
Journal of Siberian Federal University. Mathematics & Physics 2021, 14(2), 150–158

DOI: 10.17516/1997-1397-2021-14-2-150-158
УДК 517.9

Fixed Points of Set-valued F -contraction Operators
in Quasi-ordered Metric Spaces with an Application
to Integral Equations

Ehsan Lotfali Ghasab∗

Hamid Majani†
Department of Mathematics

Shahid Chamran University of Ahvaz
Ahvaz, Iran

Ghasem Soleimani Rad‡

Young Researchers and Elite club, West Tehran Branch
Islamic Azad University

Tehran, Iran

Received 01.01.2020, received in revised form 22.09.2020, accepted 20.11.2020
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1. Introduction and preliminaries

It is well known that the Banach contraction principle is a very useful and classical tool
in nonlinear analysis [3]. After that, the generalization of this principle has been a heavily
investigated. For example, in 1969, Nadler [10] extended the Banach contraction principle for
set-valued mapping as follows:

Theorem 1.1. Let (X, d) be a complete metric space and T : X → CB(X) be a set-valued
operator. Also, let H : N(X)2 → [0,+∞] be the Hausdorff metric on N(X) which defined by

H(A,B) = max

{
sup
a∈A

D(a,B), sup
b∈B

D(b, A)

}
,

where D(a,B) = D(B, a) = inf
b∈B

d(a, b). Assume that there exists α ∈ [0, 1) such that

H(Tx, Ty) 6 αd(x, y) for all x, y ∈ X. Then T has a fixed point in X.
∗e-lotfali@stu.scu.ac.ir https://orcid.org/0000-0002-8418-9351
†Correspondent: h.majani@scu.ac.ir; majani.hamid@gmail.com https://orcid.org/0000-0001-7022-6513
‡gha.soleimani.sci@iauctb.ac.ir; gh.soleimani2008@gmail.com https://orcid.org/0000-0002-0758-2758

c⃝ Siberian Federal University. All rights reserved

– 150 –



Ehsan Lotfali Ghasab . . . Fixed points of set-valued F -contraction operators . . .

Then Ćirić [6] extended Nadler’s result as follows:

Theorem 1.2. Let (X, d) be a complete metric space and T : X → CB(X) be a set-valued
operator. Assume that there exists α ∈ [0, 1) such that H(Tx, Ty) 6 αM(x, y) for all x, y ∈ X,
where

M(x, y) = max

{
d(x, y), D(x, Tx), D(y, Ty),

1

2
[D(x, Ty) +D(y, Tx)]

}
.

Then T has a fixed point in X.

In 2011, Amini-Harandi [2] considered some fixed point theorem for set-valued quasi-
contraction mappings in metric spaces.

Theorem 1.3 ([2]). Let (X, d) be a complete metric space and T : X → CB(X) be a k-set-valued
quasi-contraction with k ∈

[
0, 1

2

)
; that is,

H(Tx, Ty) 6 kmax {d(x, y), D(x, Tx), D(y, Ty), D(x, Ty), D(y, Tx)}

for all x, y ∈ X. Then T has a fixed point in X.

On the other hands, Ran and Reurings [12], and Nieto and Rodŕıguez-López [11] studied
the Banach contraction principle distinctly from another point of view. They imposed a partial
order to the metric space (X, d) and discussed on the existence and uniqueness of fixed points
for contractive conditions and for the comparable elements of X (also, see [1, 4, 6–8, 13, 15]).
Moreover, in 2012, Wardowski [14] obtained a new fixed point theorem concerning F -contraction
for single-valued mapping.

Theorem 1.4 ([14]). Let (X, d) be a complete metric space and T : X → X be an F -contraction.
Then T has an unique fixed point x∗ ∈ X and for every x0 ∈ X a sequence {Tnx0}n∈N is
convergent to x∗.

In this paper, we obtain several fixed point results for set-valued F -contraction mappings
in quasi-ordered metric spaces. Also, we prepare some examples and an application to the
existence of a solution for Volterra-type integral equation. Throughout this paper, the family
of all nonempty closed and bounded subsets of X is denoted by CB(X), and the family of all
nonempty subsets of X by N(X).

Definition 1.1 ([9]). Let (X, d) be a metric space with a quasi-order “ ≼ ” (pre-order or pseudo-
order; that is, a reflexive and transitive relation). We say that X is sequentially complete if every
Cauchy sequence whose consecutive terms are comparable in X converges.

Definition 1.2 ( [9]). Let (X, d) be a metric space with a quasi-order “ ≼ ”. For two subsets A,
B of X, we say that A ⊑ B if each a ∈ A and each b ∈ B imply that a ≼ b.

Definition 1.3 ( [9]). Let (X, d) be a metric space with a quasi-order “ ≼ ”.

(i) A subset D ⊂ X is said to be approximative, if the set-valued mapping PD(x) = {p ∈ D :
d(x,D) = d(p, x)} for all x ∈ X has nonempty value.

(ii) The set-valued mapping G : X −→ N(X) is said to be have approximative values (for
short, AV), if Gx is approximative for each x ∈ X.

(iii) The set-valued mapping G : X −→ N(X) is said to be have comparable approximative
values (for short, CAV), if Gx has approximative values for each x ∈ X and for each z ∈ X,
there exists y ∈ PGz(x) such that y is comparable to z.
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(iv) The set-valued mapping G : X −→ N(X) is said to be have upper comparable approxima-
tive values (for short, UCAV), if Gx has approximative values and for each z ∈ X, there
exists y ∈ PGz(x) such that y ≽ z.

(v) The set-valued mapping G : X −→ N(X) is said to be have lower comparable approxima-
tive values (for short, LCAV), if Gx has approximative values and for each z ∈ X, there
exists y ∈ PGz(x) such that y ≼ z.

Definition 1.4 ( [9]). The set-valued mapping G is said to has a fixed point if there exists x ∈ X
such that x ∈ Gx.

2. Main result

From the idea of Wardowski [14], we consider a new type of F -contraction for set-valued
operator in quasi-ordered metric spaces as follows.

Definition 2.1. Let H : N(X)2 → [0,+∞] be the Hausdorff metric on N(X) and F : R+ −→ R
be a mapping satisfying the following conditions:

(F1) F is increasing, i.e., for all a, b ∈ R+ such that a 6 b, then F (a) 6 F (b);

(F2) for each sequence {an}n∈N of positive numbers lim
n→∞

an= 0 if and only if lim
n→∞

F (an) = −∞;

(F3) there exists k ∈ (0, 1) such that lim
α→0+

αkF (α) = 0.

A mapping G : X −→ CB(X) is said to be an F -contraction if there exists τ > 0 such that

H(Gx,Gy) > 0 =⇒ τ + F (H(Gx,Gy)) 6 F (d(x, y)) (1)

for all x, y ∈ X.

Example 2.1. If F (a)= ln a+a for all a > 0 and H : N(X)2 → [0,+∞] is the Hausdorff metric
on N(X), then F satisfies (F1)–(F3) and each mapping G : X −→ CB(X) is an F -contraction
such that H(Gx,Gy)eH(Gx,Gy)−d(x,y) 6 e−τd(x, y) for all x, y ∈ X.

Example 2.2. If F (a)= ln a for all a > 0 and H : N(X)2 → [0,+∞] is the Hausdorff metric
on N(X), then F satisfies (F1)–(F3) and each mapping G : X −→ CB(X) is an F -contraction
such that H(Gx,Gy) 6 e−τd(x, y) for all x, y ∈ X.

Definition 2.2. Ordered-close operator is set-valued operator G : X → CB(X) if for two
monotone sequences {xn} , {yn} ⊂ X and x0, y0 ∈ X; xn → x0, yn → y0 and yn ∈ G(xn) imply
y0 ∈ G(x0).

Theorem 2.1. Let (X, d,≼) be a sequentially complete metric space. Also, let the mapping
G : X −→ CB(X) be an ordered-close set-valued F -contraction and has UCAV. Then G has a
fixed point x∗ ∈ X.

Proof. Let x0 ∈ X. If x0 ∈ Gx0, then our proof is complete. Otherwise, since G has UCAV, there
exists x1 ∈ Gx0 with x0 ̸= x1 and x0 ≼ x1 such that d(x0, x1) = inf

x∈Gx0

d(x0, x) = D(x0, Gx0).

Continue this procedure, we obtain a non-decreasing sequence {xn}, where xn ∈ Gxn−1 with
xn−1 ≼ xn and xn−1 ̸= xn such that d(xn, xn+1) = inf

x∈Gxn

d(xn, x) = D(xn, Gxn). On the other

hand,
D(xn, Gxn) 6 sup

x∈Gxn−1

D(x,Gxn) 6 H(Gxn, Gxn−1).
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Therefore, d(xn, xn+1) 6 H(Gxn, Gxn−1). From (F1), we have F (d(xn, xn+1)) 6
F (H(Gxn, Gxn−1)). In addition, G is F -contraction. Thus,

F (d(xn, xn+1)) 6 F (H(Gxn, Gxn−1))

6 F (d(xn, xn−1))− τ

6 F (d(xn−2, xn−1))− 2τ

6 (2)
...

6 F (d(x0, x1))− nτ.

We obtain lim
n→∞

F (d(xn, xn+1)) = −∞ that together with (F2) gives

lim
n→∞

d(xn, xn+1) = 0. (3)

Denote γn = d(xn, xn+1). By (F3), there exists k ∈ (0, 1) such that

lim
n→∞

γk
nF (γn) = 0. (4)

By (2), we have

γk
nF (γn)− γk

nF (γ0) 6 γk
n(F (γ0)− nτ)− γk

nF (γ0) = −γk
nnτ 6 0 (5)

for all n ∈ N. Letting n → ∞ in (5), and applying (3) and (4), we obtain lim
n→∞

nγk
n = 0. Hence,

there exists n1 ∈ N such that nγk
n 6 1 for each n > n1. Consequently, we have

γn 6 1
k
√
n
< 1 (6)

for all n > n1. In order to show that {xn} is a Cauchy sequence, let m,n ∈ N with m > n > n1.
From the definition of the metric and (6), we obtain

d(xn, xm) 6 γm−1 + γm−2 + · · ·+ γn <

∞∑
i=n

γi 6
∞∑
i=n

1
k
√
i
. (7)

From (7) and the convergence of the series
∞∑
i=n

1
k
√
i
, we conclude that {xn} is Cauchy sequence.

From the completeness of X, there exists x∗ ∈ X such that lim
n→∞

xn → x∗. Since G is ordered-
close operator, {xn} is monotone and xn+1 ∈ G(xn), we deduce x∗ ∈ G(x∗) and x∗ is a fixed
point of G.

Theorem 2.2. Let (X, d,≼) be a sequentially complete metric space. Also, let the mapping
G : X → CB(X) be an ordered-close set-valued F-contraction and has LCAV. Then G has a
fixed point x∗ ∈ X.

Proof. The proof is similar to Theorem 2.1.

Example 2.3. Consider the sequence {Sn}n∈N by S1 = 1 and Sn = 1 + 2 + · · ·+ n =
n(n+ 1)

2
for all n ∈ N. Let X = {Sn : n ∈ N} and d(x, y) = |x − y| for all x, y ∈ X. Also, we define
the relation “ ≼ ” on X by x ≼ y ⇔ Sp 6 Sq for all x = Sp, y = Sq ∈ X. Then (X, d,≼) is a
sequentially complete metric space. Also, let the mapping G : X → CB(X) be a ordered-close
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set-valued mapping and has LCAV defined by G(S1) = {S1} and G(Sn) = [1, Sn−1] for all n > 1.
Then G is an F -contraction with F as in Example 2.1 and τ = 1. To see this, let us consider
the following calculations:

For each m,n ∈ N with m > 2 and n = 1, we have

H(G(Sm), G(S1)) = max

{
sup

a∈G(Sm)

D(a,G(S1)), sup
b∈G(S1)

D(b,G(Sm))

}
= d(Sm−1, S1)

and

H(G(Sm), G(S1))

d(Sm, S1)
eH(G(Sm),G(S1))−d(Sm,S1) =

d(Sm−1, S1)

d(Sm, S1)
ed(Sm−1,S1)−d(Sm,S1) =

=
Sm−1 − 1

Sm − 1
eSm−1−Sm =

=
m2 −m− 2

m2 +m− 2
e−m < e−m < e−1.

Now, for each m,n ∈ N with m > n > 1, we have

H(G(Sm), G(Sn)) = max

{
sup

a∈G(Sm)

D(a,G(Sn)), sup
b∈G(Sn)

D(b,G(Sm))

}
= d(Sm−1, Sn−1)

and

H(G(Sm), G(Sn))

d(Sm, Sn)
eH(G(Sm),G(Sn))−d(Sm,Sn) =

d(Sm−1, Sn−1)

d(Sm, Sn)
ed(Sm−1,Sn−1)−d(Sm,Sn) =

=
Sm−1 − Sn−1

Sm − Sn
eSn−Sn−1+Sm−1−Sm =

=
m+ n− 1

m+ n+ 1
en−m < en−m < e−1.

Therefore, by Theorem 2.2, S1 is a fixed point of G.

Theorem 2.3. Let (X, d,≼) be a sequentially complete metric space. Suppose that the mapping
G : X → CB(X) is an ordered-close set-valued F -contraction and has AV . If there exists x0 ∈ X
such that {x0} ⊑ Gx0, then G has a fixed point x∗ ∈ X.

Proof. If x0 ∈ Gx0, then the proof is finished. Otherwise, by Definition 1.2, we have x ≽ x0

for any x ∈ Gx0. Since G has approximative values, there exists x1 ∈ Gx0 with x1 ≽ x0 and
x0 ̸= x1 such that d(x0, x1) = D(x0, Gx0). Continue this procedure, we have a non-decreasing
sequence {xn} with xn−1 ≼ xn, where xn ∈ Gxn−1 and xn ̸= xn−1 such that d(xn, xn+1) =
= inf

x∈Gxn

d(xn, x) = D(xn, Gxn). The rest of this proof is the same as that of Theorem 2.1.

Theorem 2.4. Let (X, d,≼) be a sequentially complete metric space. Suppose that the mapping
G : X → CB(X) be an ordered-close set-valued F -contraction and has AV. If there exists x0 ∈ X
such that Gx0 ⊑ {x0}, then G has a fixed point x∗ ∈ X.

Proof. The proof is similar to Theorem 2.2.

Theorem 2.5. Let (X, d,≼) be a sequentially complete metric space. Also, let the mapping
G : X −→ CB(X) be an ordered-close set-valued and has UCAV. If we have

F (H(Gx,Gy)) 6 F (M(x, y))− τ (8)
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for all x, y ∈ X, where

M(x, y) = max

{
d(x, y), D(x,Gx), D(y,Gy),

1

2
[D(x,Gy) +D(y,Gx)]

}
,

then G has a fixed point x∗ ∈ X.

Proof. Let x0 ∈ X. If x0 ∈ Gx0, then the proof is complete. Otherwise, Since G has UCAV, there
exists x1 ∈ Gx0 with x0 ̸= x1 and x0 ≼ x1 such that d(x0, x1) = inf

x∈Gx0

d(x0, x) = D(x0, Gx0).

Continue this procedure, we obtain a non-decreasing sequence {xn} with xn−1 ≼ xn, where
xn ∈ Gxn−1 and xn ̸= xn−1 such that d(xn, xn+1) = inf

x∈Gxn

d(xn, x) = D(xn, Gxn). On the other

hand,

D(xn, Gxn) 6 sup
x∈Gxn−1

D(x,Gxn) 6 H(Gxn, Gxn−1).

Therefore, d(xn, xn+1) 6 H(Gxn, Gxn−1). Now, from (F1) and (8) we have

F (d(xn, xn+1)) 6 F (H(Gxn, Gxn−1)) 6 F (M(xn, xn−1))− τ

for all n ∈ N, where

M(xn, xn−1) =

= max

{
d(xn, xn−1), D(xn, Gxn), D(xn−1, Gxn−1),

1

2
[D(xn, Gxn−1) +D(xn−1, Gxn)]

}
.

Once more, note that xn+1 ∈ Gxn and D(xn, Gxn) = d(xn, xn+1). Hence, we have

M(xn, xn−1) 6 max

{
d(xn, xn−1), d(xn, xn+1), d(xn−1, xn),

1

2
[d(xn, xn) + d(xn−1, xn+1)]

}
6

6 max

{
d(xn, xn−1), d(xn, xn+1),

1

2
[d(xn−1, xn) + d(xn, xn+1)]

}
6

6 max {d(xn, xn−1), d(xn, xn+1)} .

If max {d(xn, xn−1), d(xn, xn+1)} = d(xn, xn+1), then F (d(xn, xn+1)) 6 F (d(xn, xn+1)) − τ ,
which contradicts with τ > 0. Thus, we have F (d(xn, xn+1)) 6 F (d(xn, xn−1))− τ . The rest of
the proof is in the similar manner given in Theorem 2.1.

Theorem 2.6. Let (X, d,≼) be a sequentially complete metric space. Assume that the map-
ping G : X −→ CB(X) is an ordered-close set-valued and has LCAV, and F (H(Gx,Gy)) 6
F (M(x, y))− τ for all x, y ∈ X, where

M(x, y) = max

{
d(x, y), D(x,Gx), D(y,Gy),

1

2
[D(x,Gy) +D(y,Gx)]

}
.

Then G has a fixed point x∗ ∈ X.

Proof. Let x0 ∈ X. If x0 ∈ Gx0, then the proof is complete. Otherwise, Since G has LCAV, there
exists x1 ∈ Gx0 with x0 ̸= x1 and x1 ≼ x0 such that d(x0, x1) = inf

x∈Gx0

d(x0, x) = D(x0, Gx0).

Continue this procedure, we obtain a non-increasing sequence {xn} with xn ≼ xn−1, where
xn ∈ Gxn−1 and xn ̸= xn−1 such that d(xn, xn+1) = inf

x∈Gxn

d(xn, x) = D(xn, Gxn). The rest of

this proof is the same as that of Theorem 2.5.
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Theorem 2.7. Let (X, d,≼) be a sequentially complete metric space. Assume that the mapping
G : X → CB(X) is an ordered-close set-valued and has AV, and F (H(Gx,Gy)) 6 F (M(x, y))−τ
for all x, y ∈ X, where

M(x, y) = max

{
d(x, y), D(x,Gx), D(y,Gy),

1

2
[D(x,Gy) +D(y,Gx)]

}
.

If there exists x0 ∈ X such that {x0} ⊑ Gx0, then G has a fixed point x∗ ∈ X.

Proof. If x0 ∈ Gx0, then the proof is finished. Otherwise, by Definition 1.2, we have x ≽ x0

for any x ∈ Gx0. Since G has approximative values, there exists x1 ∈ Gx0 with x1 ≽ x0 and
x0 ̸= x1 such that d(x0, x1) = D(x0, Gx0). Continue this procedure, we have a non-decreasing
sequence {xn} with xn−1 ≼ xn, where xn ∈ Gxn−1 and xn ̸= xn−1 such that d(xn, xn+1) =
= inf

x∈Gxn

d(xn, x) = D(xn, Gxn). The rest of this proof is the same as that of Theorem 2.5.

Theorem 2.8. Let (X, d,≼) be a sequentially complete metric space. Assume that the mapping
G : X → CB(X) is an ordered-close set-valued and has AV, and F (H(Gx,Gy)) 6 F (M(x, y))−τ
for all x, y ∈ X, where

M(x, y) = max

{
d(x, y), D(x,Gx), D(y,Gy),

1

2
[D(x,Gy) +D(y,Gx)]

}
.

If there exists x0 ∈ X such that Gx0 ⊑ {x0}, then G has a fixed point x∗ ∈ X.

Proof. If x0 ∈ Gx0, then the proof is finished. Otherwise, by Definition 1.2, we have x0 ≽ x
for any x ∈ Gx0. Since G has approximative values, there exists x1 ∈ Gx0 with x0 ≽ x1 and
x0 ̸= x1 such that d(x0, x1) = D(x0, Gx0). Continue this procedure, we have a non-increasing
sequence {xn} with xn ≼ xn−1, where xn ∈ Gxn−1 and xn ̸= xn−1 such that d(xn, xn+1) =
= inf

x∈Gxn

d(xn, x) = D(xn, Gxn). The rest of this proof is the same as that of Theorem 2.5.

3. Application to integral equation

As an application of our results, we will consider the following Volterra integral equation:

x(t) =

∫ t

0

K(t, s, x(s))ds+ g(t), (9)

where I = [0, 1], K ∈ C(I × I × R,R) and g ∈ C(I,R) for all t ∈ I.
Let C(I,R) be the Banach space of all real continuous functions defined on I with the sup

norm ||x||∞ = maxt∈I |x(t)| for all x ∈ C(I,R) and C(I × I × C(I,R),R) be the space of all
continuous functions defined on I × I ×C(I,R). Alternatively, the Banach space C(I,R) can be
endowed with Bielecki norm ||x||B = supt∈I{|x(t)|e−τt} for all x ∈ C(I,R) and τ > 0, and the
induced metric dB(x, y) = ||x−y||B for all x, y ∈ C(I,R) (see [5]). Also, let f : C(I,R) → C(I,R)

defined by fx(t) =
t∫
0

K(t, s, x(s))ds + g(t) and g ∈ C(I,R). Moreover, we define the relation

“ ≼ ” on C(I,R) by x ≼ y ⇔ ||x||∞ 6 ||y||∞ for all x, y ∈ C(I,R). Clearly the relation “ ≼ ” is
a quasi-order relation.

Theorem 3.1. Let (C(I,R), dB ,≼) be a sequentially complete metric space. Suppose that G :
C(I,R) → CB(C(I,R)) is a set-valued operator such that G(x) = {fx(t)} and has UCAV. Let
K ∈ C(I × I × R,R) be an operator satisfying the following conditions:
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(i) K is continuous;

(ii)
t∫
0

K(t, s, .) for all t, s ∈ I is increasing;

(iii) there exists τ > 0 such that |K(t, s, x(s)) −K(t, s, y(s))| 6 e−τ |x(s) − y(s)| for all x, y ∈
C(I,R) and all t, s ∈ I.

Then, the Volterra-type integral equation (9) has a solution in C(I,R).

Proof. By definition of G, we have H(Gx,Gy) = dB(f(x), f(y)) for all x, y ∈ C(I,R). Thus,

H(Gx,Gy) = dB(f(x), f(y)) = sup
t∈I

{∣∣∣ ∫ t

0

K(t, s, x(s))ds−
∫ t

0

K(t, s, y(s))ds
∣∣∣e−τt

}
6 sup

t∈I

{∫ t

0

|K(t, s, x(s))−K(t, s, y(s))|e−τtds

}
6 sup

t∈I

{∫ t

0

e−τ |x(s)− y(s)|e−τtds

}
6 ||x− y||B sup

t∈I

{∫ t

0

e−τds

}
= e−τdB(x, y).

Taking logarithms, we have ln(H(Gx,Gy)) 6 ln(e−τdB(x, y)), which implies that (τ+
+ ln(H(Gx,Gy))) 6 ln(dB(x, y)). Now, consider the function F (t) = ln(t) for all t ∈ C(I,R) and
τ > 0. Then, all conditions of Theorem 2.1 are satisfied. Consequently, Theorem 2.1 ensures the
existence of fixed point of G that this fixed point is the solution of the integral equation.

We are grateful to the Research Council of Shahid Chamran University of Ahvaz for financial
support (Grant number: SCU.MM99.25894).
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Неподвижные точки многозначных операторов F -сжатия
в квазиупорядоченных метрических пространствах
с приложением к интегральным уравнениям

Эхсан Л. Гасаб
Хамид Маджани

Университет Шахида Чамрана в Ахвазе
Ахваз, Иран

Гасем С.Рад
Исламский университет Азад

Тегеран, Иран

Аннотация. В этой статье мы докажем некоторые новые теоремы о неподвижных точках, вклю-
чающие многозначные F -сжатия в условиях квазиупорядоченных метрических пространств. Наши
результаты важны, поскольку мы представляем принцип банахового сжатия иначе, чем тот, кото-
рый известен в настоящей литературе. Для подтверждения полученных результатов приведены
некоторые примеры и приложение к существованию решения интегрального уравнения типа Воль-
терра.

Ключевые слова: неподвижная точка, F -сжатие, секвенциально полные метрические простран-
ства, оператор упорядоченного замыкания.
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