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Abstract. The article is devoted to properties of a weighted Green function. We study the (δ, ψ)-
extremal Green function V ∗

δ (z,K, ψ) defined by the class Lδ =
{
u(z) ∈ psh(Cn) : u(z) 6 Cu +

δ ln+ |z|, z ∈ Cn
}
, δ > 0. We see that the notion of regularity of points with respect to different

numbers δ differ from each other. Nevertheless, we prove that if a compact set K ⊂ Cn is regular, then
δ-extremal function is continuous in the whole space Cn.
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1. Introduction and preliminaries

The Green function in the multidimensional complex space Cn is one of the main objects for
the study of analytic and plurisubharmonic (psh) functions. The Green function was introduced
and applied in the works of P. Lelong, J. Sichak, V. Zaharyuta, A. Zeriahi, A. Sadullaev and others
(see [1–7]). Recall that a function u(z) ∈ psh(Cn) is said to be of logarithmic growth if there is
a constant Cu such that

u(z) 6 Cu + ln+ |z|, z ∈ Cn,

where ln+ |z| = max{ln |z|, 0}. The family of all such functions is called the Lelong class and
denoted by L. We also introduce a class L+ as follows:

L+ :=
{
u(z) ∈ psh(Cn), cu+ ln+ |z| 6 u(z) 6 Cu + ln+ |z|

}
.

For a fixed compact set K ⊂ Cn we put

V (z,K) = sup{u(z) : u(z) ∈ L, u(z)|K 6 0}.

Then the regularization of
V ∗(z,K) = lim

w→z
V (w,K)

is called the Green function of the compact set K. For a non-pluripolar compact set K, the
function V ∗(z,K) exists (V ∗(z,K) ̸≡ +∞) and belongs to the class L+. The Green function
V ∗(z,K) ≡ +∞ if and only if K is pluripolar.
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Definition 1. A compact set K ⊂ Cn is called globally pluri-regular at a point z0 if
V ∗(z0,K) = 0. It is called locally pluri-regular at a point z0 if V ∗(z0,K ∩ B(z0, r)) = 0 for
any ball B(z0, r)), r > 0. A compact set K is globally pluri-regular if it is globally pluri-regular at
every point of itself. A compact set K is locally pluri-regular if it is locally pluri-regular at every
point of itself.

Theorem 1.1 (see for example, J. Siciak [4], V. Zakharyuta [3]). If a compact set K is globally
pluriregular, then the function V ∗(z,K) is continuous in Cn, and V ∗(z,K) = V (z,K).

2. Weighted Green functions in Cn

Let ψ(z) be a bounded function on a compact set K ⊂ Cn. Consider the class of functions

L(K,ψ) := {u(z) ∈ L, u(z)|K 6 ψ(z)}

and
V (z,K, ψ) := sup{u(z) : u(z) ∈ L(K,ψ)}, z ∈ Cn.

Then V ∗(z,K, ψ) = lim
w→z

V (w,K,ψ) is said to be a weighted Green function of K with respect to
ψ(z). Note that in the case ψ(z) ≡ 0 the function V ∗(z,K, ψ) coincides with the Green function
V ∗(z,K), i.e., V ∗(z,K, 0) ≡ V ∗(z,K, ψ). Extremal weighted Green functions are the subject of
study by many authors (see [7, 10–13]). They are successfully applied in multidimensional com-
plex analysis, in the approximation theory of functions, in multidimensional complex dynamical
systems etc.

It is clear that for any compact set K ⊂ Cn we have the inequality

V ∗(z,K) + min
K

ψ(z) 6 V ∗(z,K, ψ) 6 V ∗(z,K) + max
K

ψ(z). (1)

If a function ψ(z) extends to the space Cn as a function from the class L, i.e. if there is a
function

Ψ ∈ L : Ψ|K ≡ ψ, (2)

then it is obvious V (z,K, ψ) > Ψ(z) and

V (z,K, ψ) = ψ(z) ∀z ∈ K. (3)

However, if the condition (2) is not met, then generally speaking, the equality (3) is not true.

Example 1. Let K = {|z| 6 1} ⊂ C and ψ(z) = 1− |z|2. Then by the maximum principle

V (z,K, ψ) = V (z,K) = V (z,K) = ln+ |z|.

Therefore, V (z,K, ψ) = 0 < ψ(z) ∀ | z |< 1.

According to this example, in order to introduce the concept of regularity, below we assume
that the Green function satisfies the condition (3).

Definition 2. We say that a compact set K is globally ψ-regular at z0 if V ∗(z0,K, ψ) = ψ(z0).
We say that a compact set K is locally ψ-regular at z0 if V ∗(z0,K ∩ B(z0, r), ψ) = ψ(z0) for
every ball B(z0, r), r > 0.

A. Sadullaev [7] proved the following theorem.
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Theorem 2.1. Let K be a compact set, and ψ(z) is a weight on K such that there exists a
strictly plurisubharmonic function

Ψ ∈ L ∩ C2(Cn) : ddcΨ > 0, Ψ|K = ψ. (4)

Then K is locally ψ-regular at z0 ∈ K if and only if K is globally ψ-regular at z0.

Note that Theorem 2.1, generally speaking, is not true if Ψ is not a strictly plurisubharmonic
function. For the weight function ψ(z) ≡ 0 and for the compact set K = {|z| = 1}∪{z = 0} ⊂ C
the point z = 0 is globally regular, but it is not locally regular. In this example K is not
polynomially convex K̂ ̸= K. In the work [5] A. Sadullaev constructed the following interesting
example.

Example 2. The compact set K = K1 ∪K2 ⊂ C2(z1, z2), where K1 = {|z1| < 1, z2 = 0}, K2 =

= {z1 = eiφ, Rez2 = 0, 0 6 Imz2 6 e
1

cosφ−1 ,−π 6 φ 6 π}, has the following properties:

a) K is polynomially convex, i.e., K̂ = K;

b) K is globally pluri-regular, i.e., V ∗(z,K) = 0,∀z ∈ K ;

c) K is not locally pluri-regular at the points z ∈ K1.

In connection with this example and with Theorem 2.1, the following problem arises (see [7]).

Problem 1. Let K be a compact set in Cn. Under a weaker condition that the weight function
ψ(z) continues only to a neighbourhood U ⊃ K as a strictly plurisubharmonic function, prove
that K is locally ψ-regular at z0 ∈ K if and only if K is globally ψ-regular at z0 ∈ K.

The following theorem relates to local regularity for different weight functions.

Theorem 2.2. Let K be a compact set, and ψ(z) is a weight on K : ψ(z) ∈ C(K). Then K is
locally ψ-regular at z0 ∈ K if and only if K is locally regular (case ψ ≡ 0) at z0.

Proof. Indeed, we use the inequality (1). If the point z0 ∈ K is not locally pluri-regular, i.e., if
V ∗(z0,K ∩B) = σ > 0 for some neighborhood B : z0 ∈ B ⊂ Cn, then V ∗(z0,K ∩B1) > σ for
any z0 ∈ B1 ⊂ B. Therefore, by (1)

V ∗(z0,K ∩B1, ψ) > V ∗(z0,K ∩B1) + min
K∩B1

ψ(z) > σ + min
K∩B1

ψ(z). (5)

Since ψ(z) is continuous, choosing the neighborhood B1 small enough we can make the right
part of (5) to be greater than ψ(z0) i.e., V ∗(z,K ∩B1, ψ) > ψ(z0) and the point z0 is not locally
ψ-regular.

Reversing the roles of V ∗(z,K ∩B1, ψ) and V ∗(z,K ∩B1) from (1) we can prove the second
part of the theorem: if the point z0 ∈ K is not locally ψ-regular, then it is not locally pluri-
regular. 2

It should be noted here that the conditions of continuity of the function ψ(z) in Theorem 2.2
is essential. An example is given in [15], when the function ψ(z) is discontinuous, Theorem 2.2
is false, i.e., some point z0 ∈ K ⊂ C is a ψ-regular point, but it is not pluri-regular.
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3. δ-extremal functions

Let K ⊂ Cn be a compact set and ψ(z) be some bounded function on K. Consider the
following generalization of the Lelong class

Lδ :=
{
u(z) ∈ psh(Cn) : u(z) 6 Cu + δ ln+ |z|, z ∈ Cn

}
, δ > 0.

It is clear that if v(z) ∈ L, then c · v(z) ∈ Lδ, where 0 < c 6 δ. Put

Lδ(K,ψ) := {u(z) ∈ Lδ, u(z)|K 6 ψ(z)}.

Definition 3. The function V ∗
δ (z,K, ψ) = lim

w→z
Vδ(w,K,ψ) is called a δ-extremal function of K

with respect to ψ(z), where

Vδ(z,K, ψ) := sup{u(z) : u(z) ∈ Lδ(K,ψ)}, z ∈ Cn.

We list simple properties of δ-extremal functions:

1◦. If δ1 6 δ2, then Vδ1(z,K, ψ) 6 Vδ2(z,K, ψ).

2◦. If ψ1 6 ψ2,∀z ∈ K, then Vδ(z,K, ψ1) 6 Vδ(z,K, ψ2).

3◦. Vδ(z,K, ψ) = δV
(
z,K, ψδ

)
, in particular Vδ(z,K) = δV (z,K).

4◦. Vδ(z,K, ψ + c) = c+ Vδ(z,K, ψ), ∀c ∈ R.

If a function ψ(z) extends to the space Cn as a function from the class Lδ, i.e. if there is a
function

Ψ ∈ Lδ : Ψ|K ≡ ψ, (6)

then it is obvious Vδ(z,K, ψ) > Ψ(z) and

Vδ(z,K, ψ) = ψ(z) ∀z ∈ K. (7)

However, if the condition (6) is not met, then generally speaking, the equality (7) is not true. In
this section, as above we assume that the Green function Vδ(z,K, ψ) satisfies the condition (7).
For such a function ψ we can introduce the concept of (δ, ψ)-regularity.

Definition 4. We say that a compact set K is globally (δ, ψ)-regular at z0 if V ∗
δ (z

0,K, ψ) =
= ψ(z0). We say that a compact set K is locally (δ, ψ)-regular at z0 if V ∗

δ (z
0,K ∩B(z0, r), ψ)=

= ψ(z0) for any ball B(z0, r), r > 0.

The following theorem is proved similarly to the proof of Theorem 2.2 and we omit it.

Theorem 3.1. Let K be a compact set and ψ(z) is a weight on K : ψ(z) ∈ C(K), Vδ(z,K, ψ) =
= ψ(z) ∀z ∈ K. Then K is locally (δ, ψ)-regular at z0 ∈ K if and only if K is locally (δ, 0)-regular
at z0.

Similarly to Theorem 1.1 the continuity of the δ-extremal function takes place.

Theorem 3.2. Let ψ(z) be continuous on K. If K is globally (δ, ψ)-regular i.e. if K is globally
(δ, ψ)-regular at a point z0 ∈ K, then V ∗

δ (z,K, ψ) = Vδ(z,K, ψ) and V ∗
δ (z,K, ψ) is continuous

in Cn.
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Proof. Let ψ(z) be a function defined and continuous on K. It is well known that ψ(z) can be
extended continuously to K, i.e., there is a function Ψ(z) ∈ C(Cn) such that Ψ(z)|K = ψ(z) (see
Whitney H. [8]). We use the standard approximation uj ↓ V ∗

δ (z,K, ψ), where uj ∈ Lδ∩C∞(Cn).
Since V ∗

δ (z,K, ψ) ≡ Ψ(z), z ∈ K, for any ε > 0 there is an open set {z ∈ Cn, V ∗
δ (z,K, ψ) <

Ψ(z) + ε} contained K. Therefore, by the Hartogs lemma, there exists j0 ∈ N such that uj(z) <
Ψ(z) + 2ε = ψ(z) + 2ε, ∀z ∈ K, j > j0. From here, uj − 2ε ∈ Lδ(ψ,K) and

uj − 2ε 6 Vδ(z,K, ψ) 6 V ∗
δ (z,K, ψ) 6 uj , j > j0, z ∈ Cn.

This means that the sequence uj converges to V ∗
δ (z,K, ψ) uniformly and V ∗

δ (z,K, ψ) =

= Vδ(z,K, ψ) ∈ C(Cn). 2

In the case when δ = 1 and ψ(z) continues throughout Cn as a continuous function of the
class L, Theorem 3.2 was proved by A. Sadullaev.

4. δ-extremal functions for different δ

Note that in the general case Vδ(z,K, ψ) and the weight function ψ do not have to be equal
on K for all δ. In other words, the condition (7) may not be satisfied.

Example 3 (see Alan [10]). Let K = B(0, 1) and ψ(z) = |z|2. Then one can prove that

Vδ(z,K, ψ) =


|z|2, |z| 6

√
δ

2
,

δ ln |z|+ δ

2
− δ

2
ln
∣∣∣δ
2

∣∣∣, |z| >
√
δ

2
.

We see Vδ(z,K, ψ) = |z|2, ∀z ∈

{
|z| 6

√
δ

2

}
and Vδ(z,K, ψ) < |z|2, ∀z ∈

{√
δ

2
< |z| 6 1

}
.

We denote by Λ = Λ(K,ψ) the set of numbers δ for which the equality of type (7) holds, i.e.

Λ = Λ(K,ψ) = {δ > 0 : Vδ(z,K, ψ)|K ≡ ψ(z)}.

For Alan’s example, Λ = [2,+∞). In fact,

V2(z,K, ψ) =

{
|z|2, |z| 6 1,

2 ln |z|+ 1, |z| > 1.

So, V2(z,K, ψ)|K ≡ ψ(z) and by property 1◦ from Section 3 Vδ(z,K, ψ) > V2(z,K, ψ) for all
δ ∈ [2,+∞). If δ ∈ (0, 2) then there is a point z0 ∈ K such that Vδ(z0,K, ψ) < ψ(z0), that is
(0, 2) ∩ Λ = ∅.

The sets Λ may be empty. For example, for K = {|z| 6 1} ⊂ C and ψ(z) = 1 − |z|2, by
property 3◦ we have

Vδ(z,K, ψ) = Vδ(z,K) = δV (z,K) = δ ln+ |z|.

Therefore, for any δ > 0, Vδ(z,K, ψ) < ψ(z), ∀|z| < 1. That is, in this case Λ = ∅.
If ψ(z) ≡ c, where c is a constant, then Vδ(z,K, c) = c+ Vδ(z,K) = c+ δV (z,K). Since the

Green function V (z,K) > 0,, for any δ > 0 and z ∈ K the equality Vδ(z,K, c) = c holds. This
means that Λ = (0,+∞).

Let Λ ̸= ∅. If δ ∈ Λ, then from property 1◦ we easily get δ1 ∈ Λ for δ1 > δ. On the other
hand
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Proposition 1. If δj ∈ Λ, ∀j ∈ N and δj ↓ δ0 ̸= 0 as j → ∞ then δ0 ∈ Λ.

Proof. Indeed, by the hypothesis we have Vδj (z,K, ψ) = ψ(z), z ∈ K. Using properties 2◦ and
3◦, we get

Vδj (z,K, ψ) = δjV
(
z,K, ψδj

)
6 δjV

(
z,K, ψδ0

)
.

Consequently, ∀j ∈ N we have ψ(z) = Vδj (z,K, ψ) 6 δjV
(
z,K, ψδ0

)
, z ∈ K. As j tends to infinity,

we get
ψ(z) 6 δ0V

(
z,K, ψδ0

)
= Vδ0(z,K, ψ), z ∈ K,

i.e. ψ(z) = δ0V
(
z,K, ψδ0

)
= Vδ0(z,K, ψ), z ∈ K and δ0 ∈ Λ. 2

Proposition 1 follows, if Λ ̸= ∅ then Λ = (0,∞) or Λ = [δ0,+∞), δ0 > 0. Note that if
δ ∈ Λ(K,ψ), then Vδ(z,K, ψ) = ψ(z), z ∈ K. Therefore, by monotonicity Vδ(z,K ∩ B̄, ψ) =

ψ(z), z ∈ K ∩ B̄, for any ball B ∩K ̸= ∅. It follows that if δ ∈ Λ(K,ψ), then δ ∈ Λ(K ∩B,ψ).

Definition 5. Let δ ∈ Λ(K). A compact set K is called globally (δ, ψ)-regular at a point z0 ∈ K
if V ∗

δ (z
0,K, ψ) = ψ(z0). It is called locally (δ, ψ)-regular at a point z0 ∈ K if for every nonempty

ball B(z0, r) : V ∗
δ (z

0,K ∩ B̄(z0, r), ψ) = ψ(z0). A compact set K is globally (δ, ψ)-regular if it is
globally (δ, ψ)-regular at every point of itself. A compact K is locally (δ, ψ)-regular if it is locally
(δ, ψ)-regular at every point of itself.

Note that global or local (δ, ψ)-regularity can only be defined for δ ∈ Λ. It is easy to see that
any locally (δ, ψ)-regular point is globally (δ, ψ)-regular. We denote by Λreg = Λreg(K,ψ) the
set of numbers δ ⊂ Λ, for which K is globally regular, we denote by Λlocreg = Λlocreg(K,ψ) the set
of numbers δ ⊂ Λ, for which K is locally regular. We see, Λlocreg ⊂ Λreg ⊂ Λ.

Proposition 2. Let δ1, δ2 ∈ Λ and δ1 6 δ2. If a point z0 is (δ2, ψ)-regular, then it is (δ1, ψ)-
regular.

The proof follows from property 1◦ of Section 3. For a continuous function ψ there holds

Theorem 4.1. Let δ ∈ Λ, and a function ψ(z) be continuous on K. Then a fixed point z0 ∈
K ⊂ Cn is locally (δ, ψ)-regular if and only if it is locally pluri-regular.

Proof. We show that for any compact set K ⊂ Cn the following is true:

δV ∗(z,K) + min
K

ψ(z) 6 V ∗
δ (z,K, ψ) 6 δV ∗(z,K) + max

K
ψ(z). (8)

In fact, if u ∈ Lδ(K,ψ), i.e., u ∈ Lδ, u|K 6 ψ, then

u(z)−max
K

ψ(z) ∈ Lδ(K).

Therefore
u(z)−max

K
ψ(z) 6 V ∗

δ (z,K)

and
V ∗
δ (z,K, ψ)−max

K
ψ(z) 6 V ∗

δ (z,K) = δV ∗(z,K), ∀z ∈ Cn.

Conversely, if u ∈ Lδ(K), then u(z) + min
K

ψ(z) ∈ Lδ(K,ψ). Therefore,

V ∗
δ (z,K) + min

K
ψ(z) = δV ∗(z,K) + min

K
ψ(z) 6 V ∗

δ (z,K, ψ),

so that (8) holds.
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Using (8) we can now prove the theorem. If a fixed point z0 ∈ K is not locally pluri-regular,
i.e., if V ∗(z0,K∩B) = σ > 0 for some neighborhood B : z0 ∈ B ⊂ Cn, then V ∗(z0,K∩B1) > σ

for any z0 ∈ B1 ⊂ B. Therefore, by (8)

V ∗
δ (z

0,K ∩B1, ψ) > δV ∗(z0,K ∩B1) + min
K∩B1

ψ(z) > δσ + min
K∩B1

ψ(z). (9)

Since ψ(z) is continuous, choosing a neighborhood B1 small enough we can make the right part
of (9) to be greater than ψ(z0) i.e., V ∗

δ (z,K ∩ B1, ψ) > ψ(z0). This means that the point z0 is
not locally (δ, ψ)-regular.

Reversing the roles of V ∗
δ (z,K ∩B1, ψ) and V ∗(z,K ∩B1) from (8) we can prove the second

part of the theorem: if a point z0 ∈ K is not locally (δ, ψ)-regular, then it is not locally pluri-
regular. 2

Corollary 1. Let δ1, δ2 ∈ Λ and a function ψ(z) be continuous on K. Then a fixed point z0 ∈
K ⊂ Cn is locally (δ1, ψ)-regular if and only if it is locally (δ2, ψ)-regular.

Proposition 3. If δj ∈ Λreg, ∀j ∈ N and δj ↑ δ as j → ∞, then δ ∈ Λreg.

Proof. In fact, since ψ(z) = V ∗
δj
(z,K, ψ), z ∈ K, we get

ψ(z) = V ∗
δj (z,K, ψ) = δjV

∗(z,K, ψδj ) > δjV
∗(z,K, ψδ ).

Therefore, ∀j ∈ N we have ψ(z) > δjV
∗(z,K, ψδ ), z ∈ K. As j tends to infinity, we get

ψ(z) > δV ∗(z,K, ψδ ) = V ∗
δ (z,K, ψ), z ∈ K.

This means that δ ∈ Λreg. 2

Corollary 2. If Λ = [δ0,∞), then Λreg =

{
or [δ0, δ1]

or [δ0,∞).

Corollary 3. If Λ = (0,∞), then Λreg =

{
or (0, δ1]

or (0,∞).

In the paper [10] M.Alan studied the concepts of (δ, ψ)-regularity and posed the following
problem

Problem 2 ( [10]). Let K be a compact set in Cn, ψ(z) extends to L+
δ1

(see (6)) and 0 < δ1 < δ2.
If K is (δ1, ψ)-regular at z0 ∈ K, then K is (δ2, ψ)-regular at z0.

5. The property of (δ, ψ)-regularity

Further properties of δ-extremal function are associated with pluri-thin sets.

Definition 6. Let E ⊂ Cn and let E′ be its limit point set. Then E is said to be pluri-thin
at z0 if either z0 ̸∈ E′ or z0 ∈ E′ but there exists a neighbourhood U of z0 and a function
u(z) ∈ psh(U) such that

lim
z→z0

z∈E\{z0}

u(z) < u(z0).

– 395 –



Nurbek Kh.Narzillaev δ-extremal Functions in Cn

So, if the set E is not thin at the point z0, then for any plurisubharmonic function u(z) in
the neighborhood of z0

lim
z→z0

z∈E\{z0}

u(z) = lim
z→z0

z∈E

u(z) = u(z0).

Proposition 4 ( [16]). If E ⊂ Cn is pluri-thin at a limit point z0 of E, then there exists a
plurisubharmonic function u ∈ L+ such that

lim
z→z0

z∈E\{z0}

u(z) = −∞ < u(z0).

Theorem 5.1. If z0 is a pluri-thin point of K, then z0 is locally (δ, ψ)-irregular point of K.
Here the function ψ ∈ L∞(K) and δ ∈ Λ.

Proof. Let K be pluri-thin at the point z0 ∈ K. Then, according to Proposition 4, there exists
a function u(z) ∈ Lδ such that

lim
z→z0

z∈E\{z0}

u(z) = −∞ < u(z0).

Without loss of generality, we can assume u(z0) > 0 and find a ball B(z0, r) such thatu(z) 6 inf
z∈K

ψ(z)− ψ(z0) for z ∈ K ∩B \ {z0},

u(z0) > 0.

Put w(z) = u(z) + ψ(z0). It is easy to see that w(z) ∈ Lδ(ψ,K ∩ B \ {z0}), because for
z ∈ K ∩B \ {z0}

w(z) = u(z) + ψ(z0) 6 inf
z∈K

ψ(z)− ψ(z0) + ψ(z0) = inf
z∈K

ψ(z) 6 ψ(z).

Consequently,

w(z) 6 V ∗
δ (z,K ∩B \ {z0}, ψ) = V ∗

δ (z,K ∩B,ψ), ∀z ∈ Cn.

From here
w(z0) 6 V ∗

δ (z
0,K ∩B,ψ).

On the other hand
w(z0) = u(z0) + ψ(z0) > ψ(z0).

Therefore
ψ(z0) < w(z0) 6 V ∗

δ (z
0,K ∩B,ψ).

Hence, the point z0 is a locally (δ, ψ) irregular point of the compact set K. 2

Note that if n > 1, the necessary condition of Theorem 5.1, generally speaking, is not true.

Example 4. Let (δ, ψ)= (1, 0) andK= {(z1, z2) ∈ C2 : |z| 61} ∪ {(z1, z2) ∈ C2 : z2 = 0, |z1| 62}.

The compact set K is a union of the unit ball in C2 and a pluripolar set. We have

V (z,K) =

ln+ |z| for z2 ̸= 2

ln+
∣∣∣z1
2

∣∣∣ for z2 = 0

and
V ∗(z,K) = ln+ |z|.

A point (2, 0) ∈ K is an irregular point, but it is not pluri-thin.
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Дельта-экстремальная функция в пространстве Cn

Нурбек Х. Нарзиллаев
Национальный университет Узбекистана

Ташкент, Узбекистан

Аннотация. В этой статье мы изучаем (δ, ψ)-экстремальную функцию Грина V ∗
δ (z,K, ψ), которая

определяется при помощи класса Lδ =
{
u(z) ∈ psh(Cn) : u(z) 6 Cu + δ ln+ |z|, z ∈ Cn

}
, δ > 0.

Покажем, что понятие регулярности точек для разных δ не совпадают. Тем не менее мы доказыва-
ем, что если компакт K ⊂ Cn регулярен, то δ-экстремальная функция Грина непрерывна во всем
пространстве Cn.

Ключевые слова: плюрисубгармонические функции, экстремальная функция Грина, функция
Грина с весом, δ-экстремальная функция.
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