Journal of Siberian Federal University. Mathematics & Physics 2021, 14(2), 258260

DOI: 10.17516/1997-1397-2021-14-2-258-260
VIIK 512.54

A Short Essay towards if P not equal NP
Vladimir V. Rybakov*

Siberian Federal University
Krasnoyarsk, Russian Federation

A.P.Ershov Institute of Informatics Systems
Novosibirsk, Russian Federation

Received 10.12.2020, received in revised form 10.01.2021, accepted 12.02.2020

Abstract. We find a computational algorithmic task and prove that it is solvable in polynomial time
by a non-deterministic Turing machine and cannot be solved in polynomial time by any deterministic
Turing machine. The point is that our task does not look as very canonical one and if it may be classified
as computational problem in standard terms.

Keywords: deterministic computations, non-deterministic computations.

Citation: V.V.Rybakov, A Short Essay towards if P not equal NP, J. Sib. Fed. Univ. Math. Phys.,
2021, 14(2), 258-260. DOI: 10.17516,/1997-1397-2021-14-2-258-260.

1. Definitions and Formulations

To recall notation, P is the class of all computational tasks (problems) which may be solved
by deterministic TMs in polynomial time, NP is the class of all computational tasks (problems)
which may be solved by none-deterministic TMs in a polynomial time. Terminology and defini-
tions concerning Turing Machines (TMs) and basics of mathematical theory of computation are
supposed to be known for the reader.

What is a computational algorithmic task (problem)? Recall first what is a computable
function? That is a function which may be computed by a TM. So, what is a solvable computable
algorithmic task (Problem)?

That is a task which may be solved by a TM by an algorithm written in its program. That is
— being passed by input data on the tape, TM works in accordance with its program and stops
giving required output data (or just answer - yes - no -, if the task is a recognition of the input
data).

We start by definition of the computational problem Pr. Consider the following computa-
tional task. It is a precise formal version of the Problem of Braking Coded Lock.

We model it by a Turing machine with the alphabet containing 0 and 1, an amount of marks
for internal states ¢;,j € J, etc., as standard for a deterministic Turing machine etc. For any
given set (ai,as,...,a,), where a; = 0 or a; = 1 we consider it as the code for our codded lock.
We wish to open it. We describe below a TM solving this task.

(1) We put first (a1,as,...,a,) in the tape of TM and isolate in the final its part putting
before first symbol a; a mark ¢ showing that here we put the code. The machine cannot enter
this part for any state before TM comes to comparison state. The tape cannot be extended after
an. The part ay,ao,...,a, cannot be edited.

(2) We then first put in the input of our TM any trial code (c1,ca,...,¢,), (¢; = 0,1)
extending the tape to the left and compare it with (a1, ase,...,a,). If we get total coincidence
we put (a1,as,...,a,) outside and answer YES.

*Vladimir _Rybakov@mail.ru
© Siberian Federal University. All rights reserved

— 258 —



Vladimir V. Rybakov A Short Essay towards if P not equal NP

(3) If (c1, ¢, . . ., ¢py) does not coinside with (a1, as,. .., a,) at first met convergence we delete
immediately from the tape of TM all (¢1,¢2,...,¢,) and only after this we get internal state of
TM which only allow to move to the beginning of the tape.

(4) Then we start an early chosen, fixed and written in program of our TM algorithm A
generating new trial code (c1,ca,...,¢,) and continue the comparison as in (2).

2. Results

We assume the algorithm A to be fixed, written in the instructions of our TM and might be
applied for any given code (a1, as,...,a,). So our TM models both sides — codded lock owner,
and code lock cracker.

Lemma 1. Pr is a computational algorithmic computational task (problem) which is solvable in
exponential time for some algorithm A for any given code.

Proof. There are many known algorithms A doing this task in exponential time. The problem
is algorithmic since we (may use) are using distinct algorithms A, computational as we use
computations by TM.

It is time to emphasise here that the solution of the problem Pr consist of ONLY search
(invention) and construction the algorithm A and writing it in the memory in commands of TM.
Nothing else to do is prohibited. We cannot change the conditions, demands of the task. We are
only allowed to find and construct algorithms A.

Lemma 2. Pr is a computational algorithmic task (problem) which is solvable in polynomial
time by a non-deterministic Turing machine.

Proof is again evident. Just to take non-deterministic instructions in A while generating the
input I = {e1,...,¢n} (we need only n steps and 2n instructions to do it), and then we need
only polynomial time to make comparison. O

All is fine, but the question is: where the proof that Pr cannot be solved in polynomial time
with deterministic machine is? Here is the proof.

Lemma 3. Pr cannot be solved in polynomial time by a non-deterministic Turing machine.

Proof. Assume that there is a deterministic algorithm A solving this problem in polynomial
time for any code (aq,...,a,) (working in accordance with the conditions (formulation) of the
problem Pr as description above). Since the task does not allow to use the internal results of
comparison trial inputs (cy, ..., ¢,) with the code of the lock (a1, ...a,), after rejecting the trial
input c¢y,...,c, the machine TM again comes to generating new example cy,...,c,, and then
new one and so on, without any additional information about reason of rejecting - which symbols
do not coincide.

The point here is that for any very initial trial input (¢y,...,¢,) the sequence of these new
trial inputs c¢yq,...,c, will be exactly the same as for any another given very first trial input
(before finding (accepting) (a1,...,a,) and stopping). Why so? Because the algorithm A is
deterministic — the sequence of steps and generated trial inputs cy, ..., ¢, from A is predefined
and does not depend on real value rejected trials cq, ..., ¢y, only it knows — if the trial does not
coincide with the code (ay,...,a,) — we continue, generate a new one.

So, in any k-th step of applying A it generates at most k different trials ¢y, ..., ¢,. Let then
ai,...,ay be the tuple which does not belong to trials which may be generated by A in its 2" —1
consequent applications. Then if aq,...,a, is taken as the code our TM will require at least 2"
steps before crack aq, ..., ay,.- a

Thus as the result we have

- 259 —



Vladimir V. Rybakov A Short Essay towards if P not equal NP

Theorem 4. PR NP and PR ¢ P, so P # NP.

Clearly that the interest to non-deterministic computation comes (primarily?) from famous
Cook-Levin theorem, cf. [1]. There is a big amount of papers towards if P = NP or P # NP,
cf. [1-4].

We do not touch in this short notice complexity theory and the problem satisfiability in
Boolean logic and hence the famous Cook-Levin theorem. Just we would like to emphasize that
if not to fix very precisely the meaning what is a computational algorithmic problem — it may
confuse the researchers and put efforts aside. So, if we use general — and very plausible and even
rather convincing interpretation — as in this paper — we shortly obtain the negative answer on
if P = NP. Though questions about behaviour of Turing machines and how algorithms work on
them in accordance with their programs and precisely specified tasks are definitely computational
algorithmic problems (maybe internal ones — but nonetheless). Therefore the question of what
is a computational algorithmic problem definitely needs clarification.

This research is supported by High Schools of Economics (HSE) Moscow; supported by the
Krasnoyarsk Mathematical Center and financed by the Ministry of Science and Higher Education
of the Russian Federation (Grant No. 075-02-2020-1534/1).

References

[1] S.A.Cook, The complexity of theorem proving procedures, Proceedings of the Third Annual
ACM Symposium on Theory of Computing, 1971, 151-158. DOI: 10.1145/800157.805047.

[2] https://en.wikipedia.org/wiki/P _versus NP problem

[3] Javier A.Arroyo-Figueroa, The Existence of the Tau One-Way Functions Class as a Proof
that P 1= NP, 2016. https://arxiv.org/abs/1604.03758

[4] Mathias Hauptmann, On Alternation and the Union Theorem, Mathematics, Computer
Science, 2016. https://arxiv.org/abs/1602.04781

3aMeTka o mpobjeme pasBernctBa P u NP

Baaagumup B. Pribakos

Cubupckuii deepasbHbii YHUBEPCUTET
Kpacnosipck, Poccuiickass @eeparius

UNucruryr cucrem urdopmaruku um. A. 1. Epmosa
Hoocubupck, Poccuiickast @enepariust

Awnnoranusi. B crarbe BBOAUTCS airopuTMuYecKas mpobeMa W JTOKa3bIBAETCs, 9TO OHA Pa3permMma
3a MMOJIMHOMHUAJILHOE BpeMsl Ha HEeJIeTEePMUHHUPOBAHHBIX MAIMHUHAX THIOPUHIa W HE PENIaeTcs 3a IMOJTUHO-
MHAJbHOE BpEMsI Ha JIETEpPMUHHPOBAHHBIX MaluHax TbiopuHra. B To »Ke Bpewmsi, BBeJeHHas IpodJieMa
He BBIIVISAUT KaK CTAH/IapPTHAasl B OOIIEIPUHSTOM MTOHMMAHWHN U HE CAMOOYEBUIHO MOXKET JIU OHA OBITH
KJIaccupuImpoBaHa KaK KAHOHUYIECKAs.

Kurouesnle ciioBa: A€TEePpMUHUPOBAaHHbIC BBIYNUCJ/IEHUS A, HEJIeTEPMUHUPOBAHHbIE BBIYUCJ/ICHU.

- 260 —



