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Abstract. A convex hull generated by a sample uniformly distributed on the plane is considered in the
case when the support of a distribution is a convex polygon. A central limit theorem is proved for the
joint distribution of the number of vertices and the area of a convex hull using the Poisson approximation
of binomial point processes near the boundary of the support of distribution. Here we apply the results
on the joint distribution of the number of vertices and the area of convex hulls generated by the Poisson
distribution given in [6]. From the result obtained in the present paper, in particular, follow the results
given in [3, 7], when the support is a convex polygon and the convex hull is generated by a homogeneous
Poisson point process.
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Introduction

This paper is devoted to the study of properties of convex hulls generated by independent
observations over a random vector that has a uniform distribution in a convex polygon. Convex
hulls are very complex objects from the analytic point of view. Therefore, studying the properties
of the simplest functionals of convex hulls, such as, the number of vertices or the area, is not
an easy task. This explains the fact that, prior to obtaining the central limit theorem for the
number of vertices of a convex hull by P. Groeneboom, the main achievement was considered
to be the study of asymptotic expressions for the mean values of similar functionals (see, for
example, [4,5,16]); the problems on asymptotic expressions for the variance remained unsolved
until the appearance of the studies by C.Buchta [1,2] and J. Pardon [14, 15].

It should be noted that P. Groeneboom, using the well-known property of homogeneous bino-
mial point processes, which is that near the boundary of the support, it is almost indistinguishable
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from a homogeneous Poisson point process, and using such powerful techniques as strongly mix-
ing stationary processes and martingales, has proved the central limit theorems for the number
of vertices of a convex hull in the case when the support of the original uniform distribution is
either a convex polygon or a unit disk. The modified P. Groeneboom technique was applied in
[3] to prove limit theorems for the area and perimeter of a convex hull in a polygon, and in [9],
to prove a limit theorem for an area outside a convex hull in a disk.

Similar results were obtained later by J.Pardon [16,17] without imposing any regularity
conditions on the support boundary. In the present work, there is no need for using martingales,
strongly mixing stationary processes, etc.; the approach used is a modification of the methods
presented in [7,10-13]. The results obtained by Sh.K.Formanov, I. M. Khamdamov in [6], are
applied here; a joint limit distribution for the number of vertices and the area of the convex hull
generated by a Poisson point process in a cone was obtained by elementary analytical and direct
probabilistic methods.

1. Statement of problem and results

Let ¥, j = 1,2,...,n be the independent observations over a random vector having a uniform
distribution in a convex polygon A with r sides. A matrix X, is called a sample, the j-row of
which is formed by the components of the vector &;. Let us denote the convex hull generated by
vectors @;, j=1,2,...,n by C, = Cp(X,).

We are interested in the joint limit distribution of the following functionals of C,,: the total
number of vertices v,, and the area S,,. It is clear that C,, and, consequently, the indicated
functionals, are uniquely determined by the set of vertices W,,. If the principle of vertex labeling
is chosen, then it can be represented as a v,, X 2 matrix. It is easy to show that this matrix has
the property of sufficiency with respect to the boundary of the set A — the support of original
distribution. The latter circumstance is of interest from the point of view of statistics of uniform
distributions.

Before formulating the main results, we introduce some notation. Let S be the area of the
polygon A. Then we assume that

and let

, _2rlogn S . _ [ 27 Wo—n 27 /5nb,
o3 2 n 7"V 1orlogn® " 28rS2logn  \/14S

We denote by w a vector having a two-dimensional normal distribution with a zero vector of
mean values, unit variances and a correlation coefficient /5/14.
Let us state the main theorem.

Theorem 1. Under our assumptions, a random vector with components b, (v, — a,) and
b (D, — a.,) converges in distribution to w.

Let us make the necessary explanations of the notation. The symbols :d>, ﬂ), — a.s. denote
convergence in distribution, in probability, and almost sure, respectively. f(g) < g(¢) means
that there are positive constants ¢, ¢z, g such that ¢; f(g) < g(e) < caf(e) for any 0 < € < &o.
Generally 0, (1) is used for a sequence of random variables converging in probability to zero. The
notation &, = O,(1) means that sup,,>; P (|{,| > t) — 0 as t — oo. Everywhere ¢, ¢, ca,...
are the positive constants whose values might be changed from line to line and ¢(3), ¢1(8), c2(5)
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are the positive constants, depending on the specified arguments. Further, gdésg means that the
random variables £ and ¢ have a common law of probability distribution.

2. The Poisson approximation

In this section, we present the key idea of [7] about the Poisson approximation of a homo-
geneous binomial point process (h.b.p.p) B, (A) generated by n independent observations of a
random variable having a uniform distribution with support A in a slightly different way. Here
we consider the more general case, assuming that A is an arbitrary bounded convex set in R2.

Let T4 be the boundary of the set A. For each z € T'4, consider an open sphere S(z,¢) of
radius € centered in z. It is easy to see that the set Ac = A —J,p, S(z,¢) is a strip along the
border I'4. Let us denote B, = A — A, and assume that A\(A) = 1, where A(-) is the Lebesgue
measure.

Let W,,, as before, be the set of vertices of the convex hull C,, generated by B,,(A). The next
lemma is a simple modification of Lemma 2.1 and its Corollary 2.1 given in [7].

Lemma 1. There is a sequence of positive numbers €, converging to zero such that the probability
that at least one of the vertices C,, laying in B, converges to zero in € > €y,.

Proof. Tt is easy to see that the event E = {W,, (| B: # @} coincides with the event "there is a
pair of neighboring vertices w; and wq such that wy; € B. ". Let the straight line (p,z —wq) =0
pass through the point ws. Since w; € Be, then this line divides A into two parts, the measure
of each is no less than some value of c(¢) > 0 such that lim._,g ¢(¢) = 0. Therefore at n > 2
n(n—1) n—2 . . .
P(E) = — // P"~%{n — 2 the sample points X,, lie on one side

w1 €Be,wa €A

of the straight line (p, z — wy) = 0} dwidws < n? (1 — c(e))".

It remains to assume that

€, = inf {E te(e) = 310gn}.

n

(1)

The lemma is proved. O

Note that the rate of decrease ¢(¢) at € — 0 depends on the smoothness I"4. In particular, if
A is a sphere, then ¢(¢) < £2; if A is a polygon, then ¢(¢) < €2 and etc.

Since we are not interested in the estimates of the rate of convergence in the theorems given
below, we will not worry about optimizing the choice of the strip containing W,.

Let now IL,(-) be a homogeneous Poisson point process (h.p.p.p.), the intensity of which is
equal to nA(:).

Counsider the narrowing II,,(A) of this process to the set A. We denote by C), the convex hull
generated by it, and the set of its vertices we denote by W} .

Lemma 2. The probability that at least one of the vertices C, laying in B, converges to zero,
as n — oo uniformly in € > e, where &, is determined by relation (1).

Proof. We assume that

E = {WT’lﬂBE #@}
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and let p,, () be the random counting measure corresponding to II,,(A4). By the formula of total
probability we have

o

P(E') =Y P(un(A) = k) P(E' /un(A) = k). (2)
k

=0
Since the conditional distribution II,(A) under the condition p,(A) = k coincides with
B, (A), according to Lemma 1 for k¥ > 3 we have

P(E Jpun(A) = k) <K (1 — ()" 2. (3)

Taking into account (2) and (3), we write

PEY< 30 k(1= e@) 7 Plun(4) = k) + P (Jun(A) =] > §

|[k—n|<%

) =X+ (4

Using the Chebyshev inequality, we have
Yo < 16071, (5)

Further on, for sufficiently small e > 0

2
Y < max k2(1—c(e) %< () (1- c(g))%f2 .
[k—n|<%
It is easy to see that
sup X1 = o(1). (6)
E2En
Combining (4)—(6), we arrive at the assertion of the lemma being proved. The lemma is
proved. O

Let C. be the convex hull constructed from the part of the sample X,, in A..

Lemma 1 implies that
sup P (C,, # C.) — 0 as n — oo. (7)

EZEn

Let B, (A:) be the narrowing of the h.b.p.p. B,(-) on A.. According to Lemma 2.2 in [7],
I1,,(A:) and B, (A:) can be defined on one probability space in such a way that

P (I, (Ac) # Bn(A:)) < 2M(4Ae). (®)

Let us denote the convex hull generated by II,,(A.) by C.. Then from Lemma 2 it follows
that

lim sup P (C), # C.) =0. 9)

n—00 .o

From (7)—(9) it follows that as n — oo

P(C), #CL)—0. (10)
Remark. Let f;, ¢ = 1,2,...,k be a certain finite number of functionals defined on the set of
convex polygons. If the joint distribution of random variables f; (C,), i = 1,2,...,k converges

to some distribution G, then it follows from (10) that f; (C), ¢ = 1,2,...,k also has this
property. Thus, the problem of the limit distribution of the functionals v,, and \S,,, introduced in
Section 1, is reduced to the study of v/, and S/, are the corresponding characteristics of convex
hulls generated by the h.p.p.p.
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3. Convex hulls generated by the h.p.p.p.

3.1. Some properties of the h.p.p.p. Let K be a cone formed by two rays l; =
=(z:2=te;, t>0),i=1,2, where e; and ey are the unit vectors. Without loss of general-
ity, we assume that e; and ey are the orthonormal vectors

e1 + eg

€y = D) . (11)

Let further II(-) be a h.p.p.p. with intensity A(-). We denote the narrowing on K by II(K).
Consider the convex hull C’ generated by K by II(K) and the set of its vertices Z.
Let us denote the vertex by zy € Z for which (eg,z — z9) > 0 for all z € Z.
It is obvious that zg is determined unambiguously almost sure.
The straight line
(e0,2—20) =0 (12)

is the supporting line for C’.
Consider a triangle formed by rays l;, ¢ = 1,2 and a supporting line (12). We denote the set
of interior points of this triangle by dg, and the area is denoted by &y. It is easy to see that

where z¢g = yo = ug + vo and z9 = (ug,vo). Assume that

Vo
Mo = —.
Lo
Then from (13) and (14) it is easy to obtain

up = (1 —10)v/2&0, vo = no/2&. (15)

Let us label the vertices C’, going around the boundary counterclockwise. Since zq is defined,
each of the vertices gets its own number j, —oco < j < co. Let us choose on the ray [; a sequence
of points x;, j > 1, lying on the intersection of /; and the lines passing through the vertices
zj—1 and z;, respectively. Likewise, on the ray I, points y;, j < —1, are obtained as a result of
intersections of Iy and the lines passing through z;, zj41, respectively.

Let §;, j # 0; the set of interior points of a triangle with vertices z;_1, (;-1,0), (x;,0), if
J =1, and vertices zj11, (0,y5+1), (0,95), if j < —1. We denote the vertices of the triangle by
(20,0), (0,y0), the set of interior points by dg. The third vertex of this triangle is the point (0, 0).
The figures are taken from [6] (see Fig. 1).

We assume that

Then it is easy to obtain

E- . vj,l(xj — xj,l)/27 if ] 2 1 (16)
’ wir1(y; — yi1)/2, if < -1
where z; = (u;,v;). If we assume that
U Uj—1
_ , 17
Pj V1 —v; (17)
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Fig. 1. Illustration of z; and J;

then
%2‘—1
&= 5 (pj = pj—1)- (18)

Now we define the boundary functionals

Op =inf{j:z; > T} and 07 =inf{—j:y; > T}, (19)
where T > 0.
We assume that 2100 T 10logt
og 2 og
ST:{§1+§2+"'+£0Ti.f br=1 5= f—1+€—2+...+£_9’Ti'f 9/T>1
O lf HTZO 0 lf HTZO

. (20)
We present the following theorem with corollaries obtained in [6], which play the key role in
this article (see Theorem 1, Corollaries 1, 2, 3 [6]).

Theorem 2 (Formanov and Khamdamov). Under our assumptions, as T — 0o, we have

(B(T)™" (07 — a(T),S7 — o(T)) £N(0,B) with B = ( 1 141/5 )

Here N(0, B) is a normally distributed random vector with a zero vector of mean values and
a covariance matrix B.

Corollary 1 (Formanov and Khamdamov). In our case E0r = «(T) + o(8(T)) and Varbr =
BAHT)(1+0(1)) as T — oo.

Corollary 2 (Formanov and Khamdamov). Let 0 < Ty < Ty such that e1Th < Ty < ¢oTy for
some c1 >0, co > 0. Then 01, — 0p, = 0,(B(T1)) as Th — oo.

Corollary 3 (Formanov and Khamdamov). Let 0 < T1 < Ts such that 1Ty < Ty < ¢y for
some ¢y >0, ¢a > 0. Then (St, — St,) /B(T1) converges in probability to zero as Ty — co.
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It is casy to see that at min {73, T} — oo the random vectors (61, Sr,) and (0%, , ST,) are
asymptotically independent. Moreover, the statements of Theorem 2 and its Corollaries 1-3 hold
for (04,,57,).

4. Proof of Theorem 1

The reasoning here is completely elementary. Generally, a verbal description of geometric
objects is somewhat lengthy.

In accordance with the conclusions obtained at the end of Section 2 from Lemmas 1 and 2,
it is sufficient to obtain the limit distribution for the number of vertices v/, and the area S, of
the convex hull C!, generated by the narrowing of the II,,(A) h.p.p.p. II,(-) on the set A. The
scheme of further reasoning is as follows. First, we divide the boundary C), into 2r conditionally
independent parts in such a way that each of the r angles of the polygon A corresponds to two
elements of this partition. Thus, each of the functionals of interest to us v/, and S/, is represented
as a sum of 2r random variables. Then, using the properties of the h.p.p.p. stated in Section 3,
the asymptotic independence and normality of these random variables are established.

Thus, the general principles for studying the problem are the same as in [7], although their
implementation is completely different.

4.1. Dividing the boundary into conditionally independent parts. We denote the
vertices of an 7-gon of the support A of the initial uniform distribution by a¥, i = 1,2,...,r.

B; = AﬂS (a(i)ﬁ) , (21)

where S (z,¢) is a disk of radius ¢ centered at z. Let us denote the narrowing II,,(-) to a cone
K; with the vertex a9 and generating rays l;; and lp by I,,;(+), i = 1,2, ...,r, passing through
a1 and a1 respectively. It is clear that a(=1) = a(", ("t = o),

Let eg; play the same role with respect to K; as played by the vector with respect to K; in
Section 3. Note that eg is determined by the equality (11). More precisely,

o — 2_1 a(i+1) — a(l) + a(i_l) — a(l)
= @0 0] a0 = e )

Let further, for some € > 0

We denote the convex hull as C,; generated by II,;(-). Let us agree to denote the set of
vertices C/, by Z,;. Recall that the set of vertices C/ in Section 2 is denoted by W/. We
select in Z,; and W), the elements zg; and wy;, that possess the property that the straight lines
(egi,w — z0;) = 0 and (eg;, w — wp;) = 0 are the supporting lines for C,; and C/, respectively.

Assume that

le{ﬂ:zm:wgi,izl,?,...,r} (22)

and
Yo={r: 20, €B;, i=12,...,r}, (23)

where 7 is the implementation of I, (-), and B; is determined by equality (21).
It is easy to understand that as n — oo

P(Y) =1, i=1,2 (24)
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As follows from (22)—(24), with probability close to 1, the boundary of each hull C,; has a
non-empty intersection with C/,. Note that the points wq;, ¢ = 1,2,...,r divide the boundary
C! into r parts. We split each of them into two more parts. Let w® be the vertex W/, ¢ C",
for which the straight line (p;,w —w®) = 0, where p; L (al*1) — a(?) is a supporting line to
C!. Tt is easy to see that w( is the closest vertex to the ray l;; from the vertices /. Note that
as the n vertex w® grows, it approaches this ray indefinitely, i.e., (pl-,w(i) — a(i)) — 0. Since
the conditional distribution on the section of the supporting line (pi, w — w(i)) = 0 lying in A,

under the condition (pi, w® — a(i)) =t is uniform, we have

. .. (4) 5 | =
ig%rllli%mfP w'" e QB] 1. (25)
J:
Hence it follows that
lim lim inf P | w; € _ﬂlBj =1, (26)
j:

where w; is the base of the perpendicular drawn from w; to [;;.
Consider

T3 = EiGHEj,i:LQ,...,T
j=1

As follows from (25) and (26), for any € > 0 one can find such N > 0 that, for all sufficiently
large n > N, the following inequality holds

P(T3)>1—8

In what follows, without specifying, we consider only those implementations of II,(-) that

are contained in ﬂ?=1 T;. For such implementations w®, i =1,2,...,r lie between wy; and
wo(i+1)- Thus, the boundary C), is divided into 2r parts. It is easy to see, that these parts are
conditionally independent for the given wo;, w®, i =1,2,...,r.
4.2. Choice of approximating functionals. Let us consider the section of the boundary C/,
between the vertices wo; and w®. The section between w™ and wo; is studied in a similar way.
Let us label the vertices CJ, going around the boundary counterclockwise, starting from wp;.
As a result, on the considered section of the boundary, we obtain w;, j = 0,1,2,..., x, where
wy = Wo1, Wy, = w®. We perform a similar operation with the vertices z € C!, , obtaining
zj, 7=0,1,2,..., where, in view of (22) and (24) 2o = w1 = wo.

In order to use the h.p.p.p. properties described in Section 3, we need to proceed from
II(-) to IL,(-). In such transition, the linear characteristics x;,y;, u;, v;, change to ac; = n_%mj,
!/

;o= x =L
Y; =nT2y;, up =n"2uj, v)

55- = n~'¢;. Dimensionless quantities 7;, 7;, p; remain unchanged in such transition. We denote

= n_%vj respectively, while the area {; of the triangle ¢; becomes

the images z; of such a transformation by zé
Let T = ey/n, T1 = hy/n where h is the length of the side A connecting the vertices a® and
a®. In accordance with (19), we assume that

0 =0r and x =0r,.

It is clear that

9:inf{j:x;>5} and X:inf{j:x >h}.

S
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!/

Note that x; and x; are constructed on the vertices z;_1, z; and z3 2%, respectively. Note

—1r~5
that w; = 2}, at least for 0 < j < x — 1.
Let further
p=+&+ -+ &,

and
/

g=& +&+ -+ &
Assume that
np — o

p = )
B2

1 _ /5logn _ [l4logn
a—glogn, Pr =/ 5 v P2=1/ T

From (20), (27), (28) and Theorem 2 it follows that

where

(6%, p) 2w,

where w is determined from Theorem 1. Now we assume that

«_ X« «_Ng—o
X =78 B
According to Corollaries 1-3, in view of (28) and (30), we have
Ao, MEmdr,
From (29)—(33) follows that
(X" q") Sw.

(27)

(28)

(33)

(34)

Similar characteristics ¢',p’ and x’,q constructed along the section of the boundary C),
between the vertices w(") and wp; = w, also have properties (31) and (34). Tt is important
that they are asymptotically independent of 8, x, p and ¢. And no less important is the fact
that 8, €', p and p’ are completely determined by the narrowing of IT, () to B;. It follows that

similar characteristics 0;, 6., p;, p. for the boundary sections corresponding to the angles with

the vertices a9, i =1,2,...,r are independent. By analogy with (29) and (32), we define

O —2ra and P*:nP—2ra

T B Bov/2r

*

where
I r

0=S"(0:+6), P=> (n+r).

i=1 i=1

Due to independence of (9¢ +6;,p; +p§) , 4,7 —1,2,... r, from (31) we obtain
(©,P)Lw.

Finally, by analogy with (35), we introduce

X*:Xﬁ%a Q*i(@era

pivar o Bv2r
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where (compare with (35))

T T

X=Y (a+xi), Q=) (s+q)-
i=1 i=1
Note that (x; + X}, ¢ +4}), ¢ = 1,2,...,r, generally speaking, are independent. However, in
view of (33) and (34), we can assert that

(X*, Q") Lw. (37)

It is the functionals X* and Q* that give us the required approximation for v}, and S),.

4.3. Estimation of the approximation accuracy. Let s be the area of the figure bounded
by the section of the boundary CJ, between the vertices wy = wo1 and w, = w®| the segment of
the ray l11 between the points Wy and z(e;; and the supporting line (eg1, w — wo1) = 0. Here,
the points wo,w,,,w: are defined in Sections 4.1 and 4.2,

Ca® — g
T Jla® = a0

and z(, corresponds to zp when going from II(-) to IL,(-).

Let us construct similar left characteristics ¢/ and s’ in the section of the boundary between
the vertices w™ and woy.

In what follows, we denote w;, p1},s; and s}, the analogs of u, ', s and s, corresponding to
the angle with the vertex a(?. Tt is easy to see that v/, is the total number of vertices C’, and

can be represented as
s

v =Y (i) (38)

i=1
And area A — C!, can be represented in the form

MA=CR) =D (si+ 1) + &, (39)
i=1
where &, is the area of the triangle cut by the supporting line (eg;, w — wp;) = 0.
Note that

where ¢, has an exponential distribution (see for example [6]). Similarly
néy; =& =0(1), i=1,2,...,7 (41)

As an approximation for p;, u;, s; and s, we use x;, x4, ¢; and ¢, introduced in Section 4.2.
In this case, it is enough to evaluate the proximity of (1, sl)dg(u, s)+0,(1) and (x1, ql)dés(x, q).
The remaining pairs of vectors are matched similarly.

To complete the proof of the theorem, it suffices to show the proximity of s and ¢, i.e.

n(s —q)

Vlogn

Ly 0at n — oo (42)

and proximity of u and x , i.e.
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We obtain the relation (42) from Corollary 3, and relation (43) from Corollary 2. The obtained
relations (42) and (43) with the relations (36), (37)—(41) allow us to assert that a random vector

v, — 2ro n(l—.S) —2ro

sver Bov/2r

account Remark given at the end of Section 3, we obtain the assertion of the theorem. The

with components converges in distribution to w. Taking into

theorem is proved.
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CoBMmecTHOE paciipeejieHrue 91CJjia BEPIINH U IIJIoIIa

BBIIIYKJIBIX 000JIOY€EK, TTOPOXK/I€HHBIX PABHOMEPHBIM
paclipeejieHueM B BBIILYKJIOM MHOI'OYI'OJIbHUKE

HNcakxxkan M. XamagamoB
Hammonanpubrit yauBepcurer Y36ekucrana nMm. Mupszo Yayrbeka
Tamkent, Y30ekucran

3o0ga C. Yaii

TamkenTcKUil yHUBEPCUTET MHMOPMAIIMOHHBIX TEXHOJIOTUI
Tamkent, Y30ekucran

Awnnoranusi. PaccmaTpuBaercst BbITyKJiast 000JI09UKa, TTOPOXKIEHHAsST BBIOOPKO, PABHOMEPHO PACIIPEIe-
JIEHHOH Ha IJIOCKOCTH IS CJTydasi, KOTJIa HOCUTEJb PACIIPE/IEIEHNsT TPEICTABIISAET COOOH BBITYKJIBIN MHO-
royroJbHUK. /loKa3bIBaeTCs EHTPAJIbHAA IIPeJeIbHas TeOpeMa JjIsi COBMECTHOI'O PACIIPEIEJIEHUS IUCTIa
BEPINWH U TJIOMAN BBIMYKJION OOOJIOYKHU C MCIOJb30BAHUEM ITyaCCOHOBCKOU AIMMPOKCIUMAINH OWHOMI-
AJIBHBIX TOYEYHBIX IPOIECCOB BOJIM3U IPAHUIIBI HOCUTES PACIIPEIeseHusl. 3eCh IIPUMEHSIIOTCS PE3YJlb-
TaThl [6] COBMECTHOIrO pacipefieieHusl JUCa BEPIINH U IUIOIAM BBILYKJIBIX 000JIOYEK, OPOK IEHHBIX
IIyaCCOHOBCKHUM paclpejesienneM. V3 pe3ysibTaToB, MOy IeHHBIX B HACTOSIIEH CTaThe, B YaCTHOCTH, CJie-
JLyIOT Pe3ynbTaThl [3, 7], Korja HOCUTE b IPEeJICTABIAET COOON BBIMYKJIIBI MHOIOYTOJIBHUK, & BBITYKJIAs
0060J109Ka ITOPOXKIAETCS OTHOPOIHBIM IIyaCCOHOBCKUM TOYEYHBIM IIPOIIECCOM.

KiroueBblie ciioBa: BBILYK/IAasd 000JOYKA, BBIITYKJIBI MHOTOYTOJIBHUK, IIyaCCOHOBCKUN TOYEUHBIN IIPO-
11ecc, GMHOMHUAJILHBIN TOYEUHBII IPOECC, EHTPAJIbHAS IIPeIeIbHAs TeOpeMa.
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