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Abstract. The aim of this work is to find approximate analytic solution of the problem of granular
medium motion in a convergent channel, to develop computational algorithm based on the finite element
method, and to carry out numerical calculations of the problem.
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Introduction

Many natural and artificial materials have different strengths in tension and compression, such
are for example geomaterials constituting Earth’s crust that include rock or granular materials,
dry or saturated soil etc.

One of the fundamental problems of geomechanics is the problem of geomaterial motion
in a convergent channel. Analysis of a motion of fragmented rock or a granular medium in a
convergent channel is of prime interest for many mining technological processes (caving, drawing
the stopes, motion in orepasses) and for grain storage and processing (storage bunkers or grain
tank emptying). Similar processes take place in natural conditions as well, e.g. rock or soil
displacement around mine shafts or grooves, shift trough formation above worked out areas or
karst caverns and so on. The approximate (engineering) solution of this problem and the results
of real experiments can be found in [1, 2].

The aim of this work is to find approximate analytic solution of the problem of loose medium
motion in a convergent channel on the base of a model that takes into account different strengths
of materials, to develop computational algorithm based on the finite element method, and to
carry out numerical calculations of the problem.

1. Mathematical model

For description of the stress-strain state of a granular medium as a material with different
strengths in tension and compression we shall use a model of a medium with plastic connections
[3, 4]. Under the action of compressive or tensile stresses which are less than the cohesion
coefficient (the yield point of plastic connections) such a material is not deformed. Until the
yield point is reached the deformation follows the law of linear hardening. The rheological
scheme of the model is given on Fig. 1.
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Fig. 1. Rheological scheme Fig. 2. Deformation C and stress K cones

According to this scheme, there is an additive decomposition σ = σc + σ0 + σe, where σ is
the total strain tensor, σc is the rigid contact component, σ0 is the cohesion tensor, σe = E : ε

is the elastic component, ε is the deformation tensor, and E is the symmetric positively defined
elastic modulus tensor. The tensor σc satisfies the variational inequality

σc : (ε̃− ε) 6 0, ε, ε̃ ∈ C, (1)

where C is the cone of admissible deformations (Fig. 2) C = {ε|κγ (ε) 6 θ (ε)}, κ is the dilatancy
parameter, γ (ε) =

√
2ε′ : ε′ is the intensity of shear, ε′ = ε−θδ/3 is the deviator of deformations,

θ (ε) = ε : δ is the volume deformation, and δ is the Kronecker symbol.
In this notation, the inequality (1) take the form(

E : ε− σ + σ0
)
: (ε̃− ε) > 0, ε, ε̃ ∈ C.

By definition of a projection, this means that

ε = πC
[
E−1

(
σ − σ0

)]
,

where π is the projection operator onto the cone C with respect to the norm |ε| =
√
ε : E : ε.

Consider an element of a construction from a material with different strengths filling a planar
domain Ω with the boundary ∂Ω = Γ that consists of two non-intersecting parts Γu and Γσ. On
the first part displacements are absent and on the second part the distributed load p is given.
There hold equilibrium equations in variational form and boundary conditions:∫

Ω

(∇ · σ + f) (ũ− u) dΩ = 0, (2)

u = ũ = 0 on Γu, σ · n = p on Γσ. (3)

The problem (2)–(3) reduces to the problem of finding the minimum min
ũ∈Uc

J (ũ) = J (u), where

J (u) =

∫
Ω

(
1

2
ε : E : ε+ ε : σ0 − f · u

)
dΩ−

∫
Γσ

p · udΓ,

UC =
{
u ∈ H1 (Ω) |u|Γu

= 0, ε (u) ∈ C
}
.

Since C is the cone with the apex at the origin, we have J (u) = min
ũ∈Uc

min
λ>0

J (λũ),

J (λũ) =

∫
Ω

(
λ2

2
ε (ũ) : E : ε (ũ) + λε (ũ) : σ0 − λf · ũ

)
dΩ− λ

∫
Γσ

p · ũdΓ.
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A direct computation of min
λ>0

J (λũ) shows that

λ = −

[∫
Ω

(
ε (ũ) : σ0 − f · ũ

)
dΩ−

∫
Γσ
p · ũdΓ

]
+∫

Ω
ε (ũ) : E : ε (ũ) dΩ

, where z+ =

{
z,

0,

z > 0,

z < 0.

Therefore,

J (u) = −max
ũ∈Uc
ũ̸=0

[∫
Ω

(
ε (ũ) : σ0 − f · ũ

)
dΩ−

∫
Γσ
p · ũdΓ

]2
+

2
∫
Ω
ε (ũ) : E : ε (ũ) dΩ

.

From this it can be shown that the displacement fields vanishes identically if and only if∫
Ω

(
ε (ũ) : σ0 − f · ũ

)
dΩ−

∫
Γσ

p · ũdΓ 6 0, ∀ũ ∈ UC . (4)

A load (f, p) is called safe if u ≡ 0. Let p = 0, f = m · f0, where m is the loading parameter.
Then it follows from (4) the the load is safe for m varying from zero to the limit value (safety
factor)

m∗ = min
ũ∈Uc
ũ ̸=0

∫
Ω
ε (ũ) : σ0dΩ[∫
Ω
f · ũdΩ

]
+

. (5)

The proved statement is a formulation of a kinematic theorem on limiting equilibrium from
plasticity theory [5].

2. Analytic solution

Consider as an example the problem of planar gravity flow of a granular medium in a con-
vergent channel. Assume that α > β and consider two cases given on Figs. 3 and 4.

Fig. 3. Case 1 Fig. 4. Case 2

We compute safety factors m1 and m2 and choose the least one, which is to be the safety
factor m∗ for this problem.

For Case 1 the admissible displacement field ũ = (ũ1, ũ2) describes the strain localization for
a simple shear with dilatancy in a narrow linear zone of thickness h inclined at an angle φ. In
the Cartesian coordinates related to this zone{

ũ1 = −u0 cos (α− φ) ,

ũ2 = −u0 sin (α− φ) .


γ0 =

u0
h

cos (α− φ) ,

ε0 =
u0
h

sin (α− φ) .
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We compute the integrals in (5).∫
Ω

ε (ũ) : σ0dΩ = ε0σ
0S,

here σ0 = τs/κ, τs is the yield point, S = hl, l = a (cosφ+ sinφ ctg (α− φ)).
The "separating" triangular domain moves as a whole, hence∫

Ω

f0 · ũ0dΩ = f0 · S∆,

here f0 = ρgu0 sinα, S∆ = 1
2Hl, H = a sinφ. Therefore the safety factor m1 is equal to

m1 =
2τs
κρga

min
ũ∈Uc
ũ̸=0

sin (α− φ)

sinα sinφ
. (6)

The condition ũ ∈ UC takes the form γ0 6 νε0, where ν =
√

1
/
κ2 − 4/3. Then

ε0
γ0

= tg (α− φ) > 1

ν
or sin (α− φ) > 1√

ν2 + 1
.

The expression (6) attains its minimum for equalities in the latter ones.

Computing sinφ =
ν sinα− cosα√

ν2 + 1
, we obtain the formula for the safety factor

m1 =
2τs
κρga

1

sinα

1

(ν sinα− cosα)
.

Studying Case 2 and performing similar computations we arrive at the following formula for
the safety factor

m2 =
2τs
κρga

min
ũ ∈ Uc

ũ ̸= 0

sin (β − ψ)

sinβ sinψ
and m2 =

2τs
κρga

1

sinβ

1

(ν sinβ − cosβ)
.

Analysis shows that the inequality m1 < m2 holds for β < α. Thus, the localization zone is
inclined at the angle

φ = α− arcsin
1√

ν2 + 1
(7)

and corresponds to Fig. 3.
It should be noted that in the engineering solution obtained in [1] the localization zones were

given linear due to mechanical considerations. It turns out that their directions can be uniquely
determined from the variational principle (5). Note that solutions with curvilinear localization
zones were earlier considered in [7].

3. Numerical modelling

The computational algorithm is based on a finite-element approximation of the model. It
reduces the problem of determining a displacement field in a material with different strengths to
the solution of a number of static problems of the linear elasticity theory with initial stresses.
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The algorithm does not employ theorems on a limit load estimate. Using it, the limit loads
can determined only approximately as the loads such that exceeding them results in intensive
deformation of a material [7].

As an initial approximation we take a solution of an elastic problem. The idea behind the
algorithm is to replace the defining equations

σ = E : ε− 1

1 + λ
π (E : ε− σ0) ,

where λ = const > 0, by the iterative formula (n = 1, 2, 3, . . .)

σn = E : εn − 1

1 + λ
π
(
E : εn−1 − σ0

)
.

Here π is the projection operator to the cone K with respect to the norm |σ|0 =
√
σ : E−1 : σ,

which acts as follows (k is the volume compression modulus and µ is the shear modulus), [4]:

• if τ (s) 6 κp (s), then σ = s;

• if τ (s) > κp (s) and µp (s) + κkτ (s) 6 0, then σ = 0;

• if τ (s) > κp (s) and µp (s) + κkτ (s) > 0, then

σ =
κp (σ)

τ (s)
[s+ p (s) · δ]− p (σ) · δ, p (σ) =

µp (s) + κkτ (s)

µ+ κ2k
.

The iteration steps are performed until the norm of the difference of two approximate solutions
at neighboring steps becomes less than a given accuracy.

The internal friction parameter varies in the interval 0 < κ <
√
3
/
2, calculations are carried

out for κ = 0.3. The regularization parameter λ in computations was taken equal to 0.0001.
It turns out that its further decreasing results in a low rate of convergence of the iterative
algorithm. The accuracy is equal to ε = 0.0001. Numerical experiments are performed using a
program written in Borland C++.

4. Results of numerical experiments

In this section we consider a graphical interpretation of results of numerical experiments for
the problem of planar gravity flow of a granular medium in a convergent channel (Fig. 3).

Denote
fcr = m∗ρg =

2τs
κa

1

sinα (ν sinα− cosα)
. (8)

If f < fcr then the localization of deformations is absent; the medium is too light to move
through the channel. If f > fcr then the medium moves, and in this case a sliding zone must be
present.

Fig. 5 (a) depicts the cross-section of a symmetric convergent channel with the following
parameters: α = β = 63.43◦, a = 2 m. The finite-element grid presented in Fig. 5 (b) consists of
859 nodes and 1596 elements, the side of a triangle is 0.18 m with area 16 m2.

By formula (8) we compute the value fcr = 0.08τs. By formula (7) the most probable angle
of departure of linear zone of the strain localization is φ = 45.70◦.

Fig. 6 (a) shows the shear intensity field obtained in the framework of the classical elasticity
theory, while Fig. 6 (b) on the base of the model of a material with different strengths with the
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a b
Fig. 5. Symmetric domain

a b

Fig. 6. The shear intensity field

internal friction parameter κ = 0.3; a black line indicates the direction of the line of deformation
inclined at the angle φ = 45.70◦.

Fig. 7 (a) shows a cross-section of an asymmetric convergent channel with the parameters
α = 76.2◦, β = 35◦, a = 2 m. The finite-element grid presented in Fig. 7 (b) includes 1035 nodes
and 1922 elements, the side of a triangle is 0.18 m with area 30.92 m2.

a b
Fig. 7. Asymmetric domain

By formula (8) we have fcr = 0.06τs. By formula (7) the most probable angle of departure
of linear zone of the strain localization is φ = 58.49◦.

Fig. 8 (a) shows the shear intensity field obtained in the framework of the classical elasticity
theory, while Fig. 8 (b) on the base of the model of a material with different strengths with the
internal friction parameter κ = 0.3; a black line indicates the direction of the line of deformation
localization inclined at the angle φ = 58.49◦.

Thus, numerical experiments for the problem of flow of a granular medium in a convergent
channel support the presence of linear zones of the strain localization inclined at an angle φ given
by formula (8) and correspond to Fig. 3.
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a b

Fig. 8. The shear intensity field
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Численное моделирование медленного движения
сыпучей среды

Ольга И. Кузоватова
Сибирский федеральный университет

Красноярск, Российская Федерация

Аннотация. Цель данной работы — найти приближенное аналитическое решение задачи о дви-
жении сыпучей среды в сходящемся канала для разработки вычислительного алгоритма на основе
метода конечных элементов и проведения численных расчетов задачи.

Ключевые слова: вариационное неравенство, разнопрочная среда, локализация деформаций.
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