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Abstract. A convex hull generated by a sample uniformly distributed on the plane is considered in the
case when the support of a distribution is a convex polygon. A central limit theorem is proved for the
joint distribution of the number of vertices and the area of a convex hull using the Poisson approximation
of binomial point processes near the boundary of the support of distribution. Here we apply the results
on the joint distribution of the number of vertices and the area of convex hulls generated by the Poisson
distribution given in [6]. From the result obtained in the present paper, in particular, follow the results
given in [3, 7], when the support is a convex polygon and the convex hull is generated by a homogeneous
Poisson point process.
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Introduction

This paper is devoted to the study of properties of convex hulls generated by independent
observations over a random vector that has a uniform distribution in a convex polygon. Convex
hulls are very complex objects from the analytic point of view. Therefore, studying the properties
of the simplest functionals of convex hulls, such as, the number of vertices or the area, is not
an easy task. This explains the fact that, prior to obtaining the central limit theorem for the
number of vertices of a convex hull by P.Groeneboom, the main achievement was considered
to be the study of asymptotic expressions for the mean values of similar functionals (see, for
example, [4, 5, 16]); the problems on asymptotic expressions for the variance remained unsolved
until the appearance of the studies by C. Buchta [1, 2] and J. Pardon [14, 15].

It should be noted that P.Groeneboom, using the well-known property of homogeneous bino-
mial point processes, which is that near the boundary of the support, it is almost indistinguishable

∗khamdamov.isakjan@gmail.com
†chay1526@mail.ru

c⃝ Siberian Federal University. All rights reserved

– 230 –



Isakjan M.Khamdamov, Zoya S.Chay Joint Distribution of the Number of Vertices and the Area . . .

from a homogeneous Poisson point process, and using such powerful techniques as strongly mix-
ing stationary processes and martingales, has proved the central limit theorems for the number
of vertices of a convex hull in the case when the support of the original uniform distribution is
either a convex polygon or a unit disk. The modified P.Groeneboom technique was applied in
[3] to prove limit theorems for the area and perimeter of a convex hull in a polygon, and in [9],
to prove a limit theorem for an area outside a convex hull in a disk.

Similar results were obtained later by J. Pardon [16, 17] without imposing any regularity
conditions on the support boundary. In the present work, there is no need for using martingales,
strongly mixing stationary processes, etc.; the approach used is a modification of the methods
presented in [7, 10–13]. The results obtained by Sh. K. Formanov, I.M. Khamdamov in [6], are
applied here; a joint limit distribution for the number of vertices and the area of the convex hull
generated by a Poisson point process in a cone was obtained by elementary analytical and direct
probabilistic methods.

1. Statement of problem and results

Let x⃗j , j = 1, 2, . . . , n be the independent observations over a random vector having a uniform
distribution in a convex polygon A with r sides. A matrix Xn is called a sample, the j-row of
which is formed by the components of the vector x⃗j . Let us denote the convex hull generated by
vectors x⃗j , j = 1, 2, . . . , n by Cn = Cn(Xn).

We are interested in the joint limit distribution of the following functionals of Cn: the total
number of vertices νn and the area Sn. It is clear that Cn, and, consequently, the indicated
functionals, are uniquely determined by the set of vertices Wn. If the principle of vertex labeling
is chosen, then it can be represented as a νn × 2 matrix. It is easy to show that this matrix has
the property of sufficiency with respect to the boundary of the set A — the support of original
distribution. The latter circumstance is of interest from the point of view of statistics of uniform
distributions.

Before formulating the main results, we introduce some notation. Let S be the area of the
polygon A. Then we assume that

Dn = S − Sn

and let

an =
2r log n

3
, a′n =

San
n

, bn =

√
27

10r log n
, b′n = n

√
27

28rS2 log n
=

√
5nbn√
14S

.

We denote by ω a vector having a two-dimensional normal distribution with a zero vector of
mean values, unit variances and a correlation coefficient

√
5/14.

Let us state the main theorem.

Theorem 1. Under our assumptions, a random vector with components bn (νn − an) and
b′n (Dn − a′n) converges in distribution to ω.

Let us make the necessary explanations of the notation. The symbols d⇒,
p−→, → a.s. denote

convergence in distribution, in probability, and almost sure, respectively. f(ε) ≍ g(ε) means
that there are positive constants c1, c2, ε0 such that c1f(ε) 6 g(ε) 6 c2f(ε) for any 0 < ε < ε0.
Generally op(1) is used for a sequence of random variables converging in probability to zero. The
notation ξn = Op(1) means that supn>1 P (|ξn| > t) → 0 as t → ∞. Everywhere c, c1, c2, . . .

are the positive constants whose values might be changed from line to line and c(β), c1(β), c2(β)
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are the positive constants, depending on the specified arguments. Further, ξdis= ζ means that the
random variables ξ and ζ have a common law of probability distribution.

2. The Poisson approximation

In this section, we present the key idea of [7] about the Poisson approximation of a homo-
geneous binomial point process (h.b.p.p) Bn(A) generated by n independent observations of a
random variable having a uniform distribution with support A in a slightly different way. Here
we consider the more general case, assuming that A is an arbitrary bounded convex set in R2.

Let ΓA be the boundary of the set A. For each z ∈ ΓA, consider an open sphere S(z, ε) of
radius ε centered in z. It is easy to see that the set Aε = A−

∪
z∈ΓA

S(z, ε) is a strip along the
border ΓA. Let us denote Bε = A − Aε and assume that λ(A) = 1, where λ(·) is the Lebesgue
measure.

Let Wn, as before, be the set of vertices of the convex hull Cn generated by Bn(A). The next
lemma is a simple modification of Lemma 2.1 and its Corollary 2.1 given in [7].

Lemma 1. There is a sequence of positive numbers εn converging to zero such that the probability
that at least one of the vertices Cn laying in Bε, converges to zero in ε > εn.

Proof. It is easy to see that the event E = {Wn

∩
Bε ̸= ∅} coincides with the event "there is a

pair of neighboring vertices w1 and w2 such that w1 ∈ Bε ". Let the straight line (p, z−w1) = 0

pass through the point w2. Since w1 ∈ Bε, then this line divides A into two parts, the measure
of each is no less than some value of c(ε) > 0 such that limε→0 c(ε) = 0. Therefore at n > 2

P (E) =
n(n− 1)

2

∫∫
w1∈Bε,w2∈A

Pn−2 {n− 2 the sample points Xn lie on one side

of the straight line (p, z − w1) = 0} dw1dw2 6 n2 (1− c(ε))
n
.

It remains to assume that

εn = inf

{
ε : c(ε) > 3 log n

n

}
. (1)

The lemma is proved. 2

Note that the rate of decrease c(ε) at ε → 0 depends on the smoothness ΓA. In particular, if
A is a sphere, then c(ε) ≍ ε

3
2 ; if A is a polygon, then c(ε) ≍ ε2 and etc.

Since we are not interested in the estimates of the rate of convergence in the theorems given
below, we will not worry about optimizing the choice of the strip containing Wn.

Let now Πn(·) be a homogeneous Poisson point process (h.p.p.p.), the intensity of which is
equal to nλ(·).

Consider the narrowing Πn(A) of this process to the set A. We denote by C ′
n the convex hull

generated by it, and the set of its vertices we denote by W ′
n.

Lemma 2. The probability that at least one of the vertices C ′
n laying in Bε, converges to zero,

as n → ∞ uniformly in ε > εn, where εn, is determined by relation (1).

Proof. We assume that
E′ =

{
W ′

n

∩
Bε ̸= ∅

}
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and let µn(·) be the random counting measure corresponding to Πn(A). By the formula of total
probability we have

P (E′) =

∞∑
k=0

P (µn(A) = k)P (E′ /µn(A) = k ) . (2)

Since the conditional distribution Πn(A) under the condition µn(A) = k coincides with
Bn(A), according to Lemma 1 for k > 3 we have

P (E′ /µn(A) = k ) 6 k2 (1− c(ε))
k−2

. (3)

Taking into account (2) and (3), we write

P (E′) 6
∑

|k−n|<n
4

k2 (1− c(ε))
k−2

P (µn(A) = k) + P
(
|µn(A)− n| > n

4

)
= Σ1 +Σ2. (4)

Using the Chebyshev inequality, we have

Σ2 6 16n−1. (5)

Further on, for sufficiently small ε > 0

Σ1 6 max
|k−n|<n

4

k2 (1− c(ε))
k−2 6

(
3n

4

)2

(1− c(ε))
3n
4 −2

.

It is easy to see that
sup
ε>εn

Σ1 = o(1). (6)

Combining (4)–(6), we arrive at the assertion of the lemma being proved. The lemma is
proved. 2

Let Cε be the convex hull constructed from the part of the sample Xn in Aε.
Lemma 1 implies that

sup
ε>εn

P (Cn ̸= Cε) → 0 as n → ∞. (7)

Let Bn(Aε) be the narrowing of the h.b.p.p. Bn(·) on Aε. According to Lemma 2.2 in [7],
Πn(Aε) and Bn(Aε) can be defined on one probability space in such a way that

P (Πn(Aε) ̸= Bn(Aε)) 6 2λ(Aε). (8)

Let us denote the convex hull generated by Πn(Aε) by C ′
ε. Then from Lemma 2 it follows

that
lim
n→∞

sup
ε>εn

P (C ′
n ̸= C ′

ε) = 0. (9)

From (7)–(9) it follows that as n → ∞

P (C ′
n ̸= C ′

ε) → 0. (10)

Remark. Let fi, i = 1, 2, . . . , k be a certain finite number of functionals defined on the set of
convex polygons. If the joint distribution of random variables fi (Cn) , i = 1, 2, . . . , k converges
to some distribution G, then it follows from (10) that fi (C

′
n) , i = 1, 2, . . . , k also has this

property. Thus, the problem of the limit distribution of the functionals νn and Sn, introduced in
Section 1, is reduced to the study of ν′n and S′

n are the corresponding characteristics of convex
hulls generated by the h.p.p.p.
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3. Convex hulls generated by the h.p.p.p.

3.1. Some properties of the h.p.p.p. Let K be a cone formed by two rays li =

= (z : z = tei, t > 0) , i = 1, 2, where e1 and e2 are the unit vectors. Without loss of general-
ity, we assume that e1 and e2 are the orthonormal vectors

e0 =
e1 + e2

2
. (11)

Let further Π(·) be a h.p.p.p. with intensity λ(·). We denote the narrowing on K by Π(K).
Consider the convex hull C ′ generated by K by Π(K) and the set of its vertices Z.

Let us denote the vertex by z0 ∈ Z for which (e0, z − z0) > 0 for all z ∈ Z.
It is obvious that z0 is determined unambiguously almost sure.
The straight line

(e0, z − z0) = 0 (12)

is the supporting line for C ′.
Consider a triangle formed by rays li, i = 1, 2 and a supporting line (12). We denote the set

of interior points of this triangle by δ0, and the area is denoted by ξ0. It is easy to see that

ξ0 =
x2
0

2
, (13)

where x0 = y0 = u0 + v0 and z0 = (u0, v0). Assume that

η0 =
v0
x0

. (14)

Then from (13) and (14) it is easy to obtain

u0 = (1− η0)
√
2ξ0, v0 = η0

√
2ξ0. (15)

Let us label the vertices C ′, going around the boundary counterclockwise. Since z0 is defined,
each of the vertices gets its own number j, −∞ < j < ∞. Let us choose on the ray l1 a sequence
of points xj , j > 1, lying on the intersection of l1 and the lines passing through the vertices
zj−1 and zj , respectively. Likewise, on the ray l2, points yj , j 6 −1, are obtained as a result of
intersections of l2 and the lines passing through zj , zj+1, respectively.

Let δj , j ̸= 0; the set of interior points of a triangle with vertices zj−1, (xj−1, 0), (xj , 0), if
j > 1, and vertices zj+1, (0, yj+1), (0, yj), if j 6 −1. We denote the vertices of the triangle by
(x0, 0), (0, y0), the set of interior points by δ0. The third vertex of this triangle is the point (0, 0).
The figures are taken from [6] (see Fig. 1).

We assume that
ξj = λ(δj).

Then it is easy to obtain

ξj =

{
vj−1(xj − xj−1)/2, if j > 1

uj+1(yj − yj+1)/2, if j 6 −1
, (16)

where zj = (uj , vj). If we assume that

ρj =
uj − uj−1

vj−1 − vj
, (17)
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Fig. 1. Illustration of zj and δj

then

ξj =
v2j−1

2
(ρj − ρj−1). (18)

Now we define the boundary functionals

θT = inf {j : xj > T} and θ′T = inf {−j : yj > T} , (19)

where T > 0.
We assume that

α(T ) =
2 log T

3
, β2(t) =

10 log t

27
.

ST =

{
ξ1 + ξ2 + . . .+ ξθT if θT > 1

0 if θT = 0
and S

′

T =

{
ξ−1 + ξ−2 + . . .+ ξ−θ

′
T

if θ
′

T > 1

0 if θ
′

T = 0
. (20)

We present the following theorem with corollaries obtained in [6], which play the key role in
this article (see Theorem 1, Corollaries 1, 2, 3 [6]).

Theorem 2 (Formanov and Khamdamov). Under our assumptions, as T → ∞, we have

(β(T ))
−1

(θT − α(T ), ST − α(T ))
d⇒N(0, B) with B =

(
1 1
1 14/5

)
.

Here N(0, B) is a normally distributed random vector with a zero vector of mean values and
a covariance matrix B.

Corollary 1 (Formanov and Khamdamov). In our case EθT = α(T ) + o(β(T )) and V arθT =
β2(T )(1 + o(1)) as T → ∞.

Corollary 2 (Formanov and Khamdamov). Let 0 < T1 6 T2 such that c1T1 < T2 < c2T1 for
some c1 > 0, c2 > 0. Then θT2 − θT1 = op(β(T1)) as T1 → ∞.

Corollary 3 (Formanov and Khamdamov). Let 0 < T1 6 T2 such that c1T1 < T2 < c2T1 for
some c1 > 0, c2 > 0. Then (ST2 − ST1) /β(T1) converges in probability to zero as T1 → ∞.
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It is easy to see that at min {T1, T2} → ∞ the random vectors (θT1 , ST1) and
(
θ′T2

, S′
T2

)
are

asymptotically independent. Moreover, the statements of Theorem 2 and its Corollaries 1–3 hold
for

(
θ′T2

, S′
T2

)
.

4. Proof of Theorem 1

The reasoning here is completely elementary. Generally, a verbal description of geometric
objects is somewhat lengthy.

In accordance with the conclusions obtained at the end of Section 2 from Lemmas 1 and 2,
it is sufficient to obtain the limit distribution for the number of vertices ν′n and the area S′

n of
the convex hull C ′

n generated by the narrowing of the Πn(A) h.p.p.p. Πn(·) on the set A. The
scheme of further reasoning is as follows. First, we divide the boundary C ′

n into 2r conditionally
independent parts in such a way that each of the r angles of the polygon A corresponds to two
elements of this partition. Thus, each of the functionals of interest to us ν′n and S′

n is represented
as a sum of 2r random variables. Then, using the properties of the h.p.p.p. stated in Section 3,
the asymptotic independence and normality of these random variables are established.

Thus, the general principles for studying the problem are the same as in [7], although their
implementation is completely different.

4.1. Dividing the boundary into conditionally independent parts. We denote the
vertices of an r-gon of the support A of the initial uniform distribution by a(i), i = 1, 2, . . . , r.
Let further, for some ε > 0

Bi = A
∩

S
(
a(i), ε

)
, (21)

where S (z, ε) is a disk of radius ε centered at z. Let us denote the narrowing Πn(·) to a cone
Ki with the vertex a(i) and generating rays li1 and li2 by Πni(·), i = 1, 2, . . . , r, passing through
a(i+1) and a(i−1) respectively. It is clear that a(−1) = a(r), a(r+1) = a(1).

Let e0i play the same role with respect to Ki as played by the vector with respect to Ki in
Section 3. Note that e0 is determined by the equality (11). More precisely,

e0i = 2−1

(
a(i+1) − a(i)

∥a(i+1) − a(i)∥
+

a(i−1) − a(i)

∥a(i−1) − a(i)∥

)
.

We denote the convex hull as Cni generated by Πni(·). Let us agree to denote the set of
vertices C ′

n by Zni. Recall that the set of vertices C ′
n in Section 2 is denoted by W ′

n. We
select in Zni and W ′

n the elements z0i and w0i, that possess the property that the straight lines
(e0i, w − z0i) = 0 and (e0i, w − w0i) = 0 are the supporting lines for Cni and C ′

n, respectively.
Assume that

Υ1 = {π : z0i = w0i, i = 1, 2, . . . , r} (22)

and
Υ2 = {π : z0i ∈ Bi, i = 1, 2, . . . , r} , (23)

where π is the implementation of Πn(·), and Bi is determined by equality (21).
It is easy to understand that as n → ∞

P (Υi) → 1, i = 1, 2. (24)
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As follows from (22)–(24), with probability close to 1, the boundary of each hull Cni has a
non-empty intersection with C ′

n. Note that the points w0i, i = 1, 2, . . . , r divide the boundary
C ′

n into r parts. We split each of them into two more parts. Let w(i) be the vertex W ′
n ⊂ C ′

n,
for which the straight line

(
pi, w − w(i)

)
= 0, where pi ⊥

(
a(i+1) − a(i)

)
is a supporting line to

C ′
n. It is easy to see that w(i) is the closest vertex to the ray li1 from the vertices W ′

n. Note that
as the n vertex w(i) grows, it approaches this ray indefinitely, i.e.,

(
pi, w

(i) − a(i)
)
→ 0. Since

the conditional distribution on the section of the supporting line
(
pi, w − w(i)

)
= 0 lying in A,

under the condition
(
pi, w

(i) − a(i)
)
= t is uniform, we have

lim
ε→0

lim
n→0

inf P

w(i) ∈
r∩

j=1

Bj

 = 1. (25)

Hence it follows that

lim
ε→0

lim
n→0

inf P

wi ∈
r∩

j=1

Bj

 = 1, (26)

where wi is the base of the perpendicular drawn from wi to li1.
Consider

Υ3 =

wi ∈
r∩

j=1

Bj , i = 1, 2, . . . , r

 .

As follows from (25) and (26), for any ε > 0 one can find such N > 0 that, for all sufficiently
large n > N , the following inequality holds

P (Υ3) > 1− ε.

In what follows, without specifying, we consider only those implementations of Πn(·) that
are contained in

∩3
j=1 Υj . For such implementations w(i), i = 1, 2, . . . , r lie between w0i and

w0(i+1). Thus, the boundary C ′
n is divided into 2r parts. It is easy to see, that these parts are

conditionally independent for the given w0i, w
(i), i = 1, 2, . . . , r.

4.2. Choice of approximating functionals. Let us consider the section of the boundary C ′
n

between the vertices w01 and w(i). The section between w(r) and w01 is studied in a similar way.
Let us label the vertices C ′

n, going around the boundary counterclockwise, starting from w01.
As a result, on the considered section of the boundary, we obtain wj , j = 0, 1, 2, . . . , µ, where
w0 = w01, wµ = w(1). We perform a similar operation with the vertices z ∈ C ′

n1 , obtaining
zj , j = 0, 1, 2, . . . , where, in view of (22) and (24) z0 = w01 = w0.

In order to use the h.p.p.p. properties described in Section 3, we need to proceed from
Π(·) to Πn(·). In such transition, the linear characteristics xj , yj , uj , vj , change to x′

j = n− 1
2xj ,

y′j = n− 1
2 yj , u

′
j = n− 1

2uj , v
′
j = n− 1

2 vj respectively, while the area ξj of the triangle δj becomes
ξ′j = n−1ξj . Dimensionless quantities ηj , τj , ρj remain unchanged in such transition. We denote
the images zj of such a transformation by z′j .

Let T = ε
√
n, T1 = h

√
n where h is the length of the side A connecting the vertices a(1) and

a(2). In accordance with (19), we assume that

θ = θT and χ = θT1 .

It is clear that
θ = inf

{
j : x′

j > ε
}

and χ = inf
{
j : x′

j > h
}
.
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Note that xj and x′
j are constructed on the vertices zj−1, zj and z′j−1, z

′
j , respectively. Note

that wj = z′j , at least for 0 6 j 6 χ− 1.
Let further

p = ξ′1 + ξ′2 + · · ·+ ξ′θ, (27)

and
q = ξ′1 + ξ′2 + · · ·+ ξ′χ. (28)

Assume that
θ∗ =

θ − α

β1
, p∗ =

np− α

β2
, (29)

where

α =
1

3
log n, β1 =

√
5 log n

27
, β2 =

√
14 log n

27
. (30)

From (20), (27), (28) and Theorem 2 it follows that

(θ∗, p)
d⇒ω, (31)

where ω is determined from Theorem 1. Now we assume that

χ∗ =
χ− α

β1
, q∗ =

nq − α

β2
. (32)

According to Corollaries 1–3, in view of (28) and (30), we have

θ − χ

β1

p−→ 0,
n(p− q)

β1

p−→ 0. (33)

From (29)–(33) follows that
(χ∗, q∗)

d⇒ω. (34)

Similar characteristics θ′, p′ and χ′, q′ constructed along the section of the boundary C ′
n

between the vertices w(r) and w01 = w, also have properties (31) and (34). It is important
that they are asymptotically independent of θ, χ, p and q. And no less important is the fact
that θ, θ′, p and p′ are completely determined by the narrowing of Πn(·) to B1. It follows that
similar characteristics θi, θ′i, pi, p′i for the boundary sections corresponding to the angles with
the vertices a(i), i = 1, 2, . . . , r are independent. By analogy with (29) and (32), we define

Θ∗ =
Θ− 2rα

β1

√
2r

and P ∗ =
nP − 2rα

β2

√
2r

, (35)

where

Θ =

r∑
i=1

(θi + θ′i) , P =

r∑
i=1

(pi + p′i) .

Due to independence of
(
θi + θ′i, pj + p′j

)
, i, j − 1, 2, . . . , r, from (31) we obtain

(Θ, P )
d⇒ω.

Finally, by analogy with (35), we introduce

X∗ =
X− 2rα

β1

√
2r

, Q∗ =
Q− 2rα

β2

√
2r

, (36)
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where (compare with (35))

X =

r∑
i=1

(χi + χ′
i) , Q =

r∑
i=1

(qi + q′i) .

Note that (χi + χ′
i, qi + q′i) , i = 1, 2, . . . , r, generally speaking, are independent. However, in

view of (33) and (34), we can assert that

(X∗,Q∗)
d⇒ω. (37)

It is the functionals X∗ and Q∗ that give us the required approximation for ν′n and S′
n.

4.3. Estimation of the approximation accuracy. Let s be the area of the figure bounded
by the section of the boundary C ′

n between the vertices w0 = w01 and wµ = w(1), the segment of
the ray l11 between the points w1 and x′

0e11 and the supporting line (e01, w − w01) = 0. Here,
the points w0, wµ, w1 are defined in Sections 4.1 and 4.2,

e11 =
a(2) − a(1)

∥a(2) − a(1)∥

and x′
0 corresponds to x0 when going from Π(·) to Πn(·).

Let us construct similar left characteristics µ′ and s′ in the section of the boundary between
the vertices w(r) and w01.

In what follows, we denote µi, µ
′
i, si and s′i, the analogs of µ, µ′, s and s′, corresponding to

the angle with the vertex a(i). It is easy to see that ν′n is the total number of vertices C ′
n and

can be represented as

ν′n =

r∑
i=1

(µi + µ′
i) . (38)

And area A− C ′
n can be represented in the form

λ (A− C ′
n) =

r∑
i=1

(si + s′i) + ξ′0i, (39)

where ξ′0i is the area of the triangle cut by the supporting line (e0i, w − w0i) = 0.
Note that

nξ′01 = ξ0 = O(1), (40)

where ξ0 has an exponential distribution (see for example [6]). Similarly

nξ′0i = ξ0 = O(1), i = 1, 2, . . . , r. (41)

As an approximation for µi, µ
′
i, si and s′i, we use χi, χ

′
i, qi and q′i, introduced in Section 4.2.

In this case, it is enough to evaluate the proximity of (µ1, s1)
dis
=(µ, s)+op(1) and (χ1, q1)

dis
=(χ, q).

The remaining pairs of vectors are matched similarly.
To complete the proof of the theorem, it suffices to show the proximity of s and q, i.e.

n(s− q)√
log n

p−→ 0 at n → ∞ (42)

and proximity of µ and χ , i.е.
µ− χ√
log n

p−→ 0 at n → ∞. (43)

– 239 –



Isakjan M.Khamdamov, Zoya S.Chay Joint Distribution of the Number of Vertices and the Area . . .

We obtain the relation (42) from Corollary 3, and relation (43) from Corollary 2. The obtained
relations (42) and (43) with the relations (36), (37)–(41) allow us to assert that a random vector

with components
ν′n − 2rα

β1

√
2r

and
n(1− S′

n − 2rα

β2

√
2r

converges in distribution to ω. Taking into

account Remark given at the end of Section 3, we obtain the assertion of the theorem. The
theorem is proved.
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Совместное распределение числа вершин и площади
выпуклых оболочек, порожденных равномерным
распределением в выпуклом многоугольнике

Исакжан М. Хамдамов
Национальный университет Узбекистана им. Мирзо Улугбека

Ташкент, Узбекистан
Зоя С. Чай

Ташкентский университет информационных технологий
Ташкент, Узбекистан

Аннотация. Рассматривается выпуклая оболочка, порожденная выборкой, равномерно распреде-
ленной на плоскости для случая, когда носитель распределения представляет собой выпуклый мно-
гоугольник. Доказывается центральная предельная теорема для совместного распределения числа
вершин и площади выпуклой оболочки с использованием пуассоновской аппроксимации биноми-
альных точечных процессов вблизи границы носителя распределения. Здесь применяются резуль-
таты [6] совместного распределения числа вершин и площади выпуклых оболочек, порожденных
пуассоновским распределением. Из результатов, полученных в настоящей статье, в частности, сле-
дуют результаты [3, 7], когда носитель представляет собой выпуклый многоугольник, а выпуклая
оболочка порождается однородным пуассоновским точечным процессом.

Ключевые слова: выпуклая оболочка, выпуклый многоугольник, пуассоновский точечный про-
цесс, биномиальный точечный процесс, центральная предельная теорема.
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