Journal of Siberian Federal University. Mathematics & Physics 2021, 14(1), 117-127

DOLI: 10.17516/1997-1397-2020-14-1-117-127
YIK 517.9

Determination of a Multidimensional Kernel
in Some Parabolic Integro—differential Equation

Durdimurod K. Durdiev*

Bukhara Branch of the Institute of Mathematics
Academy of Sciences of the Republic of Uzbekistan
Bukhara, Uzbekistan

Zhavlon Z. Nuriddinovf

Bukhara State University

Bukhara, Uzbekistan

Received 10.08.2020, received in revised form 29.09.2020, accepted 20.10.2020

Abstract. A multidimensional parabolic integro-differential equation with the time-convolution integral
on the right side is considered. The direct problem is represented by the Cauchy problem for this
equation. The inverse problem is studied in this paper. The problem consists in finding the time and
spatial dependent kernel of the equation from the solution of direct problem in a hyperplane z,, = 0 for
t > 0. This problem is reduced to the more convenient inverse problem with the use of the resolvent
kernel. The last problem is replaced by the equivalent system of integral equations with respect to
unknown functions. The unique solvability of the direct and inverse problems is proved with use of the
principle of contraction mapping.
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1. Introduction. Formulation of problem

Integro—differential equations of convolution type arise in mathematical models of physical,
biological, engineering systems and in other areas where it is necessary to take into consideration
the prehistory of processes. Constitutive relations in the linear non-homogeneous diffusion and
wave propagation processes with memory contain time- and space-dependent memory kernel.
Often in practice these kernels are unknown functions. Problems of memory kernels identification
in parabolic and hyperbolic integro-differential equations have been intensively studied (see e.g.,
[1-4]).

In many cases equations that describe propagation of electrodynamic and elastic waves with
integral convolution are reduced to one second-order hyperbolic integro—differential equation.
Various problems of recovering the kernel of convolution integral in these equations were investi-
gated [1-12]. Determination of time- and space-dependent kernels in parabolic integro-differential
equations with several additional conditions was considered by many authors (see e.g., [13-23]).
Existence, uniqueness and stability theorems were proved. The linear inverse source and nonlin-
ear inverse coefficient problems for parabolic integro-differential equations were discussed [18-23].
A numerical approach for solving this kind of problems was also applied.
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We consider an inverse problem of determining functions w(z,t), k(z',t), = =

= (21,T2,. .., Tn_1,2,) = (¢',2,) € R™, t > 0 that satisfy the following equations
t
u — Lu = —/ k(z',7)Lu(z,t — 7)dT, (2,t) € RY, (1.1)
0
u =p(z), zeR", (1.2)
t=0
ul = f(a't), 0<t< T, f(a',0) = p(a’,0), (1.3)
z,=0
where Lu = Au + ¢(z)u, A is the Laplace operator with respect to spatial variables x =

= (z1,...,2,) and R} = {(z, )|z = (2/,z,) € R", 0 <t < T} is a strip with thickness T, T > 0
is an arbitrary fixed number. There are a heat conduction operator on the left side of equation
(1.1)that acts on function u(z; t) and a convolution type integral on the right side of the equation.
In fact, if kernel k of the integral in equation (1.1) is known then the problem of finding function
u with condition (1.2) is called the direct problem. Note that direct problem in this case is the
Cauchy problem for equation (1.1).

Since after finding kernel & the solution of the direct problem becomes known then inverse
problem (1.1)—(1.3) is said to be the problem of finding functions v and k.

Problems that are close to problem (1.1)—(1.3) were considered in [15]-[17]. The uniqueness
theorem for the solution of kernel determination problem for one-dimensional heat conduction
equation was proven [15]. Inverse problems with kernel depending on time and (n—1)-dimensional
spatial variable 2’ were considered in [16, 17]. Determination of the kernel which is convolution
of elliptic operator and the solution of the direct problem is of great interest in applications. One
of these integro-differential equations for which the inverse problem is posed is considered in this
paper.

Let us consider the inverse problem. It is required to find kernel k in the integral of equation
(1.1) if condition (1.3) is known for the solution of the direct problem. Function ¢ in condi-
tion (1.2) and function f in condition (1.3) are called the data of direct and inverse problems,
respectively. Condition (1.3) is the condition of compatibility for given functions.

In what follows, Holder space H!'(Q) with exponent [ is wused for functions
that depend on spatial variables and Holder space Hb/2 (Qr) with exponents [ and
1/2isusedf or functionsthatdependonspatialandtimevariables.

Everywhere in this paper, we assume that p(z) € HF® (R"), ¢(z) > ¢o = const > 0,
c(;v) c Hgit+4 (Rn)7 f(x’,t) e H+6,(1+6)/2 (R%fl) ’

Ry = {0

o e R, ogth}, 1e(0,1),

spaces H'(Q), H"'/2(Qr) and norms in them are defined in [24, pp. 18-27]. In what follows, for
norm of functions in space H"/2(Qr) (Qr = R} or Qr = R%_l ) that depend on spatial and

time variables notation | - |l72l/ % is used, and for functions that depend only on spatial variables
the notation | - |' is used (in this case Q = R or Q = R"1).
To begin with we prove the following lemma:

Lemma 1.1. Let k(z',t) € HF2+2/2(RE). Then problem (1.1)-(1.8) is equivalent to the
problem of finding functions u(x,t), r(z’,t) that satisfy equation
t
u(z,t) = Lu — / r(z’,t — T)u, (2, 7)dT, (1.4)
0

and conditions (1.2), (1,3), where r(a',t) is resolvent of kernel k(a,t).
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Proof. Let u(x,t) be the solution of Cauchy problem (1.1), (1.2). Let us note that equation (1.1)
at fixed x can be considered as Volterra integral equation of the second kind with kernel k(a/,t)
with respect to the operator Lu:

t
Lu= / k(z',t — 7)Lu(x, 7)dT + 4.
0

It follows from the general theory of integral equations (see e.g. [25, pp. 39-44]) that the solution
of this equation has the form

t
LU:Ut($,t)+/ r(x/;t_T)uT(xaT)dT'
0

This equality leads to equation (1.4). In equation (1.4) kernels k(z’,t) and r(z’, t) are related by
the formula :

k(x' t) =r(2',t) — / r(a’ t — 7)k(2', T)dr. (1.5)
0
To verify this formula we substitute (1.5) into (1.1). Then we have

t t—7
up — Lu = —/ [r(x’,t —-7)— / r(z',t — 1 —a)k(2', o) | Lu(z, 7)dadr =
0 0

t t pt—r
= —/ (2’ t — 1) Lu(z, 7)dr + / / r(@’,t — 17— a)k(z', &) Lu(z, 7)dadr =: I + Ia,
0 o Jo
where
t t opt—r
I = —/ r(z',t — 7)Lu(z, 7)dr, I:= / / r(z’',t — 7 — a)k(2', o) Lu(z, 7)dadr.
0 o Jo
Integral I; can be rewritten in the form
t t
I, = —/ r(z',t — 7)Lu(z, 7)dT = —/ r(z', B) Lu(x,t — B)d.
0 0

To reduce Is to more convenient form we perform the following substitution & = ¢t — 7 — 3 in the
inner integral of I and change the order of integration in resulting twice repeated integral

—T t—p5
= t / T h(, Bk (et~ 7 ) Lu(, T)dBdr = d / (o 5) | et —r = g Lute rydras.

0
Then we have

¢ t—8
ug(t) — Lu(x,t) = =1 + Iy = —/ r(a, B) |:L’U,(I,C7t— B) —/ k(z',t— B —7)Lu(z, 7)dT|dS.
0 0

Since function u(z,t) satisfies equation (1.1) then the expression in the squared brackets of the
last equality is equal to us(z,t — 5). It means that the last equation coincides with (1.4). Let us
write integral equation (1.5) with respect to r(a’,¢) as

r(z',t) = k(2 t) +/O k(x' t — m)r(2', 7)dr

and substitute this relation instead of r(z’,t) in (1.4). Then we obtain

t t—8
uy — Lu(x,t) = —/ k(z', B) [uﬁ(sc,t -B) +/ r(z',t — 17— B)ur(z, 7)dr|dS.
0 0

Taking into account that u(z,t) is a solution of (1.4), we conclude that expression standing in
the squared brackets of this equality is equal to Lu(z,¢ — ). This leads to equation (1.1).
The lemma is proved. |
Thus, if u(z,t), r(2’,t) is the solution of problem (1.4), (1.2), (1.3) then function k(a’,t) is
the solution of integral equation (1.5).
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2. Auxiliary problem

In what follows, we denote function r¢(2’,t) by h(z’,t), i.e., h(z',t) = ri(a’,t).

Lemma 2.1. Problem (1.1) — (1.5) is equivalent to the following auziliary problem for functions
V(a,t), h(@',t)

Oy — LY — 2¢,, 0 — ¢4, 0,9 + (27, 0)9+

t 2.1
+h(z',t) [Lgpwnw" () + 2¢s, @, () + chgo(x)} +/ h(x' t — 7)9(x, 7)dT =0 (2.1)
0
I =Yee, @) (2.2)
19(.%", 0, t) = fttt (.2?,, t) — AI/ ftt (.13/, t) — C(l‘l, O)ftt (.13,, t) + ’I"(l'/, O)ftt (.13/, t)+

¢ (2.3)

+h(z',t) Ly . + / fue(2',t — T)h(2!, 7)dT.

Tp= 0
n=1 92 o2

where H(x,t) =Utte, o, (T, 1), 9@ =uy, Ay = > 22 Yo, o, ()= 8?(ngo(av) —r(z’,0)Lo(x))

=1 7 n

2 / _ /

7”(.27/,0) — L 90('1:70) ftt(‘r 0) (24)

Lp(2,0)

Proof. Let us introduce new function 9" (z,t) = u;(x,t) and differentiate (1.4) and (1.3) with
respect to t. Then we obtain the following problem for functions 9™ (z,t), h(z’,t) from

t

90 — LW (2!, 0y + / h(@', )9 (@, t — 7)dr = 0, (2:5)
0

9N (2,0) = Ly(x), = € R", (2.6)

IO ]o 0 = fula' 1), (/1) EREY, Lp(a’,0) = fy(a',0). (2.7)

Here, initial condition (2.6) is obtained from (1.4) by setting ¢ = 0. The problem for functions
I (z,t) = ﬁgl)(x,t), h(z',t) is obtained from (2.5)—(2.7) in an analogous way:

t
9 — L9 4 r(2!,0)0® + h(2', t)Lo(x) — / h(z', 7)) (2, t — 7)dr =0, (2.8)
0
Nm‘O:Y@LmeRﬂ (2.9)
t=
s = ful@ ), (@) € R (2.10)

where Y (x) := L%p(z) — r(2’,0)Lyp(x). Requiring that equalities (2.9) and (2.10) be equal at
t =0 and x,, = 0, we obtain some relation and equality (2.4) follows from this relation. Further,
function r(z’,0) is assumed to be known.

Now let us denote function 19552,3% (z,t) by ¥(z,t). Differentiating (2.8) and (2.9) twice with
respect to x,, we obtain equations (2.1) and (2.2). To derive the additional condition for ¥(x,t)
at x, = 0 we substitute function ﬁgz)xn(x,t) into AY? (z,t) in (2.8), ie., LI (z,t) = =
9P, (2,8) + Ap 9@ (2, 1) + c(2)9@ (z,t). Taking into account this relation and taking z, = 0
in (2.8), after some mathematical treatment we obtain (2.3). Thus, problem (1.4), (1.2), (1.3)
is reduced to problem (2.1)—(2.3). It is not difficult to show that inverse transformations take
place [15].

The lemma is proved. g
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3. Existence and uniqueness

In this section existence and uniqueness for problem (2.1)—(2.3) are proved with the use of
the principle of contraction mapping [25, pp. 87-97]. The idea is to write the integral equations
for unknown functions 9(x,t), h(z’,t) as a system with a non-linear operator, and to prove that
this operator is a contraction mapping operator. Then existence and uniqueness immediately
follow

We recall the definition of a contraction mapping operator.

Definition. Let F' be an operator defined on a closed set Q0 which is a subset of a Banach space.
F is called a contraction mapping operator in € if it satisfies the following two properties:

1)ify € Q then Fx € Q (i.e. F maps Q into itself);

2)ify,z € Qthen |Fy — Fz|| < p|ly — z|| with p <1 ( constant p is independent of y and z).
Lemma (principle of contraction mapping). If F is a contraction mapping operator from ) to
Q then equation

y=ry

has a unique solution yy € (2.

Now we write Cauchy problem (2.1) and (2.2) as integral equation with respect to function
Y(x,t). Using Poisson’s formula, we obtain

9(x, 1) / Yeoe, (€ x—ftd£+// el + 2, 05 + cee, 0P —
(€09 = h(€',7) | Le,en (€) + 26,06, (6) + cene, 9(6)] - (3.1)

— /T (e, T — a)d(E, a)da)G(x — &t — 7)dedr,
0

1 —|=|2
where G(z;t) = ¢ is the fundamental solution of the heat operator g A, €=

(2¢/mt)"
=(&1,..,6), € = (&, &), dE=d& .. dEy, 2P =22+ +22

The integral equation for h(z’,t) is obtained from (3.1) by con51der1ng it at x, = 0 and using
equality (2.3) :

h(.]? t) — fttt(x/a t) + Ax’ftt(xl, t) + C(.T/, O)ftt(ﬂf/, t) — T(x/, O)ftt(l'/, t)+

1 [
Lep(a',0)
/ Y—gngn x _5 g’na )d£:| /ftt (x T)d’r—’-

(3.2)
- /0 / ) (0 + 2%192") +eg,e, 9 — r(g’,ow - h(g',T) [L%gn (€) + 2ce, e, (E)+
bee,e, #l€)] = [ BELT = Q)IE )da) Lo’ ~ €6t - T)dsdf}
0

where G(z' — &, &t —7) =Gz =&t — 1)

x,=0

Note that integral equations (3.1) and (3.2) contain unknown functions 9¥(*) and 19502,3 To
close system of equations (3.1) and (3.2), we write the integral equations for these functions.
The equation for 9¥(?) follows from equalities (2.8) and (2.9):

10wt = [ VOG- &0+ / / (c0) — (e’ 009 — h(g'.m) Lo(E)~

—/ h(€', T — a)9 P (€, a)da) G(x — &t — 7)dédT.
0

- 121 —



Durdimurod K. Durdiev, Zhavlon Z. Nuriddinov Determination of a Multidimensional Kernel. ..

Differentiating equalities (2.8), (2.9) with respect to z,, and then applying Poisson’s formula, we
obtain equation for 19;273

020 = [ Ve G - ¢ et
¢ 2 n 2
" / / (02 4 e, 9 = 1,009 = h(€', ) (Lepe, () + ce, () ) - (34)
- /T hE', T — )0 (€, a)da)G(x — ¢t —r)dédr.
0

Theorem (existence and uniqueness). If conditions p(x) € H'® (R™), |Lo(a',0)|" > const >
0, c(z) € HH*(R"), f(2',t) € HH6(46)/2 (R§_1), I € (0,1) and equalities f(z',0) = =
w(2’,0), fi(z',0) = Lp(z',0) are satisfied then for sufficiently small number T > 0 the unique
solution of integral equations (3.1)-(3.4) in the class of functions {9(,t), 9» (m,t),ﬁfn) (z,1)} €
HA2,0+2)/2 (Rr}) , h(z',t) € HW/? (@;) exists. Thus, there is the unique classical solution of
problem (2.1)-(2.3).

Proof.  System of equations (3.1)—(3.4) is a closed system for the unknown functions 9(x,t),
h(x',t), 9*(x,t), ¥2 (x,t) in the domain RZ%. It can be rewritten in the form of a non-linear
operator equation

v = Ay, (3.5)

where 1) = (1, 19,13,14)" = (ﬁ(x,t), h(m’,t),ﬁ(z),ﬁg)*, symbol * means transposition. Ac-
cording to equations (3.1)-(3.4), operator Ay = [(Av)1, (AY)a, (AY)s, (A)4] has the form

(A0 =l 0+ [ [ (€)= € 0un(em) + 20, Ova(erm+
e, (EUn(€,7) = ¥a(€7) [L%gn (6) + 206,96, (€) + ce,e, ()| - (3.6)
- [ alé' 7 = @)un(€ adda) 6o . - e,

(A) = Yoa(a’,t) + / fre(@' t — T)be (2, 7)dT+

Ls@
[ [ (1)~ r€.00a ) + 20e, (06 7) + e (eI o
—(¢,7) {L%ngn (&) + 2¢e, @, (§) + Cengns@(ﬁ)} -
/ +ipo (&, 7 — @) (€, a)da)G(z’ =& &t — T)dde],
(40)s = vt )+ [ [ ((e16) = € 0Dale )~ vale' mEolO)- .
- [ e - e, a)da)G(m — &t T,
(A)s = vule 0+ [ / ((el€) = (€' 0)n(e,7) + ce, (€ (6 7)- a0

02l ) (106, 6) + 6, 910)) [ al€'s7 — @n(€,ada) Glo . - )i
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The following notations are introduced in (3.6)—(3.9):

dn(e.0) = [ Voo, (©)G(@ — €0,

1

Yoz (2’,t) = m

[ - fttt(x/; t) + Am’ftt(x/; t) + C(l’/’ O)ftt($/; t)*
77”('1:/7 O)ftt (xlv t) + / R")/fnfn (g)G(xl - 5/’ gnv t)d€:| )
via(ant) = [ V(OG- &)

Yoa(x,t) = Ye, ()G (x — &, t)dE.

Rn

Kook >k ok ok ok ok ok ok ok ok ok ok ok ok ok ok sk ok sk ok sk ok ok ok ok ok ok sk ok sk sk ok sk ok sk ok skok sk ok sk ok ok skook skok sk ok sk ok sk ok sk ok ok skok kok skok sk ok skokokkok Let us intro-

duce the following designation: |1/)|lT = max (|1/J1|lT, |w2|lT, |7,/13|ZT, |z/)4|lT) and consider in the
space HU!/2 (R%.) the set S(T') of functions 1 (x,t) that satisfies the inequality

[ — ol < ol , T < To, (3.10)

1 l 1 l 1
where ¢o = (Y01, Y02, Y03, Yos) and [th|z, = max (W01|TO s [Yo2lg, s [Yoslz, » |1/104\T0) .
It can be shown that when 7T is sufficiently small the operator A is a contraction mapping

operator in S(7T'). Then theorem of existence and uniqueness immediately follows from the
contraction mapping principle.
First we show that A has the first property of a contraction mapping operator. Let ¢» € S(T),
T < Ty. Then we have from inequality (3.10) that
|@[11|T 2|¢0|T , 1=1,2,3,4.

It is easy to see that

(40—l = | [ [ (€)= € 00wt r) + 20, @un(e. )+

tge, (€U (€, 7) — V(€ 7) [Lmn () + 206,96, (€) + e, 0(6)| -
- /quQ(g’, ™~ a)yn(€,0)da) Gz — €.t - T)dédT’; <
< [ (et + e ol + 2, (et +
g ()10 (& Tl + (', Tl | Lo, (€)1 + 2lce, e, (€)1 + e, (E)I0(§)I'+
Hegue, O fis( )] + [ €' — )l (€ o) o ) |G — €.t — ) frddr <

< ol - 2T(co + 70+ 2c1(1+ p5) + ca(l + p4) + 03 + 2IwollToT) = ||, Br.

In a similar way we obtain

[(A4)2 — Yoalf < ol - 2T 0 (fl +co+ 7o+ 2c1(1+ ps5) + ca(l+ @a)+

s+ 2T ol ) = ol Ba,
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[(A%)s = oslrlibolly, < ol - 2T (co + o + 1 + 2T ol ) = Wolk B,

|(AY)s — Youlr < Yol - 2T<Co +ro+ci(1+2p5) + cops + 2TW0|ITO) = |t Ba
where
co = le(@)[, 1= lea, (@) €2 = |erpa, (@)
o = |(Lp(',0)) ", w1 :=|Lp@)l, ¢2:=|Loa, (@)', 03:= |Los,q, (@),
p1:=lp(@)]", @5 = |, (@), Le(a',0) = (Ap(x) + ¢(2))|z,=o.
fri=fu@ Oy, 1o = |r(,0)[f.

We note that 3;(T) — 0 when T'— 0, i = 1, 2,3,4. Therefore, if we choose T' (T < Tp) so that
inequality fp := max Bi < 1, is satisfied then operator A has the first property of a contraction

<i<4

mapping operator, i.e., Ay € S(T).
Next we consider the second property of a contraction mapping operator for A. Let (1) =

= (wi”, ), ff)) e S(T), @ (w(z) 2 P, SP) € S(T). Then the simple
mathematical treatment shows that the following relations are true:

oo —uu] = |( é”— D) + o () )| <

< 2‘111(1 (2)‘ max (’ (2)‘ > < 4ol ‘7/)(1) - ¢(2)‘T.

Taking this into account, we carry out the estimations as follows

(Can® =] [ [ (e OO (E ) — i (6 m)+
2, (O (€6,7) = 087 (6] + ee,e (O[S (6,7) — 057 (6, 7)1+
5" (6,7) = (6, 7] [ Lpenc (€) + 206,06, () + Cenen 06+

+f W (E 7~ a)i(E ) — v (€ 7 — ) (E o) Ol — .1 — T)dede| <
0

t
< [ [ (et + e 0wt 6. m) — P €l
+2lee, (©1[957(6,7) = 0 (€ Tl + legue, (O [8” (€ 7) = 057 €, T+
HIWE (€, 7) = w2 (6 Pl [ Lpenen (O + 1206, e O + leene, e ()I] +
/0 O~ )l (€ 7) ~ P (€ — P (€ llrda)[Ge - &t - 7)frdedr <
< M — 15(2)|ZT0 : T(Co +ro+2c1(1+ @s5) + ca(l 4 ) + 3+ 4T|¢0|£_r0> =

= W0 =D,

The similar argument gives the following relations

[((Ay) D — Ap) Do)l < [ — @ | Topg (fl +co 410+ 21 (1 + @5)+

—124 —



Durdimurod K. Durdiev, Zhavlon Z. Nuriddinov Determination of a Multidimensional Kernel. ..

+ea(1+¢a) + 3 + 4leo|ér0) = M — @ o,
[((A)D = A) D alle < 6O = 6l T (o + 7o + 1 + ATTbol, ) = [0 = @, s,
[((A)® = 4) @)l < [0 = 6@l - T((co + o)+
+c1(1 4 2¢5) + caps + 3 + 4T|1/J0|lTO) < |1/J(1) - 1/1(2)|lT0u4.

!
Hence, | (A" — Ayp?) ’lT < ,u‘w(l) - w(z)‘ if T' satisfies the condition pg := max u; < 1.
T 1<i<d

X

It is not difficult to see that if T is chosen from the conditions max {8y, po} and T < Tp
then operator A satisfies both properties of a contraction mapping operator, i.e., Ay € S(T)
for ¢p € S(T). Then, according to Banach theorem (see, for instance, [26, pp. 87-97]) there
exists in the set S(7T') only one fixed point of operator A, i.e., there exists only one solution
of problem (3.5). Hence, solving system (3.1)—(3.4), for example, by the method of successive
approximations, we uniquely find functions 9(x,t), h(z',t) which belong to H“'/2(R%.) and
HU/2 (RRY), respectively. Moreover, it follows from the general theory of parabolic equations
[27, pp. 380-384] that if conditions of the theorem are fulfilled then solution of integral equation
(3.1) ¥(x,t) belongs to H!T2+2)/2 (Rn).

The theorem is proved. O

Since h(z',t) = r(2',t), the obtained function h(a’, ) can be used to determine the function
r(z’,t) with the use of relation

t
r(z’,t) = r(2’,0) —|—/ h(z',7)dr, (2',t) € R,
0

where r(2’,0) is the known function determined by (2.4). Then solving integral equation (1.5)
at every fixed x’, we uniquely find k(z’,t). Due to the proved theorem and the given above
considerations, we conclude that problem (1.1)—(1.3) has a unique solution such that J(x,t) €
Hl+6,(l+6)/2 (R%) , k(x’,t) c Hl+2,(l+2)/2 (R%_l) )
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ITpobiema ompejesieHnss MHOTOMEPHOTO $]Ipa B OJJHOM
nmapadbom4eckoM mHTerpo-anddepeHnnajIbHOM YPaBHEHUN

Hypaumypon, K. lypaues

Byxapckuit dunman MHcruryTa MareMaTuku
Akanemns Hayk Pecrybiuku Y3beknucran
Byxapa, Y36ekucran

2Kagjon 3. Hypuaanaos
Byxapckuit rocyiapcTBeHHBIII YHUBEPCUTET
Byxapa, ¥Y3b6ekucran

Awnnorarusi. PaccMaTpuBaeTcss MHOrOMEpHOE Mapabo/ImyecKoe HHTErPo-auddepeHInaIbHOe ypaBHEHNE
C MHTErpaJioM BPEMEHHON CBepTKHU B mpaBoil yactu. IIpsmast 3amada npeacrapiena 3agadeit Komm st
3TOro ypaBHeHHs. B JaHHOH cTaThe UCCedyeTcss obpaTHas 3aJa4a, 3aK/I0Yalolascs B HAXOXKICHUN
3aBUCHMOIO OT BPEMEHU UM MIPOCTPAHCTBA sI/Ipa MHTEIPUPYEMOTrO UJIEHA Ha M3BECTHOM B THUIEPILIOCKOCTH
z, = 0 for t > 0 pemenuto npstmoit 3agaun. C UCIOIB30BaHUEM PE30JIBBEHTHI SI/IPa 3TA 33,1894 CBOIAUTCS K
uccae0BaHuio boJstee yaooHoI obparHoii 3aga4un. [locienuasis 3a1a4a 3aMeHeHa SKBUBAJIEHTHOM CUCTEMOM
WHTErPaJIbHBIX YPaBHEHUII OTHOCUTEbHO HEM3BECTHBIX (DYHKIIUI, M Ha OCHOBE MPHUHIUIA, CKUMAIOIIETO
0TOOparkeHusl JI0Ka3aHa OJHO3HAYHAS PA3PEITUMOCTD MPSIMOM U 0OpaTHON 3a1ad.

KuaroueBbie cioBa: unrerpo-auddepeHinaibHoe ypaBHeHne, obpaTHas 3a/1a4a, MPOCTPAHCTBO [ Eb-
Jiepa, siJIpo, Pe30JIbBEHTA.
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