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Abstract. The article is devoted to properties of a weighted Green function. We study the (d,1)-
extremal Green function Vi'(z, K,v) defined by the class L5 = {u(z) € psh(C") : u(z) < Cu +
Sint 2|, 2z € (C"}, 6 > 0. We see that the notion of regularity of points with respect to different
numbers § differ from each other. Nevertheless, we prove that if a compact set K C C" is regular, then
d-extremal function is continuous in the whole space C™.
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1. Introduction and preliminaries

The Green function in the multidimensional complex space C™ is one of the main objects for
the study of analytic and plurisubharmonic (psh) functions. The Green function was introduced
and applied in the works of P. Lelong, J. Sichak, V. Zaharyuta, A. Zeriahi, A. Sadullaev and others
(see [1-7]). Recall that a function u(z) € psh(C™) is said to be of logarithmic growth if there is
a constant C, such that

u(z) < C, +Int |z, ze€C",
where In" |z| = max{ln|z|,0}. The family of all such functions is called the Lelong class and
denoted by £. We also introduce a class £1 as follows:
£t = {u(z) € psh(C"), cy+In" |z| <u(z) < C, +In" |2]}.
For a fixed compact set K C C" we put
V(z, K) = sup{u(z) : u(z) € L£,u(2)|x < 0}.

Then the regularization of
V*(z,K) = lim V(w, K)

w—rz

is called the Green function of the compact set K. For a non-pluripolar compact set K, the
function V*(z, K) exists (V*(z, K) # +00) and belongs to the class £1. The Green function
V*(z,K) = 400 if and only if K is pluripolar.
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Definition 1. A compact set K C C" is called globally pluri-regular at a point zy if
V*(2Y, K) = 0. It is called locally pluri-regular at a point zo if V*(2°, K N B(z%,r)) = 0 for
any ball B(z°,7)), r > 0. A compact set K is globally pluri-reqular if it is globally pluri-regular at
every point of itself. A compact set K is locally pluri-reqular if it is locally pluri-regular at every
point of itself.

Theorem 1.1 (see for example, J. Siciak [4], V. Zakharyuta [3]). If a compact set K is globally
pluriregular, then the function V*(z, K) is continuous in C", and V*(z, K) = V(z, K).

2. Weighted Green functions in C”

Let ¢(z) be a bounded function on a compact set K C C™. Consider the class of functions
LK, ¢) = {u(z) € £, u(z)|lk <¥(2)}

and
Vi(z, K,¢) = sup{u(z) : u(z) € L(K,¥)}, z € C".

Then V*(z, K,v) = lim V(w, K, %) is said to be a weighted Green function of K with respect to
w—z

¥ (z). Note that in the case ¢(z) = 0 the function V*(z, K, 1) coincides with the Green function
V*(z,K), ie., V*(z,K,0) = V*(z, K, ). Extremal weighted Green functions are the subject of
study by many authors (see [7,10-13]). They are successfully applied in multidimensional com-
plex analysis, in the approximation theory of functions, in multidimensional complex dynamical
systems etc.

It is clear that for any compact set K C C™ we have the inequality

V*(z,K) + m}%nz/J(z) SV (2, K,¢) < V*(2,K) + m}gxqp(z). (1)

If a function 9(z) extends to the space C™ as a function from the class £, i.e. if there is a

function
Uel: Ug=1, (2)

then it is obvious V(z, K, ) > ¥(z) and
Viz,K,¢¥) =¢(z) Vz€ K. (3)
However, if the condition (2) is not met, then generally speaking, the equality (3) is not true.
Example 1. Let K = {|2|] <1} C C and 9(z) = 1 — |2|%. Then by the maximum principle
V(z, K,9)=V(2, K) =V(z,K) =In" |2].
Therefore, V(z, K,¢) =0<¢(z) V|z|< L

According to this example, in order to introduce the concept of regularity, below we assume
that the Green function satisfies the condition (3).

Definition 2. We say that a compact set K is globally -regular at 2° if V* (29, K, ) = (2°).
We say that a compact set K is locally 1-reqular at 2° if V*(2°, K N B(2°,7),%) = ¥(2°) for
every ball B(2°,r), r > 0.

A. Sadullaev [7] proved the following theorem.
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Theorem 2.1. Let K be a compact set, and ¥(z) is a weight on K such that there exists a
strictly plurisubharmonic function

Ve LNC?(CM): ddV >0, Ul =1p. (4)
Then K is locally v-regular at z° € K if and only if K is globally v-reqular at 2°.

Note that Theorem 2.1, generally speaking, is not true if ¥ is not a strictly plurisubharmonic
function. For the weight function ¢(z) = 0 and for the compact set K = {|z| = 1}U{z =0} Cc C
the point z = 0 is globally regular, but it is not locally regular. In this example K is not
polynomially convex K # K. In the work [5] A. Sadullaev constructed the following interesting
example.

Example 2. The compact set K = K1 U Ko C C?(21,22), where K1 = {|21] < 1,22 = 0}, Ky =
={z1=¢% Rezy =0,0 < Imz < e e ,—7 < @ < 7}, has the following properties:

a) K is polynomially convex, i.e., K= K;
b) K is globally pluri-regular, i.e., V*(2, K) =0,Vz € K ;
¢) K is not locally pluri-regular at the points z € K.
In connection with this example and with Theorem 2.1, the following problem arises (see [7]).

Problem 1. Let K be a compact set in C". Under a weaker condition that the weight function
¥(2) continues only to a neighbourhood U D K as a strictly plurisubharmonic function, prove
that K is locally ¥-regular at zo € K if and only if K is globally v-reqular at zy € K.

The following theorem relates to local regularity for different weight functions.

Theorem 2.2. Let K be a compact set, and ¥ (z) is a weight on K : 1(z) € C(K). Then K is
locally Y-reqular at 2° € K if and only if K is locally regular (case 1 =0) at 2°.

Proof. Indeed, we use the inequality (1). If the point 2 € K is not locally pluri-regular, i.e., if
V*(2°, K N B) = o > 0 for some neighborhood B : 2° € B C C", then V*(:°, K N By) > o for
any 2 € By C B. Therefore, by (1)

*r 0 * ¢ _0 . .
V*(z", KN B,y) 2V*(z ,KﬂB1)+%1§1w(z) ZU+II(I%1113111/)(Z). (5)

Since 9 (z) is continuous, choosing the neighborhood B; small enough we can make the right
part of (5) to be greater than 1(2°) i.e., V*(z, K N By,1) > 1(2°) and the point 2" is not locally
1p-regular.

Reversing the roles of V*(z, K N By,v) and V*(z, K N By) from (1) we can prove the second
part of the theorem: if the point 2 € K is not locally t-regular, then it is not locally pluri-
regular. O

It should be noted here that the conditions of continuity of the function ¥ (z) in Theorem 2.2
is essential. An example is given in [15], when the function (z) is discontinuous, Theorem 2.2
is false, i.e., some point 2’ € K C C is a 9-regular point, but it is not pluri-regular.
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3. J-extremal functions

Let K C C™ be a compact set and 1 (z) be some bounded function on K. Consider the
following generalization of the Lelong class

Ls = {u(z) € psh(C"): u(z) < Cy +6In"|z], € C"}, 6§ > 0.
It is clear that if v(z) € L, then ¢-v(2) € Ls, where 0 < ¢ < §. Put

Ls(K, ) :={u(z) € Ls, uz)|x <¥(2)}-

Definition 3. The function Vi*(z, K,1) = @ Vs(w, K, 1) is called a d-extremal function of K
with respect to 1(z), where

Vs(z, K,v) :=sup{u(z) : u(z) € Ls(K,v¥)}, z€C™
We list simple properties of §-extremal functions:
1°. If &1 < 09, then Vi, (2, K, ) < Vi, (2, K, ).
2°. If oy < o, Vz € K, then Vs(z, K, 11) < Vi(z, K, 19).
3°. Vs(z, K,0) = 5V(Z,K, %), in particular Vs(z, K) = §V (2, K).
4°. Vs(z, K, +¢) = c+ Vs(2, K,v), Ve € R.

If a function (z) extends to the space C" as a function from the class Ls, i.e. if there is a
function
Uels: \IJ|KEQ/}, (6)

then it is obvious Vj(z, K,v) > ¥(z) and
Vs(z, K, ¢) = ¢(2) Vz € K. (7)

However, if the condition (6) is not met, then generally speaking, the equality (7) is not true. In
this section, as above we assume that the Green function Vs(z, K, 1)) satisfies the condition (7).
For such a function ¢ we can introduce the concept of (9, v)-regularity.

Definition 4. We say that a compact set K is globally (6,1)-reqular at 2° if V(2% K, ¢) =
= 1(2°). We say that a compact set K is locally (6,)-regular at 2° if Vi (2%, KN B(2°%r), )=
= 1(2%) for any ball B(z°,r),r > 0.

The following theorem is proved similarly to the proof of Theorem 2.2 and we omit it.

Theorem 3.1. Let K be a compact set and ¥(z) is a weight on K : ¥(z) € C(K), Vs(z, K,9) =
= () Vz € K. Then K s locally (8,v)-regular at 2° € K if and only if K is locally (3, 0)-reqular
at 2°.

Similarly to Theorem 1.1 the continuity of the §-extremal function takes place.

Theorem 3.2. Let ¥(z) be continuous on K. If K is globally (6,)-regular i.e. if K is globally
(8,9)-reqular at a point 2° € K, then Vi(z, K,¢) = Vs(z, K,v¥) and Vi (z, K,1) is continuous
in C".
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Proof. Let 9(z) be a function defined and continuous on K. It is well known that ¢(z) can be
extended continuously to K, i.e., there is a function ¥(z) € C(C™) such that ¥(2)|x = 1(z) (see
Whitney H. [8]). We use the standard approximation u; | V5*(z, K, ), where u; € LsNC>(C™).
Since Vj'(z, K,¢) = ¥(z), z € K, for any € > 0 there is an open set {z € C", Vj*(z,K,v¢) <
U(z) + e} contained K. Therefore, by the Hartogs lemma, there exists jo € N such that u;(z) <
U(z) 4+ 2e =1(2) +2¢, Vz € K, j > jo. From here, u; — 2¢ € L5(¢, K) and

Uj — 2e < V5(2’7K7¢) g %*(Zvaw) < Uyj s .] > j07 S (Cn

This means that the sequence u; converges to Vi(z, K,®) uniformly and Vj'(z, K,¢) =
= Vs(z, K,¢) € C(C"). O

In the case when § = 1 and ¥(z) continues throughout C™ as a continuous function of the
class £, Theorem 3.2 was proved by A.Sadullaev.

4. H-extremal functions for different o

Note that in the general case Vs(z, K,v) and the weight function ¢ do not have to be equal
on K for all §. In other words, the condition (7) may not be satisfied.

Example 3 (see Alan [10]). Let K = B(0,1) and ¢(z) = |z|>. Then one can prove that

5 )
4P A< /2,
6ln|z|+§—§ln‘§)7 |z|>\/;

We see Vs(z, K, ) = |2]?, Vz € {z| < \/g} and Vs(z, K,v) < |z|%, Vz € {\/g <|z| € 1}

We denote by A = A(K, 1) the set of numbers § for which the equality of type (7) holds, i.e.
A= AK ) = {5> 0: V(e K. )i = (=)}

For Alan’s example, A = [2,+00). In fact,

|2, 2l <1,

Va(z, K ) =
2 ) {2ln|z+1, 2] > 1.

So, Va(z, K,v)|x = 1(z) and by property 1° from Section 3 Vs(z, K,v¢) > Va(z, K, v) for all
§ € [2,+00). If § € (0,2) then there is a point 2 € K such that V5(2°, K,¢) < 1(z°), that is
(0,2)NA=1.
The sets A may be empty. For example, for K = {|z] < 1} € C and (z) = 1 — |z|%, by
property 3° we have
Vs(z, K1) = Vs(2,K) = 6V (2, K) = d1In™ |2].

Therefore, for any 6 > 0, V5(z, K,v) < ¢(z), V|z| < 1. That is, in this case A = ().

If ¢(z) = ¢, where c is a constant, then Vs(z, K,¢) = ¢+ V5(z, K) = ¢+ §V (2, K). Since the
Green function V(z,K) > 0,, for any § > 0 and z € K the equality V5(z, K,c¢) = ¢ holds. This
means that A = (0, +00).

Let A # (. If § € A, then from property 1° we easily get §; € A for §; > §. On the other
hand
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Proposition 1. If ; € A, Vj € N and J; | do # 0 as j — oo then dy € A.

Proof. Indeed, by the hypothesis we have Vs, (z, K,v) = 9 (z),z € K. Using properties 2° and
3°, we get
Vs, (2, K,9) = 8,V (2, K, 5&) <oV(z K, £).

Consequently, Vj € N we have ¢(z) = Vs, (2, K,v) < 6jV(z,K, %), z € K. As j tends to infinity,
we get
U(2) <0V (2, K, £) = Vs (2, K, ¢), 2z €K,
ie. P(2) =60V (2, K, &) = Vs, (2, K,1), z € K and 6y € A. O
Proposition 1 follows, if A # @ then A = (0,00) or A = [dg, +00),d9 > 0. Note that if

§ € A(K,), then Vs(z, K 1) = ¥(z), z € K. Therefore, by monotonicity Vs(z, K N B,¢) =
Y(2), 2 € KN B, for any ball BN K # (. Tt follows that if § € A(K,), then 6 € A(K N B, ).

Definition 5. Let § € A(K). A compact set K is called globally (8,)-regular at a point 2° € K
if V(29 K, ) = (2°). It is called locally (8,)-regular at a point z2° € K if for every nonempty
ball B(z°,r) : V(2% KN B(2%7),9) = ¥(2°). A compact set K is globally (3,)-reqular if it is
globally (8, )-regular at every point of itself. A compact K is locally (8,)-regular if it is locally
(6, 9)-regular at every point of itself.

Note that global or local (0, %)-regularity can only be defined for § € A. It is easy to see that
any locally (6, )-regular point is globally (4, )-regular. We denote by Ayeqg = Ayeg(K, ) the
set of numbers § C A, for which K is globally regular, we denote by Al%¢ = Alo¢ (K ) the set

reg reg

of numbers § C A, for which K is locally regular. We see, Al2¢ C Apeg CA.

reg

Proposition 2. Let 01,62 € A and 6; < 0. If a point 2° is (62,)-reqular, then it is (81,1)-
regular.

The proof follows from property 1° of Section 3. For a continuous function v there holds

Theorem 4.1. Let 6 € A, and a function (z) be continuous on K. Then a fized point 20 €
K C C™ is locally (6,¢)-regular if and only if it is locally pluri-reqular.

Proof. We show that for any compact set K C C" the following is true:
oV*(z,K) + m}}nt/)(z) < Vi'(z, K,¢) < V¥ (2, K) + m}z(xxw(z). (8)
In fact, if u € L5(K, 1), i.e., u € L5, u|rx <1, then
u(z) — m[zgxt/)(z) € L5(K).

Therefore
u(z) —maxy(z) < Vg'(z K)

and
Vs (z, K,¢) — m}:gxd)(z) Vi (2, K)=06V*(2,K), VzeC".

Conversely, if u € L5(K), then u(z) + m}}n ¥(z) € L5(K, ). Therefore,
Vi (2 )+ minth(2) = 6V (2, ) + minv(z) < V5 (2, K1),

so that (8) holds.
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Using (8) we can now prove the theorem. If a fixed point 2" € K is not locally pluri-regular,
ie., if V*(2°, KNB) = ¢ > 0 for some neighborhood B : 2° € B C C", then V*(2°, KNB;) > o
for any 2° € By C B. Therefore, by (8)

*(,,0 00 . .
Vs (2", KN By,¥) 2 6V*(z", KN By) +&1§1w(z) > 50—}—&1{3&1&(2). (9)

Since 1 (z) is continuous, choosing a neighborhood B; small enough we can make the right part
of (9) to be greater than ¢(2°) i.e., Vi*(z, K N By, 1) > 9(2"). This means that the point 20 is
not locally (4, ¢)-regular.

Reversing the roles of V5 (z, K N By,v¢) and V*(2, K N By) from (8) we can prove the second
part of the theorem: if a point z° € K is not locally (§,)-regular, then it is not locally pluri-
regular. O

Corollary 1. Let 61,0 € A and a function (z) be continuous on K. Then a fived point z° €
K C C™ is locally (01,%)-regular if and only if it is locally (d2,)-regular.

Proposition 3. If 6; € Ayeg, Vi €N and §; 10 as j — 0o, then 0 € Ayeq.
Proof. In fact, since ¢ (z) = V5 (2, K,9),z € K, we get
U(z) = Vi (2, K,9) = 6,V (2, K, %) > 6,V (2, K, %).
Therefore, Vj € N we have ¢(z) > 6;V* (z7 K, %), z € K. As j tends to infinity, we get

Y(z) =0V (2, K, L) = Vi (2, K,¢), 2 € K.

This means that § € Ayeq. -
Corollary 2. If A = [dy,00), then Aveyg = or [do, 1]

or [dg,00).
Corollary 3. If A = (0,00), then e, = or (0,01]

or (0,00).

In the paper [10] M. Alan studied the concepts of (§,1))-regularity and posed the following
problem

Problem 2 ([10]). Let K be a compact set in C™, (z) extends to L}'l (see (6)) and 0 < 01 < d2.
If K is (01,%)-regular at zg € K, then K is (02,%)-regular at zp.

5. The property of (0, )-regularity
Further properties of J-extremal function are associated with pluri-thin sets.

Definition 6. Let E C C" and let E' be its limit point set. Then E is said to be pluri-thin
at 20 if either 2° ¢ E' or 2° € E' but there exists a neighbourhood U of 2° and a function
u(z) € psh(U) such that

m  u(z) < u(2°).

z—2°
2€E\{2°}
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So, if the set E is not thin at the point 2°, then for any plurisubharmonic function u(z) in
the neighborhood of 2°

lim u(z) = limou(z) =u(zY).
zEZE*\?zD} ZZZ%

Proposition 4 ([16]). If E C C" is pluri-thin at a limit point 2° of E, then there exists a
plurisubharmonic function u € LT such that

im  wu(z) = —0o < u(2°).
2—2°
ZGE\{ZO}

Theorem 5.1. If 2° is a pluri-thin point of K, then 2° is locally (8,v)-irregular point of K.
Here the function ¢ € L™ (K) and ¢ € A.

Proof. Let K be pluri-thin at the point z° € K. Then, according to Proposition 4, there exists
a function u(z) € Ls such that

lim  u(z) = —oco < u(2).
2—2°
ZGE\{ZO}

Without loss of generality, we can assume u(z°) > 0 and find a ball B(2%,r) such that

u(z) < inf $(z) - (") for 2 € K1 B\ {'},

u(z%) > 0.

Put w(z) = u(z) + ¥(2Y). It is easy to see that w(z) € Ls(x, K N B\ {z°}), because for
ze KNB\{°}

w(z) = u(z) + ¥(=°) < Inf 9(2) - ¥(2") +9(2%) = inf ¥(z) <Y(2).

zeK
Consequently,
w(z) < V§(z, KN B\ {2°},v) = Vi (2, KN B,y), Vz € C".
From here
w(2%) < V5 (2, K N B,v).
On the other hand
w(2%) = u(2®) + ¥(2%) > ¥(2°).
Therefore
() < w(z?) < V5 (2% KN B,y).

Hence, the point 2" is a locally (d,) irregular point of the compact set K. O

Note that if n > 1, the necessary condition of Theorem 5.1, generally speaking, is not true.
Example 4. Let (6,7)= (1,0) and K = {(21,22) € C?: |2| <1} U {(21,22) € C%: 25 = 0, |21| <2}.

The compact set K is a union of the unit ball in C? and a pluripolar set. We have
Int|z|  for zp #2
V(z, K) = +|*1
In ‘5’ for 20 =0

and
V*(z,K) =In" |z
A point (2,0) € K is an irregular point, but it is not pluri-thin.
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HenbTa-3kcTpeMajibHag hyHKIUSA B npoctpancTBe C”

Hyp6ek X. Hap3uinaen
Harmumonanbuberit yauBepcurer Y30eKucTaHa
Tamxkent, Y3bekucran

Anporanus. B s1oii crarbe Mbl n3ydaeM (4, ¥)-sxcrpemansuyio dyuknuio 'puna V' (z, K, 1), KoTopas
ompezenstercst npu nomomw Kinacca L5 = {u(z) € psh(C") : u(z) < Cu +6In" |z|, 2 € C"}, § > 0.
ITokaxkeM, YTO HOHATHE PETYIAPHOCTH TOYEK I PA3HbIX 0 He COBIAJAIOT. TeM He MeHee Mbl JOKa3bIBa-
eM, uto eciu komnakT K C C™ perynsipen, To d-skcrpeMaJibHas byHKIMs [ puHa HENpepbIBHA BO BCEM
npocrpancrse C".

KuaroueBrbie cioBa: maopucybrapmMonndeckne GyHKINH, SKCTpeMasibHasds GyHKnusa ['puna, dyHKIms
I'puna ¢ BecoM, J-3kcTpemMasbHasA DYHKIAS.
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