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Abstract. We study a conjugacy between two critical circle homeomorphisms with irrational rotation
number. Let fi, i = 1, 2 be a C3 circle homeomorphisms with critical point x

(i)
cr of the order 2mi + 1.

We prove that if 2m1 + 1 ̸= 2m2 + 1, then conjugating between f1 and f2 is a singular function.
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1. Introduction and preliminaries

Denjoy’s classical theorem [4] states, that if the C2 circle diffeomorphism f and irrational
rotation number ρ = ρf then f is topologically conjugate to the linear rotation fρ, that is, there
exists a circle homeomorphism φ with f = φ−1 ◦ fρ ◦ φ.

It is well known that a circle homeomorphisms f with irrational rotation number is strictly
ergodic, i.e. it has a unique f -invariant probability measure νf . A remarkable fact is that the con-
jugacy φ can be defined by φ(x) = νf ([0, x]), which shows, that the regularity properties of con-
jugacy φ and the absolute continuity of invariant measure νf are closely related. The problem of
smoothness of the conjugacy φ for diffeomorphisms is one of the important problems of circle dy-
namics. The fundamental results were obtained by V. I. Arnold [1] , J.Moser [15], M. Herman [9],
J. Yoccoz [17], Ya.G. Sinai and K. Khanin [12], Y. Katsnelson and D. Ornstein [13]. Notice that
for sufficiently smooth circle deffeomorphisms f with a typical irrational rotation number the con-
jugacy φ is C1-diffeomorphism. Consequently, the invariant measure νf is absolutely continuous
with respect to Lebesgue measure µ on S1.

Since the works of Mostow, Margulis, Sullivan, and others, rigidity problems occupy a central
place in the theory of holomorphic dynamical systems. This type of problems is classical in
dynamics: a rigidity theorem postulates that in a certain class of dynamical systems equivalence
(combinatorial, continuous, smooth, etc.) automatically has a higher regularity. The dynamical
systems considered in this paper are critical circle maps, that is smooth homeomorphisms of
the circle with a single critical point having an odd type. These maps have been a subject of
intensive study since the early 1980’s as one of the two main examples of universality in transition
to chaos. Yoccoz in [17] generalized Denjoy’s classical result, a critical circle homeomorphism
with irrational rotation number is topologically conjugate to an irrational rotation.
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Definition 1.1. The point xcr ∈ S1 is called non-flat critical point of a homeomorphism f with
order (2m+1), m ∈ N, if for a some δ-neighborhood Uδ(xcr), the function f belongs to the class
of C2m+1(Uδ(xcr)) and

f ′(xcr) = f ′′(xcr) = · · · = f (2m)(xcr) = 0, f (2m+1)(xcr) ̸= 0.

The order of the critical point xcr is 2m+1. By a critical circle map we define an orientation
preserving circle homeomorphism with exactly one non-flat critical point of odd type.

An important one-parameter family of examples of critical circle maps are the Arnold’s maps
defined by

fθ(x) := x+ θ +
1

2π
sin 2πx (mod1), x ∈ S1.

For every θ ∈ R1 the map fθ is a critical map with critical point 0 of cubic type.
Graczyk and Swiatek in [7] proved that if f is C3 smooth circle homeomorphism with finitely

many critical points of polynomial type and an irrational rotation number of bounded type, then
the conjugating map φ is singular function on S1 i.e. φ′(x) = 0 a.e. on S1. Consequently,
the invariant measure of critical circle homeomorphisms is singular w.r.t. Lebesque measure
on S1. Hence the problem of regularity of the conjugacy between two critical maps with identical
irrational rotation number arises naturally. This is called the rigidity problem for critical circle
homeomorphisms. For the critical circle maps the rigidity problem is developed by de Faria, de
Melo, Yampolsky, Khanin and Teplinsky, Guarino among others.

The first result concerning on rigidity for critical maps was proven by de Melo and de Faria [6].

Theorem 1.1 (see [6]). If f1, f2 are C3 critical circle mappings with the same irrational rotation
number of bounded type and the same power-law at the critical point, then there exists a C1+α

conjugacy h between f1 and f2 for some universal α > 0.

The following result of D.Khmelev and M. Yampolski [14] seemed to indicate that the analytic
case could be different.

Theorem 1.2 ([14]). There exists a universal constant α > 0 such that the following holds. Let
f1 and f2 be two analytic critical circle maps with the same irrational rotation number. Denote
h : S1 → S1 conjugacies between f1 and f2 fixing the critical points. Then h is C1+α at the
critical point.

K.Khanin and A.Teplinskii [11] proved that any two f1 and f2 analytic critical circle maps
with the same order of critical points and the same irrational rotation number are C1-smoothly
conjugate to each other. Later, A.Avila [2] showed, that there exist f1 and f2 analytic homeo-
morphisms with the same irrational rotation number such that h is not C1+α for any α > 0.

Next we formulate the result of P.Guarino, M. Martens, and W. de Melo [8].

Theorem 1.3 ([8]). Let f1 and f2 be two analytic C4-circle homeomorphisms with the same
irrational rotation number and with a unique critical point of the same odd type. Then they are
C1-smoothly conjugate to each other. The conjugacy is C1+α for Lebesgue almost every rotation
number.

The present work continuous and completes the above results. Namely we show that if the
rotation numbers of two critical homeomorphisms coincide but the orders of critical points are
different then the conjugacy h is a singular function. Now we formulate our main result.

Theorem 1.4. Let f1 and f2 be C3 critical circle maps with the same irrational rotation number.
Suppose that the orders of critical points of f1 and f2 are different i.e. 2m1+1 ̸= 2m2+1. Then
the conjugacy h between f1 and f2 is a singular function on S1.
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2. Notations, terminalogy, background

Let f be a circle homeomorphism that preserves orientation, i.e. f(x) = F (x)(mod 1), x ∈
S1 ≃ [0, 1), where F is continuous, strictly increasing onR1 and F (x+1) = F (x)+1 for any x ∈ R.
F is called lift of homeomorphism f . The important characteristic of the circle homeomorphism

f is it’s rotation number (see for instance [6]) ρf which defined by ρf = lim
n→∞

Fn(x)

n
(mod 1),

here and later Fn denotes the n-th iteration of F . The rotation number ρf is rational if and
only if f has periodic orbits.

2.1. Dynamical partition. Let f be an orientation preserving homeomorphism of the circle
with lift F and irrational rotation number ρ = ρf . We denote by {an, n ∈ N} the sequence
of entries in the continued fraction expansion of ρ, i.e. ρ = [a1, a2, . . . , an, . . . ]. Denote by
pn/qn = [a1, a2, . . . , an] the convergents of ρ. Their denominators qn satisfy the recurrence
relation, that is qn+1 = an+1qn + qn−1, n > 1, q0 = 1, q1 = a1.

For an arbitrary point x0 ∈ S1 we define ∆
(n)
0 (x0) the closed interval on S1 with endpoints

x0 and xqn = fqn(x0). Note that for odd n the point xqn lies to the left of x0 and for even
n to the right. Denote by ∆

(n)
i (x0) the iterates of the interval ∆(n)

0 (x0) under f :∆(n)
i (x0) :=

f i(∆
(n)
0 (x0)), i > 1.

Lemma 2.1 (see [12]). Consider an arbitrary point x0 ∈ S1. A finite piece {xi, 0 6 i <

qn + qn−1} of the trajectory of this point divides the circle into the following disjoint (except for
the endpoints) intervals: ∆

(n−1)
i (x0), 0 6 i < qn, ∆

(n)
j (x0), 0 6 j < qn−1.

We denote the obtained partition by ξn(x0) and call it n-th dynamical partition of the cir-
cle. We now briefly describe the process of transition from ξn(x0) to ξn+1(x0). All intervals
∆

(n)
j (x0), 0 6 j < qn−1, are preserved, and each of the intervals ∆

(n−1)
i (x0) is divided into

an+1 + 1 sub intervals:

∆
(n−1)
i (x0) = ∆

(n+1)
i (x0) ∪

an+1−1⋃
s=0

∆
(n)
i+qn−1+sqn

(x0).

Obviously one has ξ1(x0) 6 ξ2(x0) 6 . . . 6 ξn(x0) 6 . . . .

Definition 2.1. Let K > 1 be a constant. We call two intervals I1 and I2 of S1 are K-
comparable, if the inequalities K−1µ(I2) 6 µ(I1) 6 Kµ(I2) hold.

Next we formulate the lemma, that is proved in the similar way as in [16].
Let xcr ∈ S1 be a critical point of homeomorphism f . For any x0 ∈ S1, consider the

dynamical partition ξn(x0). For definiteness we assume that n is odd. Then xqn ≺ x0 ≺ xqn−1
.

The structure of the dynamical partition implies that xcr = f−p(xcr) ∈ [xqn , xqn−1
], for some

p, 0 < p < qn. Let I1 and I2 be any elements of a dynamical partition ξm(xcr), m > n having a
common endpoints.

Lemma 2.2. Let f ∈ C3(S1) be a critical circle homeomorphism with irrational rotation number.
Then there exists a constant K > 1 depending only on f such that the intervals I1 and I2 are
K-comparable.

It follows from the Lemma 2.2 that the trajectory of each point is dense in S1. Hence it
follows that there exists conjugation map φ between f and fρ, i.e. φ(f(x)) = fρ(φ(x)) for any
x ∈ S1.
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We assume that ∆(m+k) is element of partitioning ξm+k(xcr), while ∆(m) is an element of
partitioning ξm(xcr) that contains ∆(m+k).

Lemma 2.3 (see [10]). There exist constants λ1(f) < λ2(f) < 1 such that

ℓ(∆(m+k)) 6 const λk2(f)ℓ(∆
(m)), ℓ(∆

(m)
0 ) > const λm1 (f).

2.2. Cross-ratio tools. In the proof of our main theorem the tool of cross-ratio plays a key
role.

Definition 2.2. The cross-ratio of four points (z1, z2, z3, z4), z1 < z2 < z3 < z4 is the number

Cr(z1, z2, z3, z4) =
(z2 − z1)(z4 − z3)

(z3 − z1)(z4 − z2)
.

Definition 2.3. Given four real numbers (z1, z2, z3, z4) with z1 < z2 < z3 < z4 and a strictly
increasing function F : R1 → R1. The distortion of their cross-ratio under F is given by

Dist(z1, z2, z3, z4;F ) =
Cr(F (z1), F (z2), F (z3), F (z4))

Cr(z1, z2, z3, z4)
.

For m > 3 and zi ∈ S1, 1 6 i 6 m, suppose that z1 ≺ z2 ≺ · · · ≺ zm ≺ z1 (in the sense of
the ordering on the circle). Then we set ẑ1 := z1 and

ẑi :=

{
zi if z1 < zi < 1,

1 + zi if 0 < zi < z1.

for 2 6 i 6 m.
Obviously, ẑ1 < ẑ2 < . . . < ẑm. The vector (ẑ1, ẑ2, . . . , ẑm) is called the lifted vector of

(z1, z2, . . . , zm) ∈ (S1)m.
Let f be a circle homeomorphism with lift F . We define the cross-ratio distortion of

(z1, z2, z3, z4), z1 ≺ z2 ≺ z3 ≺ z4 ≺ z1 with respect to f by Dist(z1, z2, z3, z4; f) =

= Dist(ẑ1, ẑ2, ẑ3, ẑ4;F ), where (ẑ1, ẑ2, ẑ3, ẑ4) is the lifted vector of (z1, z2, z3, z4). We need the
following lemma.

Lemma 2.4 ([5]). Let zi ∈ S1, i = 1, 2, 3, 4, z1 ≺ z2 ≺ z3 ≺ z4. Consider a circle homeomor-
phism f with f ∈ C2+ε([z1, z4]), ε > 0, and f ′(x) > const > 0 for x ∈ [z1, z4]. Then there is a
positive constant C1 = C1(f) such that

| Dist(z1, z2, z3, z4; f)− 1 |6 C1|ẑ4 − ẑ1|1+ε,

where (ẑ1, ẑ2, ẑ3, ẑ4) is the lifted vector of (z1, z2, z3, z4).

We now consider the case when the interval [z1, z4] contains a critical point xcr of the home-
omorphism f . More precisely, suppose that z2 = xcr. We define numbers α, β, γ, ξ and η as
follows:

α := ẑ2 − ẑ1, β := ẑ3 − ẑ2, γ := ẑ4 − ẑ3, ξ :=
β

α
, η :=

β

γ
,

where (ẑ1, ẑ2, ẑ3, ẑ4) is the lifted vector of (z1, z2, z3, z4).
Thus we need the following lemma.
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Lemma 2.5. Suppose that a homeomorphism f with lift F has a critical point xcr with order
2m + 1, m ∈ N . Then for any ε > 0, there exist δ = δ(ε) > 0, such that for all zi ∈ Uδ(xcr),

i = 1, n, z1 ≺ z2 = xcr ≺ z3 ≺ z4 one has∣∣∣Dist(z1, z2, z3, z4; f)− 1

1− ξ + ξ2 − · · ·+ ξ2m
× e2mη

2m + e2m−1η
2m−1 + · · ·+ e1η + 1

η2m + C1
2mη

2m−1 + · · ·+ C2m−1
2m η + 1

∣∣∣ < R0ε,

where the constants e2m = 2m + 1, ei = Ci
2m + Ci−1

2m−1 + · · · + C0
2m−i and R0 depends only on

function f .

Proof. Fix a number ε. It is easy to check that for any zi ∈ S1, i = 1, n, z1 ≺ z2 ≺ z3 ≺ z4 one
has

F (z1) = F (ẑ2)−F ′(ẑ2)(ẑ2− ẑ1)+ · · ·+ F (2m)(ẑ2)

2m!
(ẑ2− ẑ1)2m− 1

2m!

∫ ẑ2

ẑ1

F (2m+1)(y)(y − ẑ1)
2mdy,

F (ẑs) =F (ẑ2) + F ′(ẑ2)(ẑs − ẑ2) + · · ·+ F (2m)(ẑ2)

2m!
(ẑs − ẑ2)

2m+

+
1

2m!

∫ ẑs

ẑ2

F (2m+1)(y)(ẑs − y)2mdy, s = 3, 4.

(2.1)

By the assumption of the lemma, z2 = xcr, and using the (2.1) we write
Cr(f(z1), f(z2), f(z3), f(z4)) as follows

Cr(f(z1), f(z2), f(z3), f(z4)) =
(F (ẑ2)− F (ẑ1))(F (ẑ4)− F (ẑ3))

(F (ẑ3)− F (ẑ1))(F (ẑ4)− F (ẑ2))
=

=

ẑ2∫̂
z1

F (2m+1)(y)(y − ẑ1)
2mdy

ẑ3∫̂
z2

F (2m+1)(y)(ẑ3 − y)2mdy +
ẑ2∫̂
z1

F (2m+1)(y)(y − ẑ1)2mdy

×

×

ẑ4∫̂
z2

F (2m+1)(y)(ẑ4 − y)2mdy −
ẑ3∫̂
z2

F (2m+1)(y)(ẑ3 − y)2mdy

ẑ4∫̂
z2

F (2m+1)(y)(ẑ4 − y)2mdy

,

(2.2)

where (ẑ1, ẑ2, ẑ3, ẑ4) is the lifted vector of (z1, z2, z3, z4). Since F (2l+1) ∈ C(Uω(xcr)), there exist
δ(ε) > 0, such that for any x, y ∈ (xcr −ω, xcr +ω) the inequality |F (2m+1)(x)−F (2m+1)(y)| < ε

is true.
Hence from (2.2) we have

Cr(f(z1), f(z2), f(z3), f(z4)) =

=

ẑ2∫̂
z1

F (2m+1)(xcr)(y − ẑ1)
2mdy(1 +O(ε))(

ẑ3∫̂
z2

F (2m+1)(xcr)(ẑ3 − y)2mdy +
ẑ2∫̂
z1

F (2m+1)(xcr)(y − ẑ1)2mdy

)
(1 +O(ε))

×

×

(
ẑ4∫̂
z2

F (2m+1)(xcr)(ẑ4 − y)2mdy −
ẑ3∫̂
z2

F (2m+1)(xcr)(ẑ3 − y)2mdy

)
(1 +O(ε))

ẑ4∫̂
z2

F (2m+1)(xcr)(ẑ4 − y)2mdy(1 +O(ε))

=
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=
α2m+1

α2m+1 + β2m+1
· (γ + β)2m+1 − β2m+1

(γ + β)2m+1
(1 +O(ε)).

From the last equality it follows that

Dist(z1, z2, z3, z4; f) =
1

1− ξ + ξ2 − · · ·+ ξ2m
×

× (1 + η)2m + (1 + η)2m−1η + · · ·+ (1 + η)η2m−1 + η2m

(1 + η)2m
(1 +O(ε)) =

=
1

1− ξ + ξ2 − · · ·+ ξ2m
× e2mη

2m + e2m−1η
2m−1 + · · ·+ e1η + 1

η2m + C1
2mη

2m−1 + · · ·+ C2m−1
2m η + 1

(1 +O(ε)).

Thus Lemma 2.5 is proved. 2

Next suppose the interval [z1, z4] is a subset of the interval Uω(xcr) but does not contain a
critical point xcr of the homeomorphism f . Let d = min

16s64
ℓ([zs, xcr]). We now state an assertion

from [10].

Lemma 2.6 (see [10]). Suppose that a homeomorphism f satisfies the conditions of Lemma 2.5.
Then the following equality holds

Dist(z1, z2, z3, z4; f) = 1 +O

((
α+ β + γ

d

)2
)
.

3. Proof of Theorem 1.4

In order to prove Theorem 1.4 we need several lemmas which we formulate next. Their proofs
will be given later. We consider two copies of the unit circle S1. The homeomorphism f1 acts
on the first circle and f2 acts on the second one. Assume that fi, i = 1, 2 satisfies the conditions
of Theorem 1.4.

Let φ1 and φ2 be conjugations of f1 and f2 to linear rotation fρ, i.e. φ1 ◦ f1 = fρ ◦ φ1 and
φ2 ◦ f2 = fρ ◦ φ2. It is easy to check that the homeomorphisms f1 and f2 are conjugated by
h = φ2 ◦φ−1

1 , i. e. h◦f1(x) = f2 ◦h(x),∀x ∈ S1. Recall that every φi, i = 1, 2 is unique up to an
additional constant. This gives us a possibility to choose h with initial condition h(x(1)cr ) = x

(2)
cr .

Notice the conjugation h(x) is continuous function on S1. It suffices to show that h′(x) = 0

for almost all x with respect to the Lebesgue measure. The derivative h′(x) = 0 exists for almost
all x with respect to the Lebesgue measure because the function h is monotonic. Let us show
that h′(x) = 0 at all points where the derivative is defined.

Lemma 3.1 (see [5]). Assume, that the conjugating homeomorphism h(x) has a positive deriva-
tive h′(x0) = ω0 at some point x0 ∈ S1, and that the following conditions hold for the points
zi ∈ S1, i = 1, . . . , 4, with z1 ≺ z2 ≺ z3 ≺ z4, and some constant R1 > 1 :

(a) the intervals [z1, z2], [z2, z3], [z3, z4] are pairwise R1-comparable;

(b) max
16i64

ℓ([zi, x0]) 6 R1ℓ([z1, z2]).

Then for any ε > 0 there exists δ = δ(ε) > 0 such that

|Dist(z1, z2, z3, z4;h)− 1| 6 C2ε, (3.1)

if zi ∈ (x0 − δ, x0 + δ) for all i = 1, 2, 3, 4, where the constant C2 > 0 depends only on R1, ω0

and not on ε.
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Suppose that h′(x0) = ω0, where x0 ∈ S1. Let ξn(x0) be its n-th dynamical partition. Put
t0 := h(x0) and consider the dynamical partition τn(t0) of t0 on the second circle determined by
the homeomorphism f2, i.e.

τn(t0) = {I(n−1)
i (t0), 0 6 i 6 qn − 1} ∪ {I(n)j (t0), 0 6 j 6 qn−1 − 1}

with I
(n)
0 (t0) the closed interval with endpoints t0 and fqn2 (t0). Choose an odd natural number

n1 = n(f1, f2) such that the n1-th renormalization neighborhoods [xqn1
, xqn1−1

] and [tqn1
, tqn1−1

]

do not contain critical point of f1 and f2 respectively. Since the identical rotation number ρ of
f1 and f2 is irrational, the order of the points on the orbit {fk1 (x0), k ∈ Z} on the first circle will
be precisely the same as the one for the orbit {fk2 (t0), k ∈ Z} on the second one. This together
with the relation h(f1(x)) = f2(h(x)) for x ∈ S1 implies that

h(∆
(n1−1)
i ) = I

(n1−1)
i , 0 6 i 6 qn1

− 1, h(∆
(n1)
j ) = I

(n1)
j , 0 6 j 6 qn1−1 − 1. (3.2)

The structure of the dynamical partitions implies that x(1)cr (n1) = f−l
1 (x

(1)
cr ) ∈ [xqn1

, xqn1−1 ],
where l ∈ (0, qn1−1) if x(1)cr (n1) ∈ [xqn1

, x0], and l ∈ (0, qn1
) if x(1)cr (n1) ∈ [x0, xqn1−1

]. Since h
conjugation between f1 and f2, we get

f l2(h(x
(1)
cr )) = f l−1

2 (f2(h(x
(1)
cr ))) = f l−1

2 (h(f1(x
(1)
cr ))) = · · · = h(f l1(x

(1)
cr )) = h(x(1)cr ) = x(2)cr .

Hence x
(2)
cr (n1) = f−l

2 (x
(2)
cr ) ∈ [tqn1

, tqn1−1 ]. The points x(1)cr (n1) and x
(2)
cr (n1) are called the

qn1
-pre-images of the critical points x(1)cr and x(2)cr , respectively.
Next we introduce the concept of a "regular" cover of the critical point. Let zi ∈ S1, i = 1, 4,

z1 ≺ z2 ≺ z3 ≺ z4 ≺ z1. Define for each j, 0 < j < qn

ξf1(j) =
ℓ
(
[f j1 (z2), f

j
1 (z3)]

)
ℓ
(
[f j1 (z1), f

j
1 (z2)]

) , ηf1(j) =
ℓ
(
[f j1 (z2), f

j
1 (z3)]

)
ℓ
(
[f j1 (z3), f

j
1 (z4)]

) .
Definition 3.1. Let M > 1, ζ ∈ (0, 1), δ > 0 be constant numbers, n is a positive integer and
x0 ∈ S1. We say that a triple of intervals ([z1, z2], [z2, z3], [z3, z4]), zi ∈ S1, i = 1, 2, 3, 4, covers
the critical point of x(1)cr "(M, ζ, θ, δ;x0)-regularly", if the following conditions hold:

1) [z1, z4] ⊂ (x0 − δ, x0 + δ), and the system of intervals {f j1 ([z1, z4]), 0 6 j 6 qn − 1} cover
critical point x(1)cr only once;

2) z2 = f−l
1 (x

(1)
cr ) for some l, 0 < l < qn;

3) ξf1(l) < ζ and ηf1(l) >M .

Denote
L = min{2m1 + 1, 2m2 + 1, 2|m1 −m2|}.

Lemma 3.2. Suppose that the homeomorphisms fi, i = 1, 2 satisfy the conditions of Theo-
rem 1.4. Then for any x0 ∈ S1 and δ > 0 there exist constant M0 > 1 and ζ0 ∈ (0, 1), such that
for all triples of intervals [zs, zs+1] ⊂ (x0−δ, x0+δ), s = 1, 2, 3, and [h(zs), h(zs+1)], s = 1, 2, 3,

covering the critical points x(1)cr and x
(2)
cr regularly with constants M0 and ζ0 the following in-

equalities hold:

∣∣∣ 1

1− ξf1(l) + · · ·+ ξ2m1

f1
(l)

×
e2m1

η2m1

f1
(l) + e2m1−1η

2m1−1
f1

(l) + · · ·+ 1

η2m1

f1
(l) + C1

2m1
η2m1−1
f1

(l) + · · ·+ 1
− (2m1 + 1)

∣∣∣ < L

16
,
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∣∣∣ 1

1− ξf2(l) + · · ·+ ξ2m2

f2
(l)

×
e2m2

η2m2

f2
(l) + e2m2−1η

2m2−1
f2

(l) + · · ·+ 1

η2m2

f2
(l) + C1

2m2
η2m2−1
f2

(l) + · · ·+ 1
− (2m2 + 1)

∣∣∣ < L

16
,

where m1 and m2 are orders of critical points x(1)cr and x(2)cr respectively.

Assume that the homeomorphism f1 satisfies the conditions of Theorem 1.4. Let ξn(x
(1)
cr ) be

a dynamical partition of the circle by f1. We take a natural number r, such that ∆
(r)
0 (x

(1)
cr ) ∪

∆
(r−1)
0 (x

(1)
cr ) ⊂ Uω1(x

(1)
cr ). Suppose that h′(x0) = p0 > 0 for some x0 ∈ S1. Consider the

dynamical partition ξn(x0) of the point x0 under f1. Suppose that n > r an odd natural
number. Let x(1)cr = f−l(x

(1)
cr ) ∈ [xqn , xqn−1

].
Let {ξn+k(x

(1)
cr )}∞k=0 be a sequence of dynamical partitions of the point xcr. We define the

points zi, i = 1, 2, 3, 4 as follows

z1 = fqn+k0 (x(1)cr ), z2 = x(1)cr , z3 = fqn+k0+k1 (x(1)cr ), z4 = fqn+k0+k1
+qn+k2 (x(1)cr ).

Lemma 3.3. Suppose that the homeomorphisms f1 and f2 satisfies the conditions of Theo-
rem 1.4. Let h′(x0) = p0 > 0 for some x0 ∈ S1, δ ∈ (0, 1) and k0 ∈ N . Then there exist natural
numbers k1, k2 such that for sufficiently large n, the triple of intervals [zs, zs+1] ⊂ (x0−δ, x0+δ),
s = 1, 2, 3 satisfies the following properties:

(1) the intervals {[f j1 (z1), f
j
1 (z4)], 0 6 j 6 qn} cover each point at most once;

(2) the intervals [zs, zs+1] and [fqn1 (zs), f
qn
1 (zs+1)], s = 1, 2, 3 satisfy conditions (a) and (b)

of Lemma 3.1 with some constant R1 > 1 depending on k0, k1, k2;
(3) the triples of intervals ([zs, zs+1], s = 1, 2, 3) and ([h(zs), h(zs+1)], s = 1, 2, 3) cover the

critical points x(1)cr , x(2)cr , "(M0, ζ0, δ;x0)-regularly" and "(M0, ζ0, δ;h(x0))-regularly", respectively.

Lemma 3.4. Suppose the circle homeomorphisms f1 and f2 satisfy the conditions of Theo-
rem 1.4. Then there exists natural number k0 such that for intervals [zs, zs+1], s = 1, 2, 3 sat-
isfying conditions (1)–(3) of Lemma 3.3, and for sufficiently large n the following inequality
holds ∣∣∣ Dist(z1, z2, z3, z4; f

qn
1 )

Dist(h(z1), h(z2), h(z3), h(z4); f
qn
2 )

− 1
∣∣∣ > R2 > 0, (3.3)

where the constant R2 depends only on f1 and f2.

Proof of Theorem 1.4. Let f1 and f2 be circle homeomorphisms satisfying the conditions of
Theorem 1.4. The lift H(x) of the conjugating map h(x) is a continuous and monotone increasing
function on R1. HenceH(x) has a finite derivativeH ′(x) for almost all x with respect to Lebesgue
measure. We claim that h′(x) = 0 at all points x where the finite derivative exists. Suppose
h′(x0) > 0 for some point x0 ∈ S1. Fix ε > 0. We take a triple of intervals [zs, zs+1] ⊂
(x0 − δ, x0 + δ), s = 1, 2, 3, satisfying the conditions of Lemma 3.4.

Using the assertion of Lemma 3.1 we obtain∣∣∣Dist(z1, z2, z3, z4;h)− 1
∣∣∣ 6 C3ε, (3.4)∣∣∣Dist(fqn1 (z1), f

qn
1 (z2), f

qn
1 (z3), f

qn
1 (z4);h)− 1

∣∣∣ 6 C3ε. (3.5)

Hence ∣∣∣ Dist(z1, z2, z3, z4;h)

Dist(fqn1 (z1), f
qn
1 (z2), f

qn
1 (z3), f

qn
1 (z4);h)

− 1
∣∣∣ 6 C4ε, (3.6)

where the constant C4 > 0 does not depend on ε and n.
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Since h is conjugating f1 and f2 we can readily see that

Cr(h(fqn1 (z1)), h(f
qn
1 (z2)), h(f

qn
1 (z3)), h(f

qn
1 (z4))) =

= Cr(fqn2 (h(z1)), f
qn
2 (h(z2)), f

qn
2 (h(z3)), f

qn
2 (h(z4))).

Hence we obtain
Dist(fqn1 (z1), f

qn
1 (z2), f

qn
1 (z3), f

qn
1 (z4);h)

Dist(z1, z2, z3, z4;h)
=

=
Cr(h(fqn1 (z1)), h(f

qn
1 (z2)), h(f

qn
1 (z3)), h(f

qn
1 (z4)))

Cr(fqn1 (z1), f
qn
1 (z2), f

qn
1 (z3), f

qn
1 (z4))

×

× Cr(z1, z2, z3, z4)

Cr(h(z1), h(z2), h(z3), h(z4))
=
Cr(fqn2 (h(z1)), f

qn
2 (h(z2)), f

qn
2 (h(z3)), f

qn
2 (h(z4)))

Cr(h(z1), h(z2), h(z3), h(z4))
:

:
Cr(fqn1 (z1), f

qn
1 (z2), f

qn
1 (z3), f

qn
1 (z4))

Cr(z1, z2, z3, z4)
=
Dist(h(z1), h(z2), h(z3), h(z4); f

qn
2 )

Dist(z1, z2, z3, z4; f
qn
1 )

.

This, together with (3.6) obviously implies that∣∣∣ Dist(z1, z2, z3, z4; f
qn
1 )

Dist(h(z1), h(z2), h(z3), h(z4); f
qn
2 )

− 1
∣∣∣ 6 C5ε,

where the constant C5 >0 does not depend on ε and n. This contradicts equation (3.3). Therefore
Theorem 1.4 is completely proved. 2

4. The proofs of Lemmas 3.2–3.4

Proof of Lemma 3.2. Denote

ψ1(ξf1(l)) =
1

1− ξf1(l) + · · ·+ ξ2m1

f1
(l)
,

and

ψ2(ηf1(l)) =
e2m1

η2m1

f1
(l) + e2m1−1η

2m1−1
f1

(l) + · · ·+ 1

η2m1

f1
(l) + C1

2m1
η2m1−1
f1

(l) + · · ·+ 1
.

It is easy to check that for ηf1(l) > 0 the function ψ2(ηf1(l)) is monotone increasing and 1 <

ψ2(ηf1(l)) < 2m1 + 1. Obviously

lim
ξf1 (l)→0

ψ1(ξf1(l)) = 1, lim
ηf1

(l)→∞
ψ2(ηf1(l)) = 2m1 + 1.

Taking these remarks into account and using the explicit form of the functions ψ1(ξf1(l)) and
ψ2(ηf1(l)) we can now estimate | ψ1 · ψ2 − (2m1 + 1) |. Firstly, we estimate ψ2 for large value of
ηf1(l). Using the explicit form of the function ψ2(ηf1(l)), we see that the inequality

|ψ2 − (2m1 + 1)| = O

(
1

ηf1(l)

)
6 R3

(
1

ηf1(l)

)
, (4.1)

where the constant R3 > 0 depends only on f1. If we choose ηf1(l) satisfying the inequality

R2

(
1

ηf1
(l)

)
<

L

32
, then

|ψ2(ηf1(l))− (2m1 + 1)| < L

32
,
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for ηf1(l) >
32R3

L
.

We next estimate |ψ1 − 1| for small value of ξf1(l). Using the explicit form of the function
ψ1(ξf1(l)), we see that |ψ1(ξf1(l))− 1| = O(ξf1(l)) 6 R4ξf1(l). It follows from this together with

(4.1) that |ψ1 · ψ2 − (2m1 + 1)| 6 |ψ2 − (2m1 + 1)|+ |ψ2| · |ψ1 − 1| 6 L

32
+ (2m1 + 1)R4ξf1(l). If

we take
ζ1 := min

{ L

32(2m1 + 1)R5
, 1
}
, M1 := max

{32R5

L
, 1
}
,

where R5 = max{R3, R4}, then for all ξf1(l) < ζ1 and ηf1(l) > M1 the following inequality holds

|ψ1 · ψ2 − (2m1 + 1)| 6 L

16
.

Similarly it can be shown that with

ζ2 := min
{ L

32(2m2 + 1)R6
, 1
}
, M2 := max

{32R6

L
, 1
}
, (4.2)

and ξf2(l) < ζ2 and ηf2(l) > M2, the second assertion of Lemma 3.2 holds. In (4.2) the constants
R6 > 0 depends only on f2. Finally, if we set ζ0 := min{ζ1, ζ2} and M0 := max{M1,M2}, then
Lemma 3.2 holds for ξf1(l), ξf2(l) ∈ [0, ζ0) and ηf1(l), ηf2(l) >M0. Lemma 3.2 is proved. 2

Proof of Lemma 3.3. Firstly, we prove the third assertion of the lemma. By the construction of
the points zi, i = 1, 2, 3, 4, it implies that the intervals [zs, zs+1] and [h(zs), h(zs+1)], s = 1, 2, 3

satisfy the 1) and 2) conditions of definition of "regularly" covering. We consider dynamical
partition ξn(x

(1)
cr ). According to Lemma 2.2 the intervals ∆

(n)
0 (x

(1)
cr ) and ∆

(n−1)
0 (x

(1)
cr ) are K-

comparable, i.e. there exist constant K > 1 such that K−1ℓ(∆
(n−1)
0 (x

(1)
cr )) 6 ℓ(∆

(n)
0 (x

(1)
cr )) 6

Kℓ(∆
(n−1)
0 (x

(1)
cr )). Thus it follows that there exists k(1)1 ∈ N such that the following inequality

holds
ℓ
(
[x

(1)
cr , f

q
n+k0+k

(1)
1

1 (x
(1)
cr )]

)
ℓ
(
[f

qn+k0
1 (x

(1)
cr ), x

(1)
cr ]
) < ζ0. (4.3)

Indeed, it is clear that

ℓ
(
∆

(qn+k0+3)
0 (x

(1)
cr )
)

ℓ
(
∆

(qn+k0+1)
0 (x

(1)
cr )
) =

1

ℓ
(
∆

(qn+k0+1)

0 (x
(1)
cr )
)

ℓ
(
∆

(qn+k0+3)

0 (x
(1)
cr )
) 6 1

1 + 1
K

=
K

K + 1
.

Hence ℓ
(
∆

(qn+k0+3)
0 (x

(1)
cr )
)
6 K

K+1ℓ
(
∆

(qn+k0+1)
0 (x

(1)
cr )
)
. Using the last inequality we obtain that

for any k

ℓ
(
∆

(qn+k0+k)
0 (x(1)cr )

)
6
( K

K + 1

)k
ℓ
(
∆

(qn+k0+1)
0 (x(1)cr )

)
.

Since ∆
(qn+k0+1)
0 (x

(1)
cr ) and ∆

(qn+k0
)

0 (x
(1)
cr ) are K-comparable, there exists a k(1)1 ∈ N such that

the inequality (4.3) is true. Similarly, we can show that there exists a k(1)2 ∈ N such that the
following inequality holds

ℓ
(
[x

(1)
cr , f

qn+k0+k1
1 (x

(1)
cr )]

)
ℓ
(
[f

qn+k0+k1
1 (x

(1)
cr ), f

q
n+k0+k

(1)
1

+q
n+k

(1)
2

1 (x
(1)
cr )]

) > M0.

– 296 –



Utkir A. Safarov A Note on the Conjugacy Between Two Critical Circle Maps

Similarly, it can be shown that with natural numbers k(2)1 and k(2)1 the inequalities

ℓ
(
[x

(2)
cr , f

q
n+k0+k

(2)
1

2 (x
(2)
cr )]

)
ℓ
(
[f

qn+k0
2 (x

(2)
cr ), x

(2)
cr ]
) < ζ0,

ℓ
(
[x

(2)
cr , f

q
n+k0+k

(2)
1

2 (x
(2)
cr )]

)
ℓ
(
[f

q
n+k0+k

(2)
1

2 (x
(2)
cr ), f

qn+k0+k1
+q

n+k
(2)
2

2 (x
(2)
cr )]

) > M0

hold. If we take k1 = max{k(1)1 , k
(2)
1 } and k2 = max{k(1)2 , k

(2)
2 } then the third assertion of

Lemma 3.3 holds for k1 and k2. By the definition of the points zi, i = 1, 2, 3 it implies the first
assertion of the lemma.

Let ξn
(
x
(1)
cr

)
be a dynamical partition of the point x(1)cr . According to Lemma 2.2 the in-

tervals ∆
(n)
0

(
x
(1)
cr

)
and ∆

(n−1)
0

(
x
(1)
cr

)
are K-comparable. Hence, it implies that the intervals

[zs, zs+1], s = 1, 2, 3 are pairwise Kk1+k2 - comparable. It is easy to see that the intervals
[fqn1 (zs), f

qn
1 (zs+1)], s = 1, 2, 3 are pairwise Kk1+k2-comparable. Obviously,

1

Kk0+1
6
ℓ
(
∆

(n−1)
0 (x

(1)
cr )
)

ℓ
(
[z1, z2]

) 6 Kk0+1,
1

Kk0+1
6

ℓ
(
∆

(n−1)
0 (x

(1)
cr )
)

ℓ
(
[fqn1 (z1), f

qn
1 (z2)]

) 6 Kk0+1.

Since the intervals ∆
(n−1)
0 (x

(1)
cr ) and ∆

(n−1)
0

(
f
−qn−1

1 (x
(1)
cr )
)

are K-comparable and
x0 ∈ ∆

(n−1)
0

(
f
−qn−1

1 (x
(1)
cr )
)
∪∆

(n−1)
0

(
x
(1)
cr

)
we get

max
16i64

{ℓ
(
[fqn(zi), x0]

)
, ℓ([zi, x0])} 6 (K + 1)Kk0+1ℓ

(
[z1, z2]

)
.

If we take R1 = (K+1)Kk0+k1+k2 , then we obtain the proof of the second assertion of Lemma 3.3
with constant R1. Lemma 3.3 is proved. 2

Proof of Lemma 3.4. Suppose, the triples of intervals ([zs, zs+1], s=1, 2, 3) and ([h(zs), h(zs+1)],

s = 1, 2, 3) satisfy the conditions of Lemma 3.3. We want to compare the distortion
Dist(z1, z2, z3, z4; f

qn
1 ) and Dist(h(z1), h(z2), h(z3), h(z4); f

qn
2 ). We estimate only the first dis-

tortion, the second one can be estimated analogously. Obviously

Dist(z1, z2, z3, z4; f
qn
1 ) =

qn−1∏
i=0

Dist(f i1(z1), f
i
1(z2), f

i
1(z3), f

i
1(z4); f1).

We denote

Jr(x
(1)
cr ) = ∆

(r)
0 (x(1)cr ) ∪∆

(r−1)
0 (x(1)cr ), A = {i : (f i1(z1), f i1(z4)) ∩ Jr(x(1)cr ) = ∅},

B = {i : (f i1(z1), f i1(z4)) ∩ Jr(x(1)cr ) ̸= ∅}.

It is clear that A ∪B = {0, 1, . . . , qn}.
Next we rewrite Dist(z1, z2, z3, z4; f

qn
1 ) in the form

Dist(z1, z2, z3, z4; f
qn
1 ) =

∏
i∈A

Dist(f i1(z1), f
i
1(z2), f

i
1(z3), f

i
1(z4); f1)×

×
∏
i∈B

Dist(f i1(z1), f
i
1(z2), f

i
1(z3), f

i
1(z4); f1). (4.4)

We estimate the first factor in (4.4). Using the Lemmas 2.4 we obtain∣∣∣∏
i∈A

Dist(f i1(z1), f
i
1(z2), f

i
1(z3), f

i
1(z4); f1)− 1

∣∣∣ = ∣∣∣∏
i∈A

(
1 +O

(
ℓ([f i1(z1), f

i
1(z4)])

)1+ν
)
− 1
∣∣∣ =

= max
i

(
ℓ([f i1(z1), f

i
1(z4)])

)ν
O
(∑

i∈A

ℓ
(
[f i1(z1), f

i
1(z4)]

))
= O(λnνf1 ),
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where ν > 0 and 0 < λf1 < 1. We fix ε > 0. There exists N0 = N0(ε) > 1 such that for any
n > N0 the estimate ∣∣∣∏

i∈A

Dist
(
f i1(z1), f

i
1(z2), f

i
1(z3), f

i
1(z4); f1

)
− 1
∣∣∣ < C6ε (4.5)

holds. We now estimate the second factor in (4.4). We rewrite the second factor in the following
form ∏

i∈B

Dist
(
f i1(z1), f

i
1(z2), f

i
1(z3), f

i
1(z4); f1

)
=

=
∏

i∈B,i ̸=l

Dist
(
f i1(z1), f

i
1(z2), f

i
1(z3), f

i
1(z4); f1

)
×Dist

(
f l1(z1), f

l
1(z2), f

l
1(z3), f

l
1(z4); f1

)
. (4.6)

By applying Lemmas 2.5 and 3.2 we obtain

|Dist
(
f l1(z1), f

l
1(z2), f

l
1(z3), f

l
1(z4); f1

)
− (2m1 + 1)| < L

8
. (4.7)

Using Lemma 2.6 for the first factor in (4.6), we get∣∣∣∣ ∏
i∈B,i ̸=l

Dist
(
f i1(z1), f

i
1(z2), f

i
1(z3), f

i
1(z4); f1

)
−1

∣∣∣∣ = ∣∣∣∣ ∏
i∈B,i ̸=l

(
1+O

(ℓ([f i1(z1), f i1(z4)])
di

)2)
−1

∣∣∣∣ =
=

∣∣∣∣ exp{ ∑
i∈B,i ̸=l

log

(
1 +O

(ℓ([f i1(z1), f i1(z4)])
di

)2)}
− 1

∣∣∣∣ 6 const
∑

i∈B,i ̸=l

(
ℓ([f i1(z1), f

i
1(z4)])

di

)2

=

= const

n−r∑
q=0

∑
i:[fi

1(z1),f
i
1(z4)]⊂(Jn−q(x

(1)
cr )\Jn−q+1(x

(1)
cr )),i̸=l

(
ℓ([f i1(z1), f

i
1(z4)])

di

)2

.

Obviously, ∑
i:[fi

1(z1),f
i
1(z4)]⊂(Jn−q(x

(1)
cr )\Jn−q+1(x

(1)
cr )),i̸=l

(
ℓ([f i1(z1), f

i
1(z4)])

di

)
= const

and it follows from Lemma 2.3 that
ℓ([f i1(z1), f

i
1(z4)])

di
6 const λk0+1+q

f1
. Consequently∣∣∣∣ ∏

i∈B,i ̸=l

Dist(f i1(z1), f
i
1(z2), f

i
1(z3), f

i
1(z4); f1)− 1

∣∣∣∣ 6 C7λ
k0

f1
, (4.8)

where C7 > 0 depends only on f1.
Similarly one can show that for the triple of intervals ([h(zs), h(zs+1)], s = 1, 2, 3) the follow-

ing inequality∣∣∣∣ ∏
i∈B,i ̸=l

Dist(f i2(h(z1)), f
i
2(h(z2)), f

i
2(h(z3)), f

i
2(h(z4)); f2)− 1

∣∣∣∣ 6 C8λ
k0

f2
, (4.9)

where C8 > 0 depends only on f2 and 0 6 λf2 6 1 is defined in Lemma 2.3.
If we choose

k0 = max

{[
logλf1

L

(16m1 + 8 + L)C7

]
+ 1,

[
logλf2

L

(16m2 + 8 + L)C8

]
+ 1

}
,
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where constants 0 6 λf1 , λf2 6 1 are defined in Lemma 2.3, then from the relations (4.4)–(4.8)
it implies that for sufficiently large n

|Dist(z1, z2, z3, z4; fqn1 )− (2m1 + 1)| < L

4
. (4.10)

Similarly

|Dist(h(z1), h(z2), h(z3), h(z4); fqn2 )− (2m2 + 1)| < L

4
. (4.11)

The inequalities (4.10) and (4.11) implies

Dist(z1, z2, z3, z4; f
qn
1 )

Dist(h(z1), h(z2), h(z3), h(z4); f
qn
2 )

− 1 > 8(m1 −m2)− 2L

8m2 + L+ 4
> 0, (4.12)

if m1 > m2, and

Dist(z1, z2, z3, z4; f
qn
1 )

Dist(h(z1), h(z2), h(z3), h(z4); f
qn
2 )

− 1 6 8(m1 −m2) + 2L

8m2 − L+ 4
< 0, (4.13)

if m1 < m2. If we set

R2 := min

{
|8(m1 −m2)− 2L|

8m2 − L+ 4
,
|8(m1 −m2) + 2L|

8m2 + L+ 4

}
, (4.14)

then it follows from (4.12)–(4.14) that the assertion of the lemma holds.

The author would like to thank Professors A.A.Dzhalilov, K.M.Khanin and A.Davydov for
useful discussion.
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О сопряжение между двумя критическими
отображениями окружности

Уткир А. Сафаров
Туринский политехнический университет

Ташкент, Узбекистан
Ташкентский государственный экономический университет

Ташкент, Узбекистан

Аннотация. В статье изучается сопряжение между двумя критическими гомеоморфизмами
окружности с иррациональным числом вращения. Пусть fi, i = 1, 2 являются C3-гомеоморфизмы
окружности с критической точкой x

(i)
cr порядка 2mi + 1. Доказано, что если 2m1 + 1 ̸= 2m2 + 1, то

сопряжение между f1 и f2 — сингулярная функция.

Ключевые слова: гомеоморфизм окружности, критическая точка, сопрягащий гомеоморфизм,
число вращения, сингулярная функция.
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