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Introduction

We recall that the group G of permutations of the set F (|F | > k) is called exactly k-transitive
on F if for any two ordered sets (α1, . . . , αk) and (β1, . . . , βk) elements from F such that αi ̸= αj

and βi ̸= βj for i ̸= j, there is exactly one element of the group G taking αi to βi (i = 1, . . . , k).
In 1872, K. Jordan described the class of finite sharply k-transitive groups for k > 4 ( [1,

page 215]).
In infinite groups J. Tits and M. Hall established that for k > 4 infinite sharply k-transitive

groups do not exist ( [1, page 215], [2, page 86–87]).
Unlike the cases k > 4, the sets of finite exactly 2- and 3-transitive groups are countable, and

the locally finite sets are continuous.
Sharply 2- and 3-transitive groups are closely related algebraic structures such as near-fields,

near-domains, KT -fields (Kerby-Tits fields), etc. (see [1, Ch. V], [2, chap. 20]).
Finite exactly 2- and 3-transitive groups and near-fields were classified by G. Zassenhaus [1,

ch. IV and Theorem V.5.2]. Complete description of locally finite sharply 3-transitive groups in
1967 got O. Kegel [3].

The study of the class of infinite exactly 2- and 3-transitive groups is actively continued at
the present time. In 2000 V. D. Mazurov in [4] fully described exactly 3 - transitive groups with
abelian stabilizers of two points. In 2011, T. Grundhöfer and E. Jabara proved the local finiteness
of the binary finite sharply doubly transitive groups [5]. In 2013, in the paper [6], A. I. Sozutov
established a similar fact for the periodic groups of Shunkov.

In the paper [7], in the class of sharply triply transitive groups, the local finiteness of per-
mutation groups with a periodic stabilizer of two points was proved and, as a consequence, the
local finiteness of the periodic sharply 3-transitive groups.

In the papers [8, 9], examples of sharply doubly transitive groups of characteristic 2 that
do not contain regular abelian normal subgroups are constructed, and in [10], there are similar
examples of sharply 3-transitive groups. These examples show that there are near-domains of
characteristic 2 that are not near-fields and KT -fields, (F, σ), in which near-domains (F,+, ·) are
not near-fields. This provides a basis for studying these structures with additional restrictions.

∗durakov@mail.ru
c⃝ Siberian Federal University. All rights reserved

– 344 –



Evgeny B.Durakov Sharply 3-transitive Groups with Finite Element

Recall that a nonidentity element k of a group G is called finite in G if for any g ∈ G the
subgroup ⟨k, kg⟩ is finite.

Let G be sharply 3-transitive on X, J the set of involutions in G, J2 = {kv|k, v ∈ J}. The
characteristic G (Char(G)) is defined as follows [1]:

1. Char(G) = 2, if elements from J do not fix points from X;

2. Char(G) = 0 if each g ∈ J2 r {1} is of infinite order;

3. Char(G) = p, where p is odd prime, if the order of each g ∈ J2 r {1} is p.

In continuation of the research started in [7] and [11], in this work a special case of Theorem 6
announced in [12] is proved:

Theorem 1. A sharply triple transitive permutation group of characteristic p > 3, containing a
finite element of order p, is locally finite.

Proof of the theorem
Let G be an infinite sharply triply transitive permutation group of the set X = F ∪{∞}. By

B we denote the stabilizer Gα of the point α ∈ X and through H — stabilizer Gαβ = Gα ∩Gβ

of two points α = ∞ ∈ X, β ∈ F . Let also J be the set of involutions of the group G, and Jm be
the set involutions stabilizing exactly m points, m = 0, 1, 2. Let us also formulate the well-known
properties of involutions from groups G = T3(F, v) and B = T2(F )(see, for example, [1, Ch. V])
with comments.

Lemma 1. The following statements are true:

1. The group B = G∞ is regular on the set F an elementary abelian p-subgroup of U and
B = U hH — Frobenius group.

2. U — Sylow p -subgroup of the group G, B = NG(U), U# = aH , CG(u) = U for any element
u ∈ U# and U ∩ Ux = 1 for any element x ∈ G \B.

3. H = G∞ ∩Gα, H contains the only involution z, z ∈ J2, CG(z) = NG(H).

4. Each subgroup of order qr in H, where q, r not necessarily different primes, cyclic, and
H ∩Hx = 1 for any element x ∈ G \NG(H).

5. N = NG(H) = H h ⟨v⟩, where v is an involution from J2, CH(v) = ⟨z⟩.

6. If N ∩Nx ̸= 1 for x ∈ GrN , then N ∩Nx = ⟨t⟩, where t = t(x) is an involution.

7. G = B ∪BvU and B ∩Bx = Hb for any x ∈ G setminusB and a suitable b = b(x) ∈ B.

Proof. 1. The statement follows from [6, Theorem 2].

2. The statement easily follows from the exact 3-transitivity of G (see also [7, Lemma 1], [13],
item 1 of the lemma and finiteness of elements from U . Non-trivial element from U ∩ Ux must
stabilize two points, which is impossible in view of item 1.

3. The statement is well known [1,6, 14].
4. The statement follows from Burnside’s theorem [15, Theorem 1.2], 3-transitivity of G and

equality B ∩Bx = G∞ ∩G∞x .
5. This statement and statement 6 are obvious.
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7. Follows from 2- (and even 3-) transitivity and items 1, 5 of the lemma.
The lemma is proved. 2

The groups H and N = CG(z) will also be denoted by Hz and Nz, and for k = zg by Hk and
Nk we will denote subgroups Hg and Ng.

Lemma 2. The following statements are true:

1. Either J = J2, or J = J0 ∪ J2, while J2 = vG.

2. For each involution j the set vN ∩ jG is infinite.

3. For each involution j ∈ J the set J2 ∩ CG(j) is infinite.

4. Every Sylow 2-subgroup in H is (locally) cyclic, or (locally) quaternionic; are they conju-
gate, isomorphic, we do not know yet.

5. Every Sylow 2-subgroup of T from N whose order is greater than 4, is a Sylow 2-subgroup
of G.

6. If a Sylow 2-subgroup T of N is a proper subgroup of a Sylow 2-subgroup R of G, then R
is a (locally) dihedral group.

7. G contains no elementary abelian subgroups of order 8, containing an involution from J2.
The rank of Sylow 2-subgroups in N is 2. The rank of any Sylow 2-subgroup of G containing
an involution from J2, is equal to 2.

Proof. 1. The inequalities 0 6 m 6 2 follow from the sharply 3-transitivity of the group G.
Lemma 1 implies that the partitions J = J1 ∪ J2 and J = J0 ∪ J1 ∪ J2 are impossible, and it is
obvious that the sets J1 and J2 are conjugacy classes. Since CharG = p > 2, then either J = J2
or J = J0 ∪ J2.

2. In each such class jG there is an involution k permuting the points α and β. Further, we
apply Ditzmann’s lemma [16, Lemma 2.3].

3. The involution j is contained in the subgroup Nγδ, if the permutation j contains a cycle
(γ δ).

4. Follows from Shunkov’s theorem [16, Theorem 2.15].

5. The subgroup ⟨z⟩ is characteristic in T and x ∈ NG(T ) implies x ∈ N = CG(z).

6. Follows from the fact that CR(z) = T . In particular, potentially R can be an infinite
locally dihedral group.

7. If E8 6 N , then H ∩ E8 = E4, which contradicts the uniqueness of the involution z.
Further we use item 6 of the lemma. The lemma is proved. 2

Lemma 3. The set of all 2-elements of the group H invertible involution v, is a (locally) cyclic
2-subgroup of S. If x ∈ H \ S and x2 ∈ S, then the order of the element x−1vxv is infinite.

Proof. The assertions of the lemma are proved in [13, Lemmas 5, 6]

By the conditions of the theorem, all subgroups Lx = ⟨a, ax⟩ in G are finite, and for x ∈ J ,
the subgroups Kx are also finite. Let’s find out their structure. Let’s start with the subgroups
L = ⟨a, av⟩, K = ⟨a, v⟩.

Lemma 4. The subgroup L = ⟨a, av⟩ is isomorphic to the group L2(p
n) for some n.
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Proof. It is clear that |K : L| 6 2. According to Lemma 1, P = L ∩ U and P2 = L ∩ Ux —
elementary Abelian Sylow p-subgroups of L, with Silov p-subgroups of L are pairwise coprime,
in particular, L is not an abelian group.

It is clear that B1 = NL(P ) = L∩B. If B1 = P , then P∩P x = 1 for any x ∈ LrP , and by the
Frobenius theorem L = M hP is the Frobenius group with nilpotent kernel M [15, Thompson’s
Theorem 1.5] and the cyclic complement P = ⟨a⟩ [15, Burnside’s Theorem 1.2]. By Lemma 2,
the 2-rank of the group K (and the group L) does not exceed 2, and if 2 ∈ π(M), then the order
of the center of a Sylow 2-subgroup from the Frobenius kernel M is 4. By the conditions p > 3
and, therefore, 2 /∈ π(M).

Obviously, |B∩K| = 2p and by Frattini’s argument and Lemma 1 NK(P ) = ⟨a⟩h ⟨k⟩ = D —
dihedral group, where k ∈ vK . Hence, by virtue of the same Burnside theorem [15, Theorem 1.2]
CZ(k) ̸= 1 for the center Z of each Sylow q-subgroups of M . Obviously, CZ(k) < Hx for some x,
and in view of item 4 of Lemma 1, |Ω1(Z)| = q. Hence, the dihedral group B ∩P is contained in
the group of automorphisms of a cyclic group of order q, a contradiction, therefore, B ∩ P ̸= P .

Note that by Frattini’s argument and Lemma 1 the group K contains the group anyway
dihedral D = ⟨a⟩ h ⟨k⟩, where k ∈ vK . Let M be the minimal normal subgroup in K from L.
Consider the case when M — elementary abelian q-group. As proved above, q ̸= 2. Since P is
strongly isolated in L = ⟨P, P v⟩ as above, we have q ̸= p, M h P is a Frobenius group, P = ⟨a⟩,
CM (k) ̸= 1, |M | = q and D 6 AutM , a contradiction. Hence, M is a direct product of non-
abelian simple groups, and since the 2-rank of the group M does not exceed 2, then M is a
simple group of 2-rank 2.

If P 
 M , then by Frattini’s lemma P ∩NL(S) ̸= 1 for some Sylow 2-subgroup S of M and
each element from P# ∩NL(S) acts on S regularly, which is impossible, since the 2-rank of G is
at most 2 and p > 3. Therefore, P 6 M and |L : M | 6 2, and therefore M = ⟨P, P v⟩ = L.

If a Sylow 2-subgroup S in L is dihedral (Lemma 2), then by the Gorenstein-Walter theorem
[17, p. 27] L ≃ L2(q), q is odd, or L ≃ A7.

Let’s exclude the group L ≃ A7. For p = 7, by Kerby’s theorem, H contains a unique
subgroup of order 3, and in A7 is an elementary abelian subgroup E9, which contradicts Lemma 1.
Hence, p = 5. The involution k inverting a cyclic subgroup of order 5 is obviously contained
in J2. It is easy to check (see, for example, cite [Proposition 14] LSS), that CL(k) contains the
only subgroup ⟨b⟩ 6 E9 of order 3, which is contained in Hk. But E9 6 CL(b) 
 Hk, which
contradicts Lemma 1. Therefore, L cannot be isomorphic to A7.

Let L ≃ L2(q). If q ̸= pn then P = ⟨a⟩ and p divides either q − 1 or q + 1. Since CG(P ) —
2′ is a group, then either q − 1 = 2p or q + 1 = 2p. Note that then t ∈ L ∩ J2, CL(t) 6 NL(P ),
in this case either |CL(t)| = q + 1, or |CL(t)| = q − 1. However, this is not possible. Therefore,
L ≃ L2(p

n). If v /∈ L, using Lemmas 1–3 and information from [19, p. 8–10], apparently it can
be shown that K ≃ PGL2(p

n).
Let a Sylow 2-subgroup S in L be not dihedral. Since v ∈ J2, in view of item 6 of Lemma 2,

this means that J ∩L ⊂ J2. As Alperin, Brower and Gorenstein proved [20] finite simple groups
of 2-rank 2, up to isomorphism, are the following groups: L2(q), A7, L3(s), U3(r), M11, U3(4),
where q, s, r are odd and q > 3.

First, let’s exclude the groups U3(4) and M11 from this list. In U3(4) all involutions are
conjugate and the Sylow 2-subgroup S is of order 64, all its involutions lie in the center of Z,
|Z| = 4 (see, for example, [18, Proposition 13]). If v ∈ L, then Z# ⊂ J2, which contradicts
Lemmas 1, 2. If Z# ⊂ J0, then v /∈ L, which contradicts Lemma 2. In M11 all involutions are
conjugate, the Sylow 2-subgroup S is a semidihedral group of order 16 and the centralizer of the
involution is isomorphic to GL2(3) (see, for example [18, clause 14]). As noted above, J∩S ⊂ J2.
Therefore, S < Nk, where k is the central involution from S.

The group S contains a cyclic subgroup of index 2, suitable for the role intersection of S∩Hk,
but each involution from S ∩H centralizes an element of order 4 in S ∩Hk, which is impossible
by Lemmas 1, 2. Hence, L cannot be isomorphic group M11.
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Assume that L is isomorphic to L3(s), or U3(r). Then, by [18, Proposition 11], all involutions
and quadruple groups in L are conjugate, L contains an element of order 8 and a Sylow 2-subgroup
S in L is isomorphic to either a semidihedral group

SDm = ⟨s, k | s2
m+1

= k2 = 1, sk = s−1+2m⟩, m > 2, or woven group (1)

WRm = ⟨s1, s2, k | s2
m

1 = s2
m

2 = k2 = 1, s1s2 = s2s1, s
k
1 = s2, s

k
2 = s1⟩, m > 3. (2)

Recall that in the case under consideration S ∩ J ⊂ J2 and, therefore, S 6 Nj for the involution
j ∈ Z(S). In the group S = WRm from (2), each subgroup of index 2 contains the subgroup E4,
which is impossible by Lemma 1. And in the cyclic subgroup of order 8 from the group S = SDm

is a subgroup of order 4 commuting with all involutions from S, which again contradicts Lemma 1.
Therefore, in all cases L ≃ L2(q). As proved above, q = pn, and the lemma is proved. 2

Lemma 5. For any element c ∈ Uv the subgroup L = ⟨a, c⟩ is isomorphic to the group L2(p
n)

for some n = n(a, c).

Proof. By virtue of the finiteness condition for the element a and items 1–2 of Lemma 1 the
subgroup L is finite. Further, as in the proof of Lemma 4, P = L ∩ U and P2 = L ∩ Ux —
elementary Abelian Sylow p-subgroups in L, Sylow p-subgroups in L are pairwise coprime and L
is not an abelian group. To continue to follow the logic of the proof of Lemma 4, we prove that
the 2-rank of the group L does not exceed 2. If L∩J2 is nonempty, then the desired follows from
Lemma 2. Let L∩ J2 = ∅. Note that by claim 3 of Lemma 1 the involution z ∈ H, and by claim
1 of the same lemma, z inverts the elements a and c: az = a−1, cz = c−1. Therefore, z ∈ NG(L),
the subgroup K = ⟨a, c, z⟩ is finite, |K : L| 6 2, K ∩ J2 ̸= 2 and for K the boundedness of
the 2-rank follows from Lemma 2. Hence, the 2-rank of the group L does not exceed 2, and
D = ⟨a, z⟩ — dihedral group, D 6 K. Moreover, in the case L ∩ J = ∅, by Lemma 2 the Sylow
2-subgroups in K (and in L) are dihedral. Taking into account these remarks, part of the proof
of Lemma 4, on the structure of L groups with dihedral Sylow 2-subgroup, carries over literally
to the case under consideration. The lemma is proved. 2

Lemma 6. For any non-permutable elements x, s ∈ aG the subgroup L = ⟨s, x⟩ is finite and
isomorphic to the group L2(p

n) for suitable n = n(s, x).

Proof. Due to the arbitrary initial choice of the element a from the class of conjugate elements
of aG it follows that statement of Lemma 5 is true for any s ∈ U# and x ∈ Uv ∩ aG = Uv#.
Since G is 3-transitive on the set UG, we conclude that that the lemma is true. 2

Proof of the theorem. According to [19, p. 9] the group L = ⟨a, av⟩, isomorphic L2(q) by Lemma 4,

has
q(q + 1)

2
cyclic subgroups of order

(q − 1)

2
(Cartan subgroups), of these, (B ∩L)∪ (Bv ∩L)

contains 2q − 1 such subgroups. Since
q(q + 1)

2
> 2q − 1 for q > 3, then there is a pair of

dots γ, δ ∈ X \ {α, β} for which the intersection L ∩ Gαβ is cyclic subgroup conjugate to the

Cartan subgroup L ∩ H of order
(q − 1)

2
. The group G acts on the set J2 twice transitively,

since it is twice transitive on the set HG, and each the subgroup Hg is defined by its unique
central involution zg from J2 (Lemma 1). Hence we deduce that any pair of involutions from
H ∩ J2 is contained in an appropriate subgroup conjugate to the subgroup L. This means that
the involution v is finite in the group N , and by [16, Corollary 2.30] the subgroup N is locally
finite. By Theorem 2 in [21], the group G is locally finite. The theorem is proved. 2

This work was financially supported by the Russian Foundation basic research (grant 19-01-
00566-a).

– 348 –



Evgeny B.Durakov Sharply 3-transitive Groups with Finite Element

References

[1] H.Wähling, Theorie der Fastkörper, Essen: Thalen Ferlag, 1987.

[2] M.Hall, Group Theory, Moscow, IL, 1962 (in Russian).

[3] O.H.Kegel, Zur Structur lokal endlicher Zassenhausgruppen, Arch. Math., 18(1967),
337–348.

[4] V.D.Mazurov, On infinite groups with abelian centralizers of involutions, Algebra and Logic,
39(2000), no. 1, 74–86 (in Russian).
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Точно трижды транзитивные группы с конечным
элементом

Евгений Б. Дураков
Сибирский федеральный университет

Красноярск, Российская Федерация

Аннотация. В настоящей работе исследуются точно трижды транзитивные группы. Доказана
локальная конечность точно трижды транзитивных групп подстановок характеристики p > 3,
содержащих конечный элемент порядка p.

Ключевые слова: группа, точно k-транзитивная группа, точно трижды транзитивная группа,
локально конечная группа, почти-область, почти-поле.
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