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Abstract. The dynamics of a snow-ice cover is considered within the theory of poroelasticity. The
snow-ice cover is modeled by a three-phase medium consisting of water, air and ice. The governing
equations are the equations of mass conservation for each phase with phase transitions, the equations of
conservation of phase momentum in the form of Darcy’s law, the equation of conservation of momentum
of the whole system, the rheological equation for porosity and the equation of heat balance of snow. In
the full formulation the liquid and air pressures are functions of the temperature and the corresponding
densities, and the viscosity and compressibility coefficients of ice are functions of the temperature. The
problem of two-dimensional nonstationary filtration of water in a thin poroelastic ice plate is considered
in the model case. The solution is obtained in quadratures.
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A large number of studies are devoted to balance models and observations of the behavior of a
snow cover [1–3]. These works primarily study snow stocks, flood risks and river flow formation.
Models of a melting snow-ice cover based on the approaches of the mechanics of multiphase
medium are intended to obtain a more detailed picture of the movement of water and air in
melting snow, i.e. determination of the velocity field, concentration, phase pressures, etc. Only
a few articles use the "full" models. The problems describing phase transitions and movement
of the ice skeleton remain open.

The foundations of the theory of the movement of water and air in the melting snow within
the mechanics of multiphase medium are formulated by S. C. Colbeck [4] and his followers [5, 6].
In these works, snow is considered as a multiphase medium, but the variable porosity of ice, its
deformation and phase transitions are not taken into account. In this paper, a mathematical
model of the movement of water and air in a deformable poroelastic medium is proposed. The
model includes the laws of conservation of mass, momentum in the form of Darcy’s law for
fluid components, the rheological relation for the porosity and the equation for temperature [7].
The obtained system of the equations is a generalization of the well-known system of Musket-
Leverett equations in the case of variable porosity [8]. We use the concept of effective stress
introduced by Terzagi for the porous deformation model when modeling a poroelastic medium.
In this approach, the effective stress is defined as the difference between the total stress and the
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pressure of the liquid phase [9]. This proposition means that the fluid carries part of the load.
Fundamental in this approach is the relationship between the deformation of the skeleton of a
solid matrix and the processes of fluid flow. Filtration in a thin poroelastic layer is considered
in the case of one liquid. The model is based on the theory of multiphase flows in poroelastic
medium. Structurally similar mathematical models are used to describe the movement of magma
in the earth’s crust, the flow of water and oil in a porous medium, the growth of tumors and
other filtration processes in poroelastic medium [10–13].

1. Governing equations

A system of differential equations describing the movement of air and water in the snow-
ice cover taking into account the phase transitions is considered in the domain Ω = (x, z) =

= [0, L]× [0,H]. The equations of continuity with the variable porosity ϕ are

∂(1− ϕ)ρi
∂t

+ div((1− ϕ)ρiv⃗i) = Iwi + Iai,
∂(ρwswϕ)

∂t
+ div(ρwϕswv⃗w) = Iiw + Iaw,

∂(ρasaϕ)

∂t
+ div(ρwϕsav⃗w) = Iiw + Iwa, sa + sw = 1.

Here ρa, ρw, ρi, v⃗a, v⃗i, v⃗w are the true density and phase velocity, respectively (a — air, w —
water, i — ice), sa, sw are the saturations of air and water, respectively, ϕ is the porosity, Ilm
is the intensity of mass transfer from l-phase to the m-phase per unit volume at time instant,
Ilm = −Iml.

Instead of the equation of dynamics in the theory of two-phase filtration, we use the general
Darcy law for liquid phases, taking into account the movement of ice

ϕ(v⃗w − v⃗i) = − k(ϕ)

µw(θ)
(∇pw − ρwg⃗) ,

ϕ(v⃗a − v⃗i) = − k(ϕ)

µa(θ)
(∇pa − ρag⃗) ,

where θ is the temperature of the medium (θi = θw = θ), pw, pa are the water and air pressures,
respectively, k(ϕ) is the permeability, µw(θ), µa(θ) are the dynamic viscosities of water and air,
g⃗ is the gravity acceleration vector. The phase pressures pa and pw differ by the magnitude
capillary jump pc: pa − pw = pc(x, sw).

The Maxwell-type relation between the porosity and the effective pressure pe is [17]

divv⃗i = −ϕ

(
α(θ)pe + β(θ)

dpe
dt

)
,

d

dt
=

∂

∂t
+ (v⃗i · ∇),

where α(θ), β(θ) are the specified environment parameters. The effective pressure pe and the
pressures of the liquids pw, pa and solid pi phases are related by the equations

ptot = ϕpf + (1− ϕ)pi, pe = (1− ϕ)(pi − pf ), pf = swpw + sapa.

The balance equation for the forces of the whole system has the form

∇ptot= ρtotg⃗+div

(
(1− ϕ)η(θ)

(
∂v⃗i
∂x⃗

+

(
∂v⃗i
∂x⃗

)∗))
, ρtot = ϕρf+(1−ϕ)ρi, ρf = swρw+saρa,
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where ptot is the total pressure, ρtot is the total density, η(θ) is the viscosity of the porous
skeleton, ∗ is the symbol of the transposition operation.

The energy conservation equation is taken as [1]

(ρacasaϕ+ ρwcwswϕ+ ρici(1− ϕ))
∂θ

∂t
+ (ρacasaϕv⃗a + ρwcwswϕv⃗w + ρici(1− ϕ)v⃗i)∇θ =

= div (λtot(ϕ)∇θ)− LiIai − νIwi.

Here ci = const > 0, cw = const > 0, ca = const > 0 are the heat capacity of ice, water and
air at constant volume, respectively; Li = const > 0 is the specific heat of ice sublimation,
ν = const > 0 is the specific heat of ice melting; λtot is the thermal conductivity of the medium
as a whole (λtot = atot + btotρ

2
tot, atot = const > 0, btot = const > 0). To close the equations,

one can take into account the dependence of the densities of liquid phases on pressures and
temperatures, or set the densities equal to constant.

Assuming that there is no air in the pores, we shell study the system of differential equations
describing the filtration of liquid in the melting ice (the phase densities are constant):

∂(1− ϕ)ρi
∂t

+ div((1− ϕ)ρiv⃗i) = Iwi,
∂(ρwswϕ)

∂t
+ div(ρwϕswv⃗w) = Iiw, (1)

ϕ(v⃗w − v⃗i) = − k(ϕ)

µw(θ)
(∇pw − ρwg⃗) , (2)

divv⃗i = −ϕ

(
α(θ)pe + β(θ)

dpe
dt

)
,

d

dt
=

∂

∂t
+ (v⃗i · ∇), (3)

ptot = ϕpw + (1− ϕ)pi, pe = (1− ϕ)(pi − pw), (4)

∇ptot = ρtotg⃗ + div

(
(1− ϕ)η(θ)

(
∂v⃗i
∂x⃗

+

(
∂v⃗i
∂x⃗

)∗))
, ρtot = ϕρw + (1− ϕ)ρi, (5)

(ρwcwϕ+ ρici(1− ϕ))
∂θ

∂t
+ (ρwcwϕv⃗w + ρici(1− ϕ)v⃗i)∇θ = div (λtot(ϕ)∇θ)− νIwi. (6)

A structurally similar model is used to describe the nonisothermal motion of magma in a
poroelastic medium. The system (1)–(6), in the one-dimensional case with constant temperature,
the dependence of the density of the liquid phase on the pressure, and in the absence of the phase
transitions is studies and the local solvability is proved in [18]. The global solvability is proved
in [19] for the same problem when the densities are constant. The numerical analysis of the
initial-boundary value problem for system (1)–(6) in the isothermal case is carried out in [20].

2. Introduction of small parameter

We shell make equations (1)–(6) dimensionless. Let x̄, z̄, t̄ be dimensionless variables defined
by the equalities [21]

x̄ =
x

L
, z̄ =

z

H
, t̄ = εlτ0t, ε =

H

L
≪ 1,

where [L] = [H] = [ m], [τ0] = [1/ s]; l is a fixed parameter.
The required functions in the dimensionless variables are

pw(t, x, z) = pp̄w(t̄, x̄, z̄) = pp̄w

(
εlτ0t,

x

L
,
z

H

)
,
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pi(t, x, z) = pp̄i(t̄, x̄, z̄) = pp̄i

(
εlτ0t,

x

L
,
z

H

)
,

vji (t, x, z) = vj v̄ji (t̄, x̄, z̄) = vj v̄ji

(
εlτ0t,

x

L
,
z

H

)
, j = 1, 2,

vjw(t, x, z) = vj v̄jw(t̄, x̄, z̄) = vj v̄jw

(
εlτ0t,

x

L
,
z

H

)
, j = 1, 2,

ptot(t, x, z) = pp̄tot(t̄, x̄, z̄), pe(t, x, z) = pp̄e(t̄, x̄, z̄), θ = δθ̄, Iwi = γĪwi, Iiw = γĪiw.

Here [vi] = [m / s], [p] = [Pa], [δ] = [K], [α] = [1 / c], the quantities p, vj , δ, γ are the positive
constants. Further, we use the assumption that k(ϕ) = kϕn, k = const, η(θ) = η = const > 0

[14, 17,22].
Equations (1)–(6) in scalar form in the dimensionless variables are

εlτ0
∂(1− ϕ)

∂t̄
+

v1

L

∂v̄1i (1− ϕ)

∂x̄
+

v2

H

∂v̄2i (1− ϕ)

∂z̄
= γĪwi,

εlτ0
∂ϕ

∂t̄
+

v1

L

∂v̄1wϕ

∂x̄
+

v2

H

∂v̄2wϕ

∂z̄
= γĪiw,

(7)

ϕ(v1v̄1w − v1v̄1i ) = −k

µ
ϕn p

L

∂p̄w
∂x̄

,

ϕ(v2v̄2w − v2v̄2i ) = −k

µ
ϕn

(
p

H

∂p̄w
∂z̄

+ ρwg

)
,

(8)

v1

L

∂v̄1i
∂x

+
v2

H

∂v̄2i
∂y

= −ϕ

(
αpp̄e − β

(
pεlτ0

∂p̄e
∂t̄

+ v̄1i
pv1

L

∂p̄e
∂x̄

+ v̄2i
pv2

H

∂p̄e
∂z̄

))
, (9)

2
v1

L2

∂

∂x̄

(
(1− ϕ)

∂v̄1i
∂x̄

)
+

v1

H2

∂

∂z̄

(
(1− ϕ)

∂v̄1i
∂z̄

)
+

+
v2

HL

∂

∂z̄

(
(1− ϕ)

∂v̄2i
∂x̄

)
=

p

Lη

∂ptot
∂x̄

,

(10)

(ρwϕ+ ρi(1− ϕ))g

η
ρ̄ḡ +

v2

L2

∂

∂x̄

(
(1− ϕ)

∂v̄2i
∂x̄

)
+ 2

v2

H2

∂

∂z̄

(
(1− ϕ)

∂v̄2i
∂z̄

)
+

+
v1

HL

∂

∂x̄

(
(1− ϕ)

∂v̄1i
∂z̄

)
=

p

Hη

∂p̄tot
∂z̄

,

(11)

εlτ0δ (ρwcwϕ+ ρici(1− ϕ))
∂θ̄

∂t̄
+

v1δ

L

(
ρwcwϕv̄

1
w + ρici(1− ϕ)v̄1i

) ∂θ̄
∂x̄

+

+
v2δ

H

(
ρwcwϕv̄

2
w + ρici(1− ϕ)v̄2i

) ∂θ̄
∂z̄

=
δ

L2

∂

∂x̄

(
(a+ b(ϕρw + (1− ϕ)ρi)

∂θ̄

∂x̄

)
+

+
δ

H2

∂

∂z̄

(
(a+ b(ϕρw + (1− ϕ)ρi)

2)
∂θ̄

∂z̄

)
− νγĪwi.

(12)

We now choose
v1 = εlτ0L, v2 = εlτ0H.

Then equations (7)–(12) can be reduced to the form

∂(1− ϕ)

∂t̄
+ div((1− ϕ)v̄i) =

γ

εlτ0
Īwi,

∂ϕ

∂t̄
+ div(ϕv̄w) =

γ

εlτ0
Īiw,

(13)
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εlτ0µL
2

kp
ϕ(v̄1w − v̄1i ) = −ϕn ∂p̄w

∂x̄
,

εl+2τ0µL
2

kp
ϕ(v̄2w − v̄2i ) = −ϕn ∂p̄w

∂z̄
− ρwgLε

p
,

(14)

εlτ0
αp

(
∂v̄1i
∂x̄

+
∂v̄2i
∂z̄

) = −ϕp̄e −
εlτ0β

α

(
∂p̄e
∂t̄

+ v̄1i
∂p̄e
∂x̄

+ v̄2i
∂p̄e
∂z̄

)
, (15)

2εl
∂

∂x̄

(
(1− ϕ)

∂v̄1i
∂x̄

)
+ εl−2 ∂

∂z̄

(
(1− ϕ)

∂v̄1i
∂z̄

)
+

+εl
∂

∂z̄

(
(1− ϕ)

∂v̄2i
∂x̄

)
=

p

ητ0

∂ptot
∂x̄

,

(16)

εl+2 ∂

∂x̄

(
(1− ϕ)

∂v̄2i
∂x̄

)
+ 2εl

∂

∂z̄

(
(1− ϕ)

∂v̄2i
∂z̄

)
+

+εl
∂

∂x̄

(
(1− ϕ)

∂v̄1i
∂z̄

)
=

gLερw
ητ0

ϕ+
gLερi
ητ0

(1− ϕ) +
p

ητ0

∂p̄tot
∂z̄

.

(17)

εl
((

ρwcw
ρici

ϕ+ (1− ϕ)

)
∂θ̄

∂t̄
+

(
ρwcw
ρici

ϕv̄1w +(1− ϕ)v̄1i

)
∂θ̄

∂x̄
+

(
ρwcw
ρici

ϕv̄2w + (1− ϕ)v̄2i

)
∂θ̄

∂z̄

)
=

=
∂

∂x̄

((
a

L2τ0ρici
+

bρi
L2τ0ci

((
ρw
ρi

− 1

)
ϕ+ 1

)2
)

∂θ̄

∂x̄

)
+

+
1

ε2
∂

∂z̄

((
a

L2τ0ρici
+

b(ρw − ρi)

L2τ0ρici
ϕ+

b

L2τ0ci

)
∂θ̄

∂z̄

)
− νγĪwi. (18)

3. The passage to the limit and solution by quadratures

For small ε, ε → 0, the form of equations (13)–(18) depends on the parameter l.
We consider the most physical case (for l = −2) describing a slow flow of the fluid in the

poroelastic medium (below, the dashes are omitted):

∂(1− ϕ)

∂t
+ div((1− ϕ)vi) = 0,

∂ϕ

∂t
+ div(ϕvw) = 0,

(19)

v1i = v1w, (20)

τ0µL
2

kp
ϕ(v2w − v2i ) = −ϕn ∂pw

∂z
, (21)

∂v1i
∂x

+
∂v2i
∂z

= −βp
d(ptot − pw)

dt
, (22)

∂

∂z

(
(1− ϕ)

∂v1i
∂z

)
= 0, (23)

2
∂

∂z

(
(1− ϕ)

∂v2i
∂z

)
+

∂

∂x

(
(1− ϕ)

∂v1i
∂z

)
= 0, (24)
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(
ρwcw
ρici

ϕ+ (1− ϕ)

)
∂θ

∂t
+

(
ρwcw
ρici

ϕv1w + (1− ϕ)v1i

)
∂θ

∂x
+

(
ρwcw
ρici

ϕv2w + (1− ϕ)v2i

)
∂θ

∂z
=

=
1

L2τ0ci

∂

∂z

((
a

ρi
+ b

(
ϕ

(
ρw
ρi

− 1

)
+ 1

)2
)

∂θ

∂z

)
.

(25)

We outline the scheme of the method of the solution for system (19)–(24). Some of the
equations are integrated and as the result of some transformations we arrive at an equation for
the function ϕ.

At the first stage, from equation (19) we find divv⃗i and substitute it into equation (22), then

∂G(ϕ)

∂t
+ v⃗i · ∇G(ϕ) =

∂(ptot − pw)

∂t
+ v⃗i · ∇(ptot − pw),

where
dG(ϕ)

dϕ
=

1

βpϕ(1− ϕ)
.

From the last equation we get the equation for pi (if ϕ and pw are found):

∂U

∂t
+ v1i

∂U

∂x
+ v2i

∂U

∂z
= 0,

where U = G(ϕ) + (1− ϕ)(pw − pi).
This equation is solved by the method of characteristics, which are defined as the solution of

the Cauchy problem

v1i =
dx

dt
, v2i =

dz

dt
, U |t=0= G(ϕ0) + (1− ϕ0)(p0w − p0i ).

At the second stage, we find a representation for the velocity components. To do this, we
twice integrate equation (23) over z and, taking into account (20), we obtain

v1i = v1w = A(x, t)

∫ z

0

1

1− ϕ
dτ +B(x, t), (26)

where the functions A(x, t), B(x, t) are arbitrary functions of (x, t).
Equation (24) can be written, using (26), as

2
∂

∂z

(
(1− ϕ)

∂v2i
∂z

)
+

∂A(x, t)

∂x
= 0.

Integrating the last equation over z twice, we obtain a representation for v2i in terms of ϕ

and arbitrary functions C(x, t), D(x, t):

v2i = −1

2

∂A(x, t)

∂x

∫ z

0

τ

1− ϕ
dτ +D(x, t)

∫ z

0

1

1− ϕ
dτ + C(x, t).

At the third stage, we find representations for the liquid phase. To do this, we summarize
equations (19):

div(ϕ(v⃗w − v⃗i) + v⃗i) = 0.

Using equations (20) and (21), we have

divv⃗i =
kp

τ0µL2

∂

∂z

(
ϕn ∂pw

∂z

)
.
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Substituting into the last equation the representation for the velocity components of the solid
medium, we get the equation for pw:

∂

∂x

(
A(x, t)

∫ z

0

1

1− ϕ
dτ

)
+

∂B(x, t)

∂x
− 1/2

∂A(x, t)

∂x

z

1− ϕ
+

+D(x, t)
1

1− ϕ
=

kp

τ0µL2

∂

∂z

(
ϕn ∂pw

∂z

)
.

Integrating this equation twice over z, we obtain a representation for pw in terms of ϕ and
arbitrary functions E(x, t), F (x, t)

pw =
τ0µL

2

kp

∫ z

0

ϕ−n

[∫ ζ

0

∂

∂x

(
A(x, t)

∫ ξ

0

1

1− ϕ
dτ

)
dξ−

−1

2

∂A(x, t)

∂x

∫ ζ

0

τ

1− ϕ
dτ +

∂B(x, t)

∂x
ζ +D(x, t)

∫ ζ

0

1

1− ϕ
dτ +E(x, t)] dζ + F (x, t).

Using a representation for pw, from (21) we derive the equation for the second component of
the velocity v2w in terms of ϕ

v2w = − 1

ϕ

[∫ z

0

∂

∂x

(
A(x, t)

∫ ξ

0

1

1− ϕ
dτ

)
dξ − 1

2

∂A(x, t)

∂x

∫ z

0

τ

1− ϕ
dτ+

+
∂B(x, t)

∂x
z +D(x, t)

∫ z

0

1

1− ϕ
dτ + E(x, t)

]
− 1

2

∂A(x, t)

∂x

∫ z

0

τ

1− ϕ
dτ+

+D(x, t)

∫ z

0

1

1− ϕ
dτ + C(x, t).

Thus, the velocity components v⃗i, v⃗w and the pressure pw are obtained as the functions of ϕ.
At the last stage, the continuity equation for the solid phase is used to determine the poros-

ity ϕ:
∂s

∂t
+

∂

∂x

(
sA(x, t)

∫ z

0

s−1dτ + sB(x, t)

)
+

+
∂

∂z

(
−s

1

2

∂A(x, t)

∂x

∫ z

0

τ

s
dτ + sD(x, t)

∫ z

0

s−1dτ + sC(x, t)

)
= 0, s ≡ 1− ϕ.

Note that the representation for pi is found after obtaining the representation for the com-
ponents of the velocity of the solid phase and the pressure of the liquid.

Now we consider the following initial-boundary value problem for equations (19)–(24). At
z = 0, the rigid porous skeleton satisfies a plane stress state with the stress tensor σ11= σ22= ptot,
σ12 = σ21 = 0, and the fluid pressure is also set. The velocity of the rigid skeleton is specified
at z = H, and the phase velocities are equal. The porosity and phase pressures are set at the
initial moment of time. Thus, the following initial boundary conditions are considered:

∂v2i
∂z

|z=0= 0, v2i |z=H= C = const,

v1i |z=H= B = const,
∂v1i
∂z

|z=0= 0,

ϕ |t=0= ϕ0(x, t),
∂pw
∂z

|z=H= 0,

pw |t=0= p0w(x, z), pi |t=0= p0i (x, z), pw |z=0= p0(x, t),

(27)
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where the constants B and C are given. This allow us to uniquely define the following functions:

A(x, t) = 0, B(x, t) = B = const, C(x, t) = C = const,

D(x, t) = 0, E(x, t) = 0, F (x, t) = p0(x, t),

v1i = v1w = B, v2i = v2w = C, pw = p0(x, t),

and the equation for s can be rewritten as

∂s

∂t
+B

∂s

∂x
+ C

∂s

∂z
= 0.

The solution of this equation is

ϕ = ϕ0(x−Bt, z − Ct).

The solution for pi is

pi = p0(x, t)− p0w(x−Bt, z − Ct) + p0i (x−Bt, z − Ct).

The equation for θ takes the form(
ρwcw
ρici

ϕ0(x−Bt, z − Ct) + (1− ϕ0(x−Bt, z − Ct))

)(
∂θ

∂t
+B

∂θ

∂x
+ C

∂θ

∂z

)
=

=
1

L2τ0ci

∂

∂z

((
a

ρi
+ bρi

(
ϕ0(x−Bt, z − Ct)

ρw
ρi

+ 1− ϕ0(x−Bt, z − Ct)2
))

∂θ

∂z

)
and is supplemented by the following initial-boundary conditions

θ |t=0= θ0(x, z),
∂θ

∂z
|z=0,z=H= 0,

∂θ

∂x
|x=0,x=L= 0. (28)

The equation for θ is linear uniformly parabolic. The maximum principle for the function θ

is valid, and theorem of existences is also established for this problem (q.v. [23], pp. 29, 364).
Thus, the solution of problem (19)–(25), (27), (28) is found.

Conclusion

A new model of the dynamics of the snow-ice cover, taking into account the deformation of
the porous iced skeleton, is considered in this work. The model is a generalization of the classical
Musket-Leverett two-phase filtration model and it is applicable for a wide class of problems of
multiphase flows in a poroelastic media. A feature of the model is the variable porosity. The
problem of the justification of this model is open. There are also no results on the construction
of simple solutions. On the other hand, the study of such a general problem is important for
the analysis of complicated processes of salt-mass transfer in a melting snow. For example, the
speed of pollution in spring during melting of the snow cannot be described without knowing
the field of velocities and water saturation. Using a sophisticated model allows to get a complete
picture of the dynamics of the process. The important point is the correct choice of initial data,
which guarantees the existence of a solution. Only examples of single-phase numerical solutions
are known without phase transitions and temperature effects [14,22]. In this article, we consider
a simplified model based on the selection of a small parameter, which is a common technique in
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the study of complex problems. Solutions in quadratures are constructed. In the future, we plan
to study the justification for the formulated problem and its applications in polar mechanics.

The work was carried out under the project MK-204.2020.1 "Initial-boundary value problems
for the equations of fluid motion in poroelastic media and their applications in the dynamics of
snow and ice cover" with the support of a grant from the President of the Russian Federation.
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Математическая модель движения жидкостей
в пороупругом снежно-ледовом покрове

Маргарита А.Токарева
Александр А. Папин

Алтайский государственный университет
Барнаул, Российская Федерация

Аннотация. Задача динамики снежно-ледового покрова рассматривается в рамках теории по-
роупругости. Снежно-ледовый покров рассматривается как трехфазная среда, состоящая из воды,
воздуха и льда. В основу математической модели положены уравнения сохранения массы для каж-
дой из фаз с учетом фазовых переходов, уравнения сохранения импульсов фаз в форме законов
Дарси, уравнение сохранения импульса системы в целом, реологического уравнения для пористости
и уравнениe теплового баланса снега. В полной постановке учтена зависимость давлений жидкости
и воздуха от температуры и соответствующих плотностей, а также зависимость коэффициентов
вязкости и сжимаемости льда от температуры. В модельном случае рассматривается фильтрация
воды в тонкой пороупругой ледовой пластине. Получены решения в квадратурах.

Ключевые слова: пороупругость, пористость, снежно-ледовый покров, тонкий слой.
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