCes), FiCea)s f2) = 1] < Co (45)

i€EA

holds. We now estimate the second factor in (4.4). We rewrite the second factor in the following

form
1 Dist(fi(z1), fi(z2), fi(zs), fi(za); 1) =
ieB
= H Dist(fi(z1), fi(22), fi(23), fi(za); f1) % Dist(fi(21), fi(22), fi(23), fi(za); f1). (4.6)
i€ Blil

By applying Lemmas 2.5 and 3.2 we obtain

IDist (7). 1 (22), fi(z3), fA () 1) — (2 4 1)] < 2. (4.7)

Using Lemma 2.6 for the first factor in (4.6), we get

11 (1+O(f([f1i(2121’ff(24)]))2> _1’ _

7

I1 Dist(fi(z1), fi(z2), fi(zs), fi(za): f1) — 1‘ =

i€B.il i€B.il
([ f? ( 2 (] Fi i 2
_ exp{ Z log (1+O( ([f1(212l,f1(24)])> >}1‘ < const Z < ([f1(21()1,f1(24)])> _
i€ B,i#l g i€ B,i#l i
ATHENNENAS
= t .
cons Z ‘ A Zl 1 di
T=0 (£ (1), £ (24)]C(Jn—q (25 N\ T g1 (25)) i
Obviously,
3 5([f1(212lalf1(24)])> — const
i:[£1 (20), £ (20)] C(Jn—q (@5 )\ Tn— g1 (25))) il '
f 7 7
and it follows from Lemma 2.3 that ([fl(zl()i"fl (z0)]) < const )\I;SH'HI. Consequently
I Dist(fi(z1), fi(z2), fi(za), fi(z0); f1) = 1’ < O, (4.8)
i€B,i#l

where C7 > 0 depends only on f;.
Similarly one can show that for the triple of intervals ([h(zs), h(zs+1)], s = 1,2, 3) the follow-
ing inequality

[T Dist(fs(h(=1)), f3(h(z2)), f3(h(z8)), f3(R(z4)); f2) — 1‘ < CsAl, (4.9)

i€B,i#l
where Cs > 0 depends only on f> and 0 < Ay, <1 is defined in Lemma 2.3.

If we choose

L L
ko = 1 1,11 1
0 max{[ O8x (16m1+8+L)C7] * ’[Ogm (16m2+8+L)CS] + }
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where constants 0 < Af,, Ay, < 1 are defined in Lemma 2.3, then from the relations (4.4)—(4.8)
it implies that for sufficiently large n

L
|Dist(z1, 22, 23, 24; f1") — (2m1 + 1)| < T (4.10)
Similarly
) L
|Dist(h(z1), h(z2), h(z3), h(z4); fa") — (2ma + 1)| < 1 (4.11)
The inequalities (4.10) and (4.11) implies

Dist(z1, 22, 23, 245 f{™) B 8(m1 —mg) — 2L
Dist(h(z1), h(z2), h(z3), h(z4); f3™) ~ 8me+L+4

>0, (4.12)

if my > mg, and

Dist(z1, 22, 23, 24; f1™) 8(my —ma) +2L

, —1< <0, 413
Dist(h(er), h(z2), (zs), hza); 2°) Sz — L +1 (4.13)
if m1 < mo. If we set
. |8(m1 — mg) — 2L‘ |8(m1 — mz) + 2L‘
= 4.14
= mm{ 8ms—L+4 = Sma+L+4 [ (4.14)

then it follows from (4.12)—(4.14) that the assertion of the lemma holds.

The author would like to thank Professors A. A. Dzhalilov, K. M. Khanin and A. Davydov for
useful discussion.
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O comnpsi>keHre MeXKAy JIBYyMs KPUTUYIECKUMU
OTOOpaKEeHUSIMI OKPYXKHOCTHI

Yrkup A. Cadapos

TypuHCKHI TOTUTEXHUYIECKUIT YHUBEPCUTET

TamkenTt, Y3bekucran

TarkeHTCKMit roCy1apCTBEHHBIN SKOHOMUYECKUN YHUBEPCUTET

Tamxkent, Y3bekucran

Anuoramusi. B crarbe u3ydaercst CONpsiKEHHE MEXKJY JIBYMSI KPUTUYECKUMH TOMEOMOP(MU3IMAMU
OKPY?KHOCTH C MPPAIIOHAIBLHBIM YHCJIOM Bparennst. 1lycrs fi, i = 1,2 sisastiorcst C°-romeoMopdusmbr
OKPY2?KHOCTH C KPUTUYECKON TOUKON x&ZT) nopsizika 2m; + 1. JTokazano, aro eciau 2mq + 1 # 2mg + 1, To

conpspkenne Mexay fi1 um fo — cuHrynspHas GyHKIuUS.

KuroueBrbie cioBa: romeoMopdu3M OKPYKHOCTU, KPUTHUIECKAs] TOUYKA, COINPSATAINNII roMeOMOPMU3M,

YHCJIO BPAIEHUS, CUHTYJIAPHAsS (DYyHKIINA.
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