Removable Singularities of Separately Harmonic Functions

Sevdiyor A. Imomkulov*
Khorezm Regional Branch of the V.I. Romanovsky Mathematical Institute
Academy of Sciences of the Republic of Uzbekistan Urgench, Uzbekistan
Sultanbay M. Abdikadirov ${ }^{\dagger}$
Karakalpak State University
Nukus, Uzbekistan

Received 20.01.2021, received in revised form 09.02.2021, accepted 09.03.2021

Abstract

Removable singularities of separately harmonic functions are considered. More precisely, we prove harmonic continuation property of a separately harmonic function $u(x, y)$ in $D \backslash S$ to the domain D, when $D \subset \mathbb{R}^{n}(x) \times \mathbb{R}^{m}(y), n, m>1$ and S is a closed subset of the domain D with nowhere dense projections $S_{1}=\left\{x \in \mathbb{R}^{n}:(x, y) \in S\right\}$ and $S_{2}=\left\{y \in \mathbb{R}^{m}:(x, y) \in S\right\}$.

Keywords: separately harmonic function, pseudoconvex domain, Poisson integral, \mathcal{P}-measure.
Citation: S.A. Imomkulov, S.M. Abdikadirov, Removable Singularities of Separately Harmonic Functions, J. Sib. Fed. Univ. Math. Phys., 2021, 14(3), 369-375.
DOI: 10.17516/1997-1397-2021-14-3-369-375.

The theorem on removal of compact singularities (see $[1,2]$) is one of the most important results in the theory of functions in several complex variables: if a function f is holomorphic everywhere in the domain $\Omega \subset \mathbb{C}^{n}(n>1)$ except a set $K \Subset \Omega$, which does not divide the domain (i.e. such that $\Omega \backslash K$ is connected), then f can be extended holomorphically to whole domain Ω. In the work [3], an analogue of this theorem was proved for separately harmonic functions, i.e. for functions which are harmonic in each variable separately: let D be a domain in $\mathbb{R}^{n}(x) \times \mathbb{R}^{m}(y)$, $n, m>1, K \Subset D$ a compact set such that $D \backslash K$ is connected. If the function $u(x, y)$ is separately harmonic in $D \backslash K$, then it harmonically continues to D.

1. Separately harmonic functions

Definition 1. If a function $u(x, y)$ is defined in the domain $D \subset \mathbb{R}^{n}(x) \times \mathbb{R}^{m}(y)$ and satisfies the following properties:

1) for any fixed $x^{0}:\left\{x=x^{0}\right\} \cap D \neq \emptyset$, a function $u\left(x^{0}, y\right)$ is harmonic in y on $\left\{x=x^{0}\right\} \cap D$;
2) for any fixed $y^{0}:\left\{y=y^{0}\right\} \cap D \neq \emptyset$, a function $u\left(x, y^{0}\right)$ is harmonic in x on $\left\{y=y^{0}\right\} \cap D$, then it is called a separately harmonic function in the domain D.

One of the main methods of studying extension of harmonic functions is the transition to holomorphic functions, and then using the principles of holomorphic extensions.

[^0]Lemma 1 ([5]). For any domain $D \subset \mathbb{R}^{n}(x) \subset \mathbb{C}^{n}$ there is a domain of holomorphy $\widehat{D} \subset \mathbb{C}^{n}(z)$ such that $D \subset \widehat{D}$ and any harmonic function $u(x)$ in D holomorphically extends into the domain \widehat{D}, i.e. there is a holomorphic function $f_{u}(z)$ in \widehat{D} such that $\left.f_{u}\right|_{D}=u$.

The existence of the domain \widehat{D} follows easily from the representation of harmonic functions by the Poisson integral. Indeed, let $B=B\left(x^{0}, R\right) \Subset D$ be an arbitrary ball in D, and $u(x)$ be a harmonic function in D. Then the following formula holds

$$
u(x)=\frac{1}{\sigma_{n}} \int_{\partial B} \frac{R^{2}-\left|x-x^{0}\right|^{2}}{R|x-y|^{n}} u(y) d \sigma(y),
$$

where σ_{n} is the surface area of the unit sphere. It is clear that the Poisson kernel

$$
P(x, y)=\frac{1}{\sigma_{n}} \frac{R^{2}-\left|x-x^{0}\right|^{2}}{R|x-y|^{n}}
$$

for any fixed $y \in \partial B$ holomorphically extends to some domain $\widehat{B} \in \mathbb{C}^{n}, \widehat{B} \supset B$. Eventually, \widehat{B} is a Lie ball centered at $x^{0}=\left(x_{1}^{0}, x_{2}^{0}, \ldots, x_{n}^{0}\right)$ with the radius R (see [11])

$$
\widehat{B}=\left\{z \in \mathbb{C}^{n}: \sqrt{\left|z-x^{0}\right|^{2}+\sqrt{\left|z-x^{0}\right|^{4}-\left|\sum_{j=1}^{n}\left(z_{j}-x_{j}^{0}\right)^{2}\right|^{2}}}<R\right\} .
$$

Consequently, every harmonic in B function holomorphically extends to \widehat{B}, which implies the existence a domain $\widehat{D}, D \subset \widehat{D} \subset \mathbb{C}^{n}$ satisfying the above properties.

It can be seen from the construction that for each fixed $z^{0} \in \widehat{D}$ there is a constant $M_{z^{0}}$ such that

$$
\begin{equation*}
\left|f_{u}\left(z^{0}\right)\right| \leqslant M_{z^{0}}\|u\|_{D} \tag{1}
\end{equation*}
$$

nevertheless, $M_{z^{0}}$ is bounded on compact subsets of \widehat{D} and

$$
\lim _{z \rightarrow x \in D} M_{z}=1
$$

2. Separately analytic functions

Let two domains $\mathbb{D} \subset \mathbb{C}^{n}, \mathbb{G} \subset \mathbb{C}^{m}$ and two subsets, $E \subset \mathbb{D}, F \subset \mathbb{G}$ be given. Assume that a function $f(z, w)$, determined firstly on the set $E \times F$, has the following properties:
a) for any fixed $w^{0} \in F$, a function $f\left(z, w^{0}\right)$ holomorphically extends to the domain \mathbb{D};
b) for any fixed $z^{0} \in E$, a function $f\left(z^{0}, w\right)$ holomorphically extends to the domain \mathbb{G}.

In this case $f(z, w)$ defines some function on the set $X=(\mathbb{D} \times F) \cup(E \times \mathbb{G})$ and it is called a separately-analytic function on X.

We will use the following theorem on analytic continuation of separately-analytic functions (V. Zakharyuta [8], J. Sichak [9], and see also [7]): let two domains $\mathbb{D} \subset \mathbb{C}^{n}, \mathbb{G} \subset \mathbb{C}^{m}$ be strongly pseudoconvex and two subsets $E \subset \mathbb{D}, F \subset \mathbb{G}$ be non-pluripolar Borel sets. If $f(z, w)$ is a separately analytic function on the set $X=(\mathbb{D} \times F) \cup(E \times \mathbb{G})$, then it extends holomorphically to the domain

$$
\widehat{X}=\left\{(z, w) \in \mathbb{D} \times \mathbb{G}: \omega^{*}(z, E, \mathbb{D})+\omega^{*}(w, F, \mathbb{D})<1\right\}
$$

Here $\omega^{*}(z, E, \mathbb{D})$ is the \mathcal{P}-measure of the set E with respect to the domain \mathbb{D} (see $[7,8,10]$). It is defined as an extremal plurisubharmonic function

$$
\omega^{*}(z, E, \mathbb{D})=\varlimsup_{\zeta \rightarrow z} \omega(\zeta, E, \mathbb{D})
$$

where

$$
\omega(z, E, \mathbb{D})=\sup \left\{u(z): u \in p \operatorname{sh}(\mathbb{D}),\left.u\right|_{\mathbb{D}} \leqslant 1,\left.u\right|_{E} \leqslant 0\right\}
$$

3. On Lelong's theorem

P. Lelong [4] proved the following analogue of the fundamental theorem of Hartogs (see [1], Ch. 1): if $u(x, y)$ is separately harmonic in the domain $D \subset \mathbb{R}^{n}(x) \times \mathbb{R}^{m}(y)$, then it is harmonic in D in both variables.

The proof of Lelong's theorem can be obtained easily if we use the above theorem of V. Zakharyuta and J. Sichak: if $u(x, y)$ is separately harmonic in the domain $D \subset \mathbb{R}^{n} \times \mathbb{R}^{m}$ and $B_{1} \subset \mathbb{R}^{n}, B_{2} \subset \mathbb{R}^{m}$ are arbitrary balls such that $B_{1} \times B_{2} \subset D$, then by Lemma 1 it extends to the set $X=\left(\widehat{B}_{1} \times B_{2}\right) \cup\left(B_{1} \times \widehat{B}_{2}\right)$ as a separately analytic function. Therefore, $u(x, y)$ extends holomorphically to the domain

$$
\widehat{X}=\left\{(z, w) \in \widehat{B}_{1} \times \widehat{B}_{2}: \omega^{*}\left(z, B_{1}, \widehat{B}_{1}\right)+\omega^{*}\left(w, B_{2}, \widehat{B}_{2}\right)<1\right\}
$$

Since $B_{1} \times B_{2} \subset \widehat{X}$, the function $u(x, y)$ is infinitely differentiable in $B_{1} \times B_{2}$ and therefore, harmonic in both variables. Since the balls are arbitrary, it follows that $u(x, y)$ is harmonic in both variables in the domain D.

4. The main results

Now we are ready to prove the main results of this paper.
Theorem 1. Let S be a closed subset of the domain $D \subset \mathbb{R}^{n}(x) \times \mathbb{R}^{m}(y)$, $n, m>1$, and its orthogonal projections $S_{1}=\left\{x \in \mathbb{R}^{n}:(x, y) \in S\right\}$ and $S_{2}=\left\{y \in \mathbb{R}^{m}:(x, y) \in S\right\}$ are nowhere dense. Then any function $u(x, y)$ which is separately harmonic in the domain $D \backslash S$ extends harmonically to the domain D.

Proof. Let $u(x, y)$ be a separately harmonic function in the domain $D \backslash S$ and the projections of the closed set S :

$$
S_{1}=\left\{x \in \mathbb{R}^{n}:(x, y) \in S\right\}, S_{2}=\left\{y \in \mathbb{R}^{m}:(x, y) \in S\right\}
$$

are nowhere dense. We denote by $\tilde{S} \subset S$ the set of non-removable singularities for the function $u(x, y)$. Suppose that $\tilde{S} \neq \varnothing$. We take arbitrary balls $B_{1} \subset \mathbb{R}^{n}(x)$ and $B_{2} \subset \mathbb{R}^{m}(y)$ such that $B_{1} \times B_{2} \subset D$ and $\left(B_{1} \times B_{2}\right) \cap \tilde{S} \neq \varnothing$. We denote by

$$
\tilde{S}_{1}=\left\{x \in B_{1}:(x, y) \in\left(B_{1} \times B_{2}\right) \cap \tilde{S}\right\}, \tilde{S}_{2}=\left\{y \in B_{2}:(x, y) \in\left(B_{1} \times B_{2}\right) \cap \tilde{S}\right\}
$$

Since $\left(B_{1} \times B_{2}\right) \cap \tilde{S} \subset \tilde{S}_{1} \times \tilde{S}_{2}$, we have

$$
\left(B_{1} \times B_{2}\right) \backslash\left(\tilde{S}_{1} \times \tilde{S}_{2}\right)=\left(B_{1} \times\left(B_{2} \backslash \tilde{S}_{2}\right)\right) \cup\left(\left(B_{1} \backslash \tilde{S}_{1}\right) \times B_{2}\right) \subset\left(B_{1} \times B_{2}\right) \backslash \tilde{S}
$$

Hence, by Lemma 1, the function $u(x, y)$ can be extended analytically to the set $X=$ $=\left(\widehat{B}_{1} \times\left(B_{2} \backslash \tilde{S}_{2}\right)\right) \cup\left(\left(B_{1} \backslash \tilde{S}_{1}\right) \times \widehat{B}_{2}\right)$ as a separately analytic function. Consequently, $u(x, y)$ extends holomorphically to the domain

$$
\widehat{X}=\left\{(z, w) \in \widehat{B}_{1} \times \widehat{B}_{2}: \omega^{*}\left(z, B_{1} \backslash \tilde{S}_{1}, \widehat{B}_{1}\right)+\omega^{*}\left(w, B_{2} \backslash \tilde{S}_{2}, \widehat{B}_{2}\right)<1\right\} .
$$

Since the sets $B_{1} \backslash \tilde{S}_{1}, B_{2} \backslash \tilde{S}_{2}$ are locally pluri-regular, we get

$$
X \subset \widehat{X} \text {, i.e. }\left(B_{1} \times B_{2}\right) \backslash\left(\tilde{S}_{1} \times \tilde{S}_{2}\right) \subset \widehat{X} .
$$

(About pluri-regular sets and their properties, see [6,12]). Now we take an arbitrary point $a \in \tilde{S}_{1}$ and $x^{0} \in U(a, \varepsilon) \backslash \tilde{S}_{1}$, where $U(a, \varepsilon)=\{x:|x-a|<\varepsilon\}, 0<\varepsilon<\frac{1}{2} \operatorname{dist}\left(a, \partial B_{1}\right)$. For the point x^{0} there is a point $a^{0} \in \tilde{S}_{1}$ such that

$$
d=\left|x^{0}-a^{0}\right|=\inf \left\{\left|x^{0}-x\right|: x \in \tilde{S}_{1}\right\} .
$$

It is clear that the intersection $B_{1} \cap\left\{x:\left|x^{0}-x\right|<d\right\} \subset B_{1} \backslash \tilde{S}_{1}$ contains the interval $\left(x^{0}, a^{0}\right)$, which is not pluri-thin at the point $a^{0} \in \tilde{S}_{1}$ (see [6], Proposition 4.1). Hence, it follows that

$$
\omega^{*}\left(a^{0}, B_{1} \backslash \tilde{S}_{1}, \widehat{B}_{1}\right)=0
$$

On the other hand, there is a point $b^{0} \in \tilde{S}_{2}$ such that $\left(a^{0}, b^{0}\right) \in \tilde{S}$ and by the definition of \mathcal{P} measure there is also some number $\delta_{2}: \omega^{*}\left(b^{0}, B_{2} \backslash \tilde{S}_{2}, \widehat{B}_{2}\right)<\delta_{2}<1$. Now we take some number $\delta_{1}>0$ so that $\delta_{1}+\delta_{2}<1$. Hence, an open neighborhood of the point

$$
\left(a^{0}, b^{0}\right) \in \tilde{S}:\left\{z: \omega^{*}\left(z, B_{1} \backslash \tilde{S}_{1}, \widehat{B}_{1}\right)<\delta_{1}\right\} \times\left\{w: \omega^{*}\left(w, B_{2} \backslash \tilde{S}_{2}, \widehat{B}_{2}\right)<\delta_{2}\right\},
$$

is contained in \widehat{X}, i.e. the point $\left(a^{0}, b^{0}\right) \in \tilde{S}$ is a removable singularity and this contradicts our assumption concerning \tilde{S}. Thus $\tilde{S}=\varnothing$. The theorem is proved.

Using methods of V. Zahariuta on analytic extension of separately analytic functions we get the following result which generalizes Hamano's theorems [3].

Theorem 2. Let two domains $D \subset \mathbb{R}^{n}, G \subset \mathbb{R}^{m}$ and two sets $E \subset D, F \subset G$ be given. If $E \Subset D$ is compact and F is a closed subset of G with nonempty complement $G \backslash F \neq \emptyset$, then any separately harmonic function $u(x, y)$ in $(D \times G) \backslash(E \times F)$ harmonically extends to the domain $D \times G$.

Proof. According to Lemma 1 there is a pseudoconvex domain $\widehat{G} \subset \mathbb{C}^{m}$ such that $G \subset \widehat{G}$ and for each fixed $x \in D \backslash E$ a function $u(x, \cdot)$ holomorphically extends to \widehat{G}. Moreover, there is a sequence of strongly pseudoconvex domains $\widehat{G}_{j}, j=1,2, \ldots$ such that $\widehat{G}_{j} \Subset \widehat{G}_{j+1} \Subset \widehat{G}$, $\widehat{G}=\bigcup_{j=1}^{\infty} \widehat{G}_{j}$ and $\left(G \cap \widehat{G}_{1}\right) \backslash F \neq \emptyset$. According to (1) for the set

$$
K_{\varepsilon}=\{z \in D: \operatorname{dist}(z, E) \leqslant \varepsilon\} \Subset D,
$$

where $\varepsilon>0$ is a small enough number, there is a sequence of positive real numbers M_{j} such that

$$
|u(x, w)| \leqslant M_{j} \forall(x, w) \in \partial K_{\varepsilon} \times \widehat{G}_{j+1} .
$$

Consequently, for any $l \in N$ there is a sequence of positive numbers $N_{j}^{(l)}$ such that the inequality

$$
\begin{equation*}
\sum_{|\alpha| \leqslant l}\left(\int_{\widehat{G}_{j}}\left|\frac{\partial^{|\alpha|} u(x, w)}{\partial w^{\alpha}}\right|^{2} d V\right)^{\frac{1}{2}} \leqslant N_{j}^{(l)} \forall x \in \partial K_{\varepsilon} \tag{2}
\end{equation*}
$$

holds.
Now we take a closed ball $\bar{B} \Subset\left(G \cap \widehat{G}_{1}\right) \backslash F$ and for a fixed j and a sequence of sets $\bar{B} \Subset \widehat{G}_{j}$ we consider a Hilbert space $H_{0} \subset H_{1}$. For H_{0} we take the closure of the space

$$
\mathcal{O}(\widehat{G}) \cap h(G) \cap W_{2}^{l}\left(\widehat{G}_{j}\right), l>m
$$

(Here $\mathcal{O}(\widehat{G})$ is the space of holomorphic functions on $\widehat{G}, h(G)$ is the space of harmonic functions on G and $W_{2}^{l}\left(\widehat{G}_{j}\right)$ is the Sobolev space.) For H_{1} we take the closure of the space $h(G) \cap L_{2}(\bar{B}, \sigma)$, where

$$
L_{2}(\bar{B}, \mu)=\left\{f:\left(\int_{\bar{B}}|f(w)|^{2} d \sigma\right)^{\frac{1}{2}} \leqslant \infty\right\}
$$

and $d \sigma=\left(d d^{c} \omega^{*}\left(w, \bar{B}, \widehat{G}_{j}\right)\right)^{m}($ see $[7,8,10])$. Let $\left\{e_{k}(w)\right\}_{k=1}^{\infty}$ be the common orthogonal basis for spaces $H_{0} \subset H_{1}$ such that $\left\|e_{k}\right\|_{H_{0}}=\mu_{k},\left\|e_{k}\right\|_{H_{1}}=1, \frac{1}{M} k^{\frac{1}{m}} \leqslant \ln \mu_{k} \leqslant M k^{\frac{1}{m}}$, and M is a constant, $k=1,2, \ldots($ see $[8,13])$.

From the continuous embedding of $H_{0} \subset C\left(\overline{\widehat{G}}_{j}\right) \cap \mathcal{O}\left(\widehat{G}_{j}\right)$ it follows that

$$
\begin{equation*}
\left|e_{k}(w)\right| \leqslant C\left\|e_{k}\right\|_{H_{0}}=C \mu_{k}, w \in \widehat{G}_{j} \tag{3}
\end{equation*}
$$

where C is a constant.
We consider the set $A_{k}=\left\{z \in \bar{B}:\left|e_{k}(y)\right|>k\right\}$. By Chebyshev's inequality we have

$$
\sigma\left(A_{k}\right) \leqslant \frac{1}{k^{2}} \int_{\bar{B}}\left|e_{k}(y)\right|^{2} d \sigma(y)=\frac{1}{k^{2}}\left\|e_{k}\right\|_{H_{1}}=\frac{1}{k^{2}}, \quad k=1,2, \ldots
$$

Consequently, $\sum_{k=1}^{\infty} \sigma\left(A_{k}\right)<\infty$ and $\lim _{s \rightarrow \infty} \sigma\left(\bigcup_{k=s}^{\infty} A_{k}\right)=0$. We let $U_{s}=\bar{B} \backslash \bigcup_{k=s}^{\infty} A_{k}, U=\bigcup_{s=1}^{\infty} U_{s}$. Then $\sigma(\bar{B} \backslash U)=0$. Therefore, $\omega^{*}\left(w, \bar{B}, \widehat{G}_{j}\right)=\omega^{*}\left(w, U, \widehat{G}_{j}\right)$, i.e. $\omega^{*}\left(w, U_{s}, \widehat{G}_{j}\right) \downarrow \omega^{*}\left(w, \bar{B}, \widehat{G}_{j}\right)$, $w \in \widehat{G}_{j}$ (see $[7,10]$). Since $\left|e_{k}(y)\right| \leqslant k, w \in E_{s}, k \geqslant s$, taking into account (3), by two constants theorem we obtain the following estimation

$$
\begin{equation*}
\left|e_{k}(w)\right| \leqslant c(s) k \mu_{k}^{\omega^{*}\left(w, U_{s}, \widehat{G}_{j}\right)}, \quad k \geqslant s, w \in \widehat{G}_{j} \tag{4}
\end{equation*}
$$

where $c(s)$ is a constant independent of k.
Now we compare the formal Fourier-Hartogs series to the function $u(x, w),(x, w) \subset D \times \widehat{G}_{j}$,

$$
\begin{equation*}
u(x, w) \sim \sum_{k=1}^{\infty} a_{k}(x) e_{k}(w) \tag{5}
\end{equation*}
$$

where the coefficients are defined by the usual formulas of the space H_{1} :

$$
a_{k}(x)=\int_{\bar{B}} u(x, w) \overline{e_{k}(w)} d \sigma, \quad k=1,2, \ldots
$$

We show that the series (5) converges locally uniformly in the set $K_{\varepsilon} \times \widehat{G}_{j}$.

Since the function $u(x, y)$ is continuous and separately harmonic on the set $D \times \bar{B}$, it follows that $a_{k}(x)$ is harmonic on D. Moreover, for any fixed $x \in \partial K_{\epsilon}$ the function $u(x, w) \in H_{0}$, then $\left|a_{k}(x)\right|=\left(u(x, \cdot), e_{k}\right)_{H_{1}}=\mu_{k}^{-2}\left(u(x, \cdot), e_{k}\right)_{H_{0}}$. Consequently,

$$
\left|a_{k}(x)\right| \leqslant \frac{1}{\mu_{k}^{2}}\|u(x, \cdot)\|_{H_{0}}\left\|e_{k}\right\|_{H_{0}} \leqslant \frac{\|u(x, \cdot)\|_{H_{0}}}{\mu_{k}}, \quad x \in \partial K_{\varepsilon} .
$$

Hence, by the estimation (2) and the maximum principle we get the following estimation

$$
\begin{equation*}
\left|a_{k}(x)\right| \leqslant \frac{N_{j}^{l}}{\mu_{k}}, k=1,2, \ldots, \quad x \in K_{\varepsilon} \tag{6}
\end{equation*}
$$

Comparing the estimates (4) and (6), we obtain

$$
\left|a_{k}(x) e_{k}(w)\right| \leqslant c(s) N_{j} k \mu_{k}^{\omega^{*}\left(w, U_{s}, \widehat{G}_{j}\right)-1} \leqslant c(s) N_{j} k e^{M k^{\frac{1}{m}\left(\omega^{*}\left(w, U_{s}, \widehat{G}_{j}\right)-1\right)}}
$$

$k \geqslant s,(x, w) \in K_{\varepsilon} \times \widehat{G}_{j}$, where $U_{s} \subset \bar{B}, \sigma\left(U_{s}\right)>0$. The last estimation shows that the series (5) converges locally uniformly on the set $K_{\epsilon} \times \widehat{G}_{j}$ and its sum $\widetilde{u}(x, w)$ coincides with $u(x, w)$ on the set $\partial K_{\varepsilon} \times \widehat{G}_{j}$, i.e. $\widetilde{u}(x, w)$ is an analytic continuation of $u(x, w)$. Finally, letting j tend to infinity we obtain an analytic continuation of the function $u(x, w)$ on the set $K_{\varepsilon} \times \widehat{G}$ which contains the set $E \times F$, that is the function $u(x, y)$ can be separately harmonically extended to $D \times G$. The proof of Theorem 2 is completed.

Comparing the ideas of proof of theorems above, one can easily prove the following theorem:
Theorem 3. Let two domains $D \subset \mathbb{R}^{n}, G \subset \mathbb{R}^{m}$ and two sets $E \subset D, F \subset G$ be given. If E is a nowhere dense closed subset of the domain D and F is a closed subset of the domain G with a non-empty complement $G \backslash F \neq \emptyset$, then any separately harmonic function $u(x, y)$ on the domain $(D \times G) \backslash(E \times F)$ can be extended harmonically to the domain $D \times G$.

References

[1] B.V.Shabat, Introduction to Complex Analysis, Part II, Moscow, Nauka, Fiz. Mat. Lit., 1985 (in Russian).
[2] R.Gunning, H.Rossi, Analytic functions of several complex variables, Chelsea Publishing, American Mathematical Society, Providence, Rhode Island, 1965.
[3] S. Hamano, Hartogs-Osgud theorem for separately harmonic functions, Proc. Japan Acad. A, 83(2007), 16-18. DOI: $10.3792 /$ pjaa. 83.16
[4] P.Lelong, Fonctions plurisousharmoniques et fonctions analytiques de variables reelles, Ann. Inst. Fourier. Paris., 11(1961), 515-562.
[5] A.Sadullaev, S.A.Imomkulov, Extension of holomorphic and pluriharmonic functions with subtle singularities on parallel sections, Proc. Steklov Inst. Math., 253(2006), 144-159.
DOI: 10.1134/S0081543806020131
[6] A.Sadullaev, Plurisubharmonic measures and capacities on complex manifolds, UMN, 36(4)(1981), 53-105.
[7] A.Sadullaev, Plurisubharmonic functions, Itogi Nauki i Tekhniki. Ser. Sovrem. Probl. Mat. Fund. Napr., 8(1985), 65-111 (in Russian).
[8] V.Zakharyuta, Separate-analytic functions, generalized Hartogs theorems and hulls of holomorphy, Math. Coll., 101(1976), no. 1, 57-76.
[9] J.Siĉiak, Separately analytic functions and envelopes of holomorphy of some lowerdimensional subsets of \mathbb{C}^{n}, Ann. Pol. Math., 22(1969), no, 1, 145-171.
[10] E.Bedford, B.A.Taylor, A new capacity for plurisubharmonic functions, Acta. Math., 149(1982), 1-40.
[11] V.Avanissian, Cellule d'Harmonicite et Prolongement Analitique Complexe, Travaux en cours, Hermann, Paris, 1985.
[12] W.Plesniak, A criterion of the L-regulerity of compact sets in \mathbb{C}^{n}, Zeszyty Neuk. Uniw. Jagiello., 21(1979), 97-103.
[13] B.Mityagin, Approximate dimension and bases in nuclear spaces, Russian Math. Surveys, 16(1961), no, 4, 59-127.

Стираемые особенности сепаратно-гармонических функций

Севдиёр А. Имомкулов
Хорезмский областной филиал Математического института им. В. И. Романовского
Академия наук Республики Узбекистан
Ургенч, Узбекистан
Султанбай М. Абдикадиров
Каракалпакский государственный университет
Нукус, Узбекистан

Abstract

Аннотация. В работе рассматриваются устранимые особенности сепаратно-гармонических функций. Точнее, доказана теорема о гармоническом продолжении сеператно-гармонической в $D \backslash S$ функции $u(x, y)$ в область D, где $D \subset \mathbb{R}^{n}(x) \times \mathbb{R}^{m}(y), n, m>1$ и S - замкнутое подмножество области D, а ее проекции $S_{1}=\left\{x \in \mathbb{R}^{n}:(x, y) \in S\right\}$ и $S_{2}=\left\{y \in \mathbb{R}^{m}:(x, y) \in S\right\}$ нигде не плотны. Ключевые слова: сепаратно-гармоническая функция, псевдовыпуклая область, интеграл Пуассона, \mathcal{P}-мера.

[^0]: *sevdiyor_i@mail.ru
 \dagger abdikadirov1983@inbox.ru
 (C) Siberian Federal University. All rights reserved

