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Abstract. Initial boundary value problem for the time-fractional Airy equation on a graph with finite
bonds is considered in the paper. Properties of potentials for this equation are studied. Using these
properties the solutions of the considered problem were found. The uniqueness theorem is proved using
the analogue of Gronwall-Bellman inequality and a-priory estimate.
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Introduction

In recent years noticeable interest has been shown in the study of initial and initial-boundary
value problems for equations of fractional order. This is due to the fact that fractional-integral
calculus have applications in the study of diffusion and dispersion processes in various fields of
science (see [1-5]).

The Schrodinger equation on metric graphs was studied (see [6,7] and references therein).
Such graphs sometimes called quantum graphs. The Schrodinger equation on the metric graph
was also studied with Fokas unified transformation method [8].

The Airy equation on an interval was studied with Fokas unified transform method [9] and [10].
The potential theory for solutions of this equation was developed [11] and [12]. The linearised
Airy equation on metric graphs was considered in [13-16] and [17]. M. Cavalcante considered
non linearised KdV equation [18].

A. Pskhu studied properties of the Airy equation with time-fractional derivative. Fundamental
solution of the equation was found and properties of potentials were studied (see [19]). Later,
second fundamental solution was found and the properties of the some additional potentials were
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studied [20,21]. Using this results solutions of initial and some IBVPs over infinite and finite
intervals were found.

In this paper we consider the initial boundary value problem (IBVP) on a closed star graph
with finite bonds. The solutions are found with the use of the potential method developed
in [19-21].

1. Basic concepts

The operator

o oy 1 AG)
oDy 19(t) = T —a) /n i §|ad£, 0<a<l, (1)

is called fractional derivative (Caputo derivative) (see [22]), where I'(x) is the Gamma function.
Inverse of this operator is called operator of fractional integration

Lot g9

Jog(t) = / deg. 2
w90 =10y ), e .

It is easy to show that
cDy19(t) = ¢ Dy _ng(2). 3)

Function
oo Zn’

¢()\7M§2)1:;m7 A>-1LueC (4)

is called Wright function (see [23]). Wright function can be represented as

_,\di

1
(N, s 2) 7/ e7t=e
Ha

2mi oh’

where the integral is taken along the Hankel contour (see [22]). We have following estimate
(see [19])
| (=X, 5 2)] < Cexp (—V‘Z|ﬁ) , C=C(\p,v), (5)

m—largz| 1+ A

whereu<(1—)\))\ﬁcos T 3

m < largz| < w. The value of integral of this

function is (see [19])
1

“+o0
/O A=A, s az)dz = YIS

(6)

2. Formulation of the problem

The Cauchy problem for time-fractional Airy equation on a metric graph with infinite bonds
was considered ([21]). Now we consider a graph with k incoming and m outgoing bonds. In the
incoming bonds coordinates are set from L; (L; <0, j = 1,k) to 0, and on the outgoing bonds
the coordinates are set from 0 to L; (L; > 0,4 = k+ 1,k +m). The bonds of the graph are
denoted by bj, j = 1,k +m (Fig. 1).

On each bond b; (j = 1,k + m) of the graph, we consider the Airy equation with a fractional

time derivative 5
oDg yuj(z,t) — @uj(xﬂt) = fi(z,t), 0<t<T. (7
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Fig. 1. Star-shaped graph

Let 0<t<T,and z € bj, j =1,k + m. We need to impose the following initial conditions

u(z,0) = up(z), (8)
vertex conditions
Au(0,t) =0, (9)
o 0
— t)=B—u (0,t 1
Zut(0,1) = B—u (0,1), (10)
ut
where u™ = (U’l) Uz, .- - auk)Ta U+ = (uk+1) U425 - - - 7uk+m)T7 u = ( u= ) )
—Aasg 0 0
1 0 as 0
A= ...
0 0 0
0 0 oo —Ak4m

and B is the constant m-by-k matrix.
We need impose the following conditions which are sometimes called the Kirchhoff conditions
or the condition of conservation of flow rate at the vertex of the graph

0?u~(z,t) 0?ut(z,t)
CT—= =Cr—27 ) 11
0z lz=0 0x?  lz=0 (11)
1 1 1 1 1 [
where O~ = (f,f,...,f), ot = ( —) ay =1 and aj # 0 for j = 2,k +m.
a; az Qg Ak+1 Ak+m
Boundary conditions are
ou™ (z,t)
L,t)=o(t), —f——— = Pt 12
a0 =), ZED) ), (12)

where Y = (9013 P2,y ‘Pk—&-m)T and (;5 = ((151, ¢2; c ¢k)T~
A regular solution of equation (7) is constructed on the graph defined above that satisfies

conditions (8)—(12).
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2.1. Uniqueness of solution

Theorem 1. Let BT B — I}, be negative defined matriz. Then problem (7), (8)—(12) has at most
one solution.

Proof. Let us consider the following inequality [24]

b b
1
/ ve D vde > 5o D3, / e
a a

. Using the Cauchy inequality and conditions (8)—(9), we have

cDf 4l < (u™)"(BTB — Ii) (u™) + 2llullollfllo < 2llullol fllo < [[ull§ + 1[5,

where
k+m

g =Y [
i=1"5

u = (ul,ug, PN 7uk+m)-
Using the analogue of Gronwall’s inequality [24], we obtain from the last inequality the
following a priori estimate

lull§ < [luol* Ba(2t%) + (@) Ba,o (2t*)cDE||£115- (13)

The proof of the theorem follows from (13). O

2.2. Fundamental solutions

We construct the solution of the problem with the use of the potential method. To begin
with, we need to obtain a special solution of equation (7) that is called fundamental solution. A
fundamental solution of the equation was found in the following form [19]

x
) ¢(—a/3,2a/3; a—) x <0,
G2 (x,t) = 212073 4 to/3 o (14)
3t —2Re [627”/3¢( - a/3,2a/3;62”/3m)], x> 0.
Using results from [21], second fundamental solution can be written in the following form
1 i xi/3 T
V2, t) = st [62 1/3¢>( — a/3,20/3; €2 1/3#%)}, 2> 0. (15)
These functions have the following properties (see [19])
PE
cDo,Go (e, t) = GE7"(x,1), 55Go(x,t) = Gg™%(2,1) (16)
with estimate
| Dg G, t)| < Ca 000371, (17)
where
07 - N )
) [0 e ENe
1, (_IJ’) € NO~
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Using these functions we define functions that are called potentials

t t
w(a,1) = / G2/ (@ — ayt —)m(n)dn,  walw, ) = / V2S5 (0 — a,t - n)ma(n)dn,

0 0
t 02 t 92
n- [ Zg t d t 0" yza/3 t d
w3(xv )_ W a2a/3(x7a7 777)7-3(77) 7, ’LU4(.T ) @ @ (I*a, 777)7-4(77) 7,
(2.1) / 23w — €. 1)r3(€)dE and wg(a 1) / / G223 (@ — £, — ) (. n)dedn.
Let us show some properties of these functions in the following lemmas.
Lemma 1. Let functions 74(t), k= 1,2 are continuous and bounded on (0; +00). Then
1. Functions wi(x,t) and wa(x,t) are solutions of the equation

P3uj(z,t)

o DG (1) — L

2. Functions wy(z,t) and we(z,t) satisfy conditions
1er(l)u;k(gv,t) =0,k=1,2.
Lemma 2. Let 75(n),74(n) € CVL(0,h). Then

1 2
mganowg(x t) = ng(t), wgﬂowg(x t) = *ng(t), wlgr}rowzl(:c t) =0.

The proofs of these lemmas can be found in [21].

Lemma 3. Let 75(z) € Cla,b]. Then function ws(x,t) is the fundamental solution of equation
(7) and
tILH(l) CD(‘it_lw5(x,t) = 75(2).

Proof. Let us show that function ws(x,t) is the fundamental solution of equation (7). Using
relations (16), we obtain

b b
CD(()X,tw5(‘r> t) = / CD(O)t,tGia/S(‘T - €a t)7'5(§)d£ = / G;a/3(m - 5; t>7-5(§)d€
and

Ox? Ox3
Comparing these equalities, we obtain that function ws(z,t) is the fundamental solution of
equation (7).
Let us find

b
P sl t) = / 0 Gp0/3(q — ¢, tyms(€)de = / G/ — €, ) (€)de.

b
Dy ws (2, 1) / eD§T G2 (@ — &ty (€)deE :/ GL=o/3(z — &, t)m5(€)dE.

Using inequality (17), we have the following estimate

b
leDgy Mws (w0, t)| = / GLo3(x — &, t)m5(€)de| <

max, 75(x / Cle —&|70t(-9%

a<z<h
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where 1 > 6 > 0. It shows that the integral form converges. Replacing z—¢ with y and taking

te/3
into account that - -
| sty = [ Gl ey -

_toz/S 0 1 1 d 2toz/3R 27i/3 > 1 o 1 271'2/3 d
- . 3ta/3¢)( 57 _g ) Yy — €€ 0 3ta/3¢(_§a 37 ) Yy

10 omisz 1 a

_ = = = Ti/3 - = _ 2mi/3 _
3/_OO¢< 31 ,y)dy 2Re[e 3/0 ¢( 31— 3gse y)dy}

- % (F(l - a/13 Tap3)  2Re [_e2ﬂi/3 €230 (1 —1a/3 - a/3)D -

we obtain ,
}1_{11 CDOt w5(33 t)= }1_1?(1) Gl a/S(l, — & t)15(8)dE =
: 2 a/31—a/3(, sa/3 a/3 75(2) oo
=lim [ Gyt ) (v — ¢ y)dy = == ga(y)dy = 75().
:0—/3 — 00
The lemma is proved. |
3

Lemma 4. The equation ¢ D§u(z,t) — ﬁu(x,t) = f(=,t) with initial condition
i x
CDQ t u(ac t)|t:0 =0
has a solution in the form
t b
oot = [ an [ G2 - gt e me
0 a
Proof. Using the results given in [19], it is easy to show that solution of the Cauchy problem for
3

0
the homogeneous equation ¢ Dg ,v(z,t) — ﬁv(ac, t) = 0 with initial condition v(z,0) = vg(x) is
T

b
vla,t) = DGy / G203 (& — €, t)uo (€)d.

a

Let us determine the derivatives of function we(z, t)
d t b o N
oDi o) =5 [ dn [ D3GR - 6t = n)f(€mde =
0 a
b ¢ b
. a— a d a— a
—lim [ oDGGR e - gt e+ [ dn [ oDy G e - €t - mf(€mde.
a 0 a
Taking into account (3) and relation (16), we obtain
b
DTGRP o &t M€ = [ DR G €t~ 6 e =
- [[arone et mrema

a
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It follows from relation (5) that integral I; converges uniformly. Substituting (x)i/g for y in
t—mn
this integral and taking into account (6), we obtain

b b
I = lim / Dy G (@ = &t — ) (€ m)dé = limy / GL P (w — &t =) f(&m)dE =

st [ G ) Pt = - ) )= )y =
e
) —(t— a/3 t— a/3 ) .
= liny o @y =) g (e2eirig(- 21— e/ )yt
e 3(t —m)
r 1
: o o a/3 a/3
1 — (- 1—-7; —(t— t— dy =
+om 3(t_n)a/3¢( 3 37y)f(:c (t—=m)™ y,m)(t —n)" " dy
z—b
(t=m/3
(tjn_);/d
N 27i/3 g _g 27i/3 a/3
——glim [ Re (@70 (<51 5iem0) ) fla = (= )y mdy s
0
0
~ i _eq e _ a/3 _
wplm [ o (=50 Si) e - -0 Py
x—b
(t—n)®/3
2 too a a , 1[0 a a
- _- Ti/3 e = 2wi/3 - = R —
336(/0 e ¢( 31— gie y)f(x,t)dy>+3/_oo¢( Tk 3,y)f(x,t)dy

= ne (e e Y e+ 5 (<) St = S

93
Now we have I} = f(x,t). Furthermore we show that Iy = ﬁu(x, t). We begin with
B

t b d
= [Can [ GepiieEe =t - e.mie =
/ d”/ D8 GR P @ — 6t — ) f(6, m)dé = (18)

¢ b
= [Lan [ GE e - - e
To determine %u(m,t) we use relation (16). So, we have
83 o3 t b
gt = g [an [ G20 — et —mp(enas -
_ ! b 63 2c/3 _ ! b 2a/3—a _
~[an] Se (x—f,t—mf(&,n)ds—/o an [ G e @t = flemie = (19)
= [ ez - et mse i
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3

Comparing (18) and (19), we obtain I = %u(az,t). The Lemma is proved.
x

2.3. Existence of solutions

Let
F-=(F,....,F)",  F"=(F1, . Fegm)’
a” = (a,..,on)", @t = (kg akgm) T
B~ = (b, ,5k)T7 BT = Brgtr - Brgm)
=0T YT = (ks em) T
p~ = (p1,p2, --,pk) . P = (Pry1s -apk+m)T7

(L;j;0), j=1k

db; = - .

ana o {(O;Lj), j=kfLEktm
Let us find solutions in the form

t t
uj(x,t):/ Gia/s(x—Lj,t—T)aj(T)dTJr/ Vja/s(x—Lj,th)ﬁj(T)dTJr

0 0

t t
—|—/ Gia/g(x—o,t—T)’}/j(T)dT—l—/ Vjo‘/g‘(a:—O,t—T)pj(T)dT+Fj(m,t), i=1,k+m,
0 0

=1,k+m), B (j =1,k), p; (j =k+ 1,k +m) are unknown func-
tions, p;(t) = 0,(3—1,) Bi(t)=0,i=k+1,k+m and

t
Fj(x,t) = /b U0 (€)e D§ T G203 (x — €t — 0)dé + /O /b G2 /3w — &t — 0) f;(€, T)dedr.

J

where functions a;, v;

It follows from Lemma 4 and the results given in [19] that these functions are the solutions
of equation (7) and they satisfy initial conditions (8).
Taking into account condition (9), we have

t t
a) / G2 (Lt — Ty (T)dr + / V2 (~ Lyt — 7)B;(r)dr+

t t
+a / G213 (0, — ) 7 (r)dr + a; / V203 (0, — 7) py (7)d7 + a;F; (0,1) =
0 0

t t
= / Gia/?’ (=Li,t — 7)oy (T)dr + / Vfa/g (=Li,t —71) Bi(7)dT+
0 0

¢
+/ Gia/S(O,t—T)%(T)dT—FFl(O,t), j=2,k+m.
0

Furthermore

t
| (627 (it = ran(r) 4 V2 (<Lt = 1) () drt
0
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t a 2a
¢(_§7 3 70)
P8 30 ()dr + Fy (0,8) =
0 3(t )1 2&/3 ( ) 1( )

t
= q, / G2/3 ( Lj7t—T)aj(T)dT+aj/ V3 (= Lyt —7) Bj(r)dr+

0
b o(=5.%10)

T 7 (r)dr +1 /tem/g‘f’( 2550 (ir | + 0, (0,0)
aj | o5 (T)dr +1m ja; a3 PINTIAT) T a8 0
7o 3 — gyl "o syt o
So, we have

tf(” p;i(T) —a;

7( ) +7(7)
aij (O,t)—Fl (Oyt):/o (2a) — 1 2a/3 dr—
2a) (¢ —

t

t
—a; i G(?l‘%/3 (—Lj, t — 7)oy (T)dT — a; /0 VO?O‘/B (=Lj,t —7)Bj(T)dr+

t t
+/ G2a/3 (—Ll,t—r)al(r)d7+/ V2/3 (Lt — 1) By (r)dr

0 0

V3a,
2

and

Y1(7) — a;vi(T) +

pi(7) = 3Dy (a; F; (0,1) — F1 (0,1))
t t
73ach2a/3 </ Gia/3 (—Lj,t — 7)o (T)dT + / V(fa/s (—=Lj,t—7)B; (T)dT) —
0 0

t t
30D < [ @ = nainir+ [ vz - ﬂlde) .
0

0
From above relation we obtain

V3a,
2

n(r) = ajy(r) + pi(r) =3¢ D% (a; Fy (0,1) — Fy (0,t)) —

—3</G —Ly,t—7)ay(r dT+/V0 Ll,t—r)ﬁ(r)d7>+

+ 3a; (/ GO (— — 7)oy (T)dT + / VO(~Ljt—7) ﬁj(T)dT> , j=2,k+m. (20)
0
In a similar manner, we obtain from condition (10) that
_ V3 o _
B,Y (t) - ’Y+(t) + 7p+(t) = 3CD0,43 (F;(()’t) - BFac (Ovt)) B

¢

—3/ (BGa (L7t =) a™(7) + BV2/* (—L7 t = 7) B~(r)) dr+ (21)
0

+3/t (Gg/?’ (—L*,t—1) a+(7)) dr.
0

Taking into account condition (11) and using Lemmas given above, we have
2

t
C™ vy~ (t) +20FyT(t) = 3C hi% %/ G(Qﬁ/‘g(z C Lt — m)a(r)dr+

2 t
+3C lim ;7 / V23 (x — Lt — 7)B(7)dr 4+ 3CF,(0,1),
z—0
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where C = (—C~,CT).
Using conditions (12), we have

t
Joq"® (%‘ (t) + ?53‘(15)) +/0 G253 (Lt — 1) v (r)dr+

t
+/O Vja/?’(l/j,t—T)pj(T)dT—l—Fj(Lj,t)Z(pj<t), j=(1,k+m).

Applying the properties of fractional operators, we obtain

V3 o
aj(t) + =-55(t) = e Do (o (8) = Fy (L, 1)) —
t
_CDQO‘/?’ </ G2e/3 (Lj,t —7)vi(r)dr + / y2e/3 (Lj, t—1) pj(T)dT) , j=1Lk+m.
0 0
Equations given above can be written in the following form
t
alt) + 75 / GO (L )y(T)dr — / VO(L,t —1)p(T)dT+
0 (23)
+e Do (plt) = F(L,1).
In a similar manner, we have from condition (12) that
t t
a () — ﬁﬂf(t) = / Go(L™,t— 1)y~ (r)dr +/ VL™, t—1)p (1)dr+
2 0 0 (24)

+eDy} (8(t) — Fy (L7,1)) .

We obtain the following system of integral equations (20)—(24) with respect to unknowns A(t)
¢
QA(t)+ | K(t—7)A(r)dr = H, (25)
0
where A is the unknown functions, @ is the (3k 4+ 3m)-by-(3k + 3m) matrix, K is the matrix of
potentials. Using above system, the matrices can be written in the form
—34cD3Y*F(0,1)
3¢Dg)* (F(0.1) = BF; (0,1) @
H= 3CFy2(0,1) , A= b ,Q( 0 M),
~y
o D53 (o(t) = F(L,1)) p
D3y (6(0) = B (L7,1))

x

where M is the matrix on the form

Le—1)x1 —diag(as, ..., ax) 0
Limyx1  —diag(ary1,. .., Qrym) ;diag(akﬂ, ey Qhgm)
M= B I ?Im ’
— . — 2 . 2 0
ay ag ak+1 Ak+m
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I, 0 —I
2 K 0
Q1= 0 I, 0 and K = where
\/g O K2
I, 0 ——1I
2
—AGY(-L) —AV(-L)
Kos|  BGUEIGA-L) vo(-L7) |

2 2
C lim,_,0 %G?ﬁ/ Se—L) —C~ limy_yo % 2034 — 1)

—Go(L)  =VJ(L)

K =
T\ -Gl e
It is obvious that det(Q) # 0 and elements of matrix K (¢,7) are bounded and continuous
functions on (0,7"). It was proved that detM # 0 [21]. So, matrix integral equation (25) has
. . . 2k+m
unique solution in (C[0, t]) .
So, we arrive at the following theorem.

Theorem 2. Let BT B — I, be negative defined matrix, functions w;o(z) € C(b;), fi(z,t) €
COL(b; x [0,T)) for j = 1,k+m, ¢(t) and ¢(t) are differentiable functions on [0,T]. Then
problem (7)—(12) has unique solution on 0 <t < T.
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YpaBHeHne Diipu ¢ APoOHOII MPOM3BOJHOII IO BpeMeHN
Ha MeTpudeckKom rpade

Kamomaaganu PaxumoB
Harmumonaspubiit yauBepcurer Y30eKucTaHa
Tamxkent, Y3bekucran

3apud6oii CobuposB
YHUBEPCUTET TEOJIOTUIECKUX HAYK
Tamxkent, Y36ekucran

Hacpuaun 2Kab6opoB
Hanmonanwubrit yaHuBepCcuTeT ¥Y36eKucTaHa

TamkenT, Y36ekucran

Awnnoranusi. Mol paccmarpuBaem 3a7a4y Komm 1 HagaJlbHO-KPaeByIO 3aJ1a4dy Jjisl ypaBHEHUU Dipu ¢
APOGHOM MPOU3BOAHON 0 BPEMEHH HA METPUYECKOM rpade ¢ OrPDAHUYEHHBIMU U C HEOIPAHUYIEHHBIMU
BeTBIMU. MbI U3yJaum CBOHCTBA MOTEHITNAJIOB JIJIsi 9TOTO YPaBHEHWS W, WCIOJIb3ysl 9TU CBOWCTBA, Ha-
IIJTH PEIeHNs] pacCMaTpUBaeMoil 3agadu. TeopeMa eIMHCTBEHHOCTH ObLiIa JOKA3aHa C IIOMOIIBIO AHAJIOTA
HepaBeHCTBa 'ponyosuia—bBesiMana 1 anipruopHOil OIEeHKH.

KuroueBsbie ciioBa: ypapHeHue Jifpu ¢ ApoOHOM TPOM3BOIHON M0 BpEMEHN, HAYaJIbHO-KpaeBasl 3a/1a4a,
ypaBHEHUsI B YACTHBIX TPOU3BOJIHBIX HA METPUIECKOM rpade, PyHIaMeHTAIbHBIE PEIeHNSI, THTETPAJIb-

HOE IIpeJacTaBJICHUE.
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