
Journal of Siberian Federal University. Mathematics & Physics 2020, 13(6), 792–796

DOI: 10.17516/1997-1397-2020-13-6-792-796
УДК 539.374

New Classes of Solutions of Dynamical Problems of Plasticity

Sergei I. Senashov∗

Olga V.Gomonova†

Irina L. Savostyanova‡

Department of Economic Information Systems,
Reshetnev Siberian State University of Science and Technology,

31 Krasnoyarsky Rabochy Av., Krasnoyarsk, 660037, Russia

Olga N. Cherepanova§

Department of Mathematical Analysis and Differential Equations,
Siberian Federal University,

Svobodny 79, Krasnoyarsk, 660041, Russia

Received 10.05.2020, received in revised form 10.06.2020, accepted 20.10.2020

Abstract.Dynamical problems of the theory of plasticity have not been adequately studied. Dynamical
problems arise in various fields of science and engineering but the complexity of original differential
equations does not allow one to construct new exact solutions and to solve boundary value problems
correctly. One-dimensional dynamical problems are studied rather well but two-dimensional problems
cause major difficulties associated with nonlinearity of the main equations. Application of symmetries
to the equations of plasticity allow one to construct some exact solutions. The best known exact solution
is the solution obtained by B.D. Annin. It describes non-steady compression of a plastic layer by two
rigid plates. This solution is a linear one in spatial variables but includes various functions of time.
Symmetries are also considered in this paper. These symmetries allow transforming exact solutions
of steady equations into solutions of non-steady equations. The obtained solution contains 5 arbitrary
functions.
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Introduction

There is an extensive literature on the theory of plasticity. The reason is that problems con-
sidered in this theory are very important for various practical applications. These problems arise
in the design of machines and technological processes where plastic deformations are present,
in various applications to armaments industry (for example, projectile penetration theory, etc.).
Contemporary and classical studies deal mainly with static problems. This is not because dy-
namical problems are not important but because of lack of progress in developing appropriate

∗sen@sibsau.ru
†gomonova@sibsau.ru
‡ruppa@inbox.ru
§cheronik@mail.ru

c⃝ Siberian Federal University. All rights reserved

– 792 –



Journal of Siberian Federal University. Mathematics & Physics 2020, 13(6), 792–796

methods to solve these problems. The spatial solution of dynamical equations was first obtained
by B. D. Annin in 1978 [2]. This solution is linear in spatial variables and contains several
arbitrary functions that depend on time. The solution was constructed with the use of group of
point symmetries admitted by the system of equations of dynamical theory of plasticity. Later,
new exact solutions of some plane dynamical problems were constructed,. They are based on
group properties of the equations. New solutions of the dynamical equations are given in [8].
They are based on transformation of steady-state solutions into non-steady solutions.

New classes of exact solutions of dynamical problems of the theory of plasticity are proposed
in the paper. They contain 5 arbitrary functions.

1. Problem definition

Let x = x1, y = x2, z = x3 is Cartesian coordinate system, u = v1, v = v2, w = v3 are
components of strain rate vector, eij are components of strain velocity tensor, σij are components
of stress tensor. The components of strain velocity tensor and stress tensor satisfy the equations
of motion

dvi
dt

= ∂iσij , i, j = 1, 2, 3. (1)

Here
dvi
dt

= ∂tvi+ vj∂jvi is a full or substantial derivative. Einstein summation convention is
applied here. Components of the stress deviator tensor and the strain velocity tensor are coaxial

σij − δijp = λeij = λ(∂jvi + ∂ivj)/2, (2)

where, δij is the Kronecker symbol, λ is a non-negative function, 3p = σii.
It is assumed that medium is incompressible. Then we have incompressibility equation

∂ivi = 0. (3)

In addition to system of equations (1)–(3), von Mises yield criterion is used

(σ11 − p)2 + (σ22 − p)2 + (σ33 − p)2 + 2(σ2
12 + σ2

13 + σ2
23) = 2k2s , (4)

where ks is the shear yield stress.

2. Group properties of the equations of dynamical theory
of plasticity

Lie group of point symmetries admitted by equations (1)–(4) is described in [3]. It is generated
by the following operators

X0 = ∂i, M = t∂t + xi∂xi , S = φ(t)∂p, Ti = fi(t)∂xi + f ′
i(t)∂vi − xif

′′
i (t)∂p,

Z1 = x2∂x3 − x3∂x2 + v2∂v3 − v3∂v2 .
(5)

There is no Einstein summation convention in (5). Two more operators Z2, Z3 can be
obtained from Z1 by circular permutation of indices. Functions φ(t), fi(t) are arbitrary functions
from the class C∞. Therefore, operators (5) generate an infinite Lie algebra. Derivatives with
respect to variable t is designated by primes.
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Group properties of differential equations can be used for various purposes. They are most
often used to construct invariant solutions – the solutions which do not change with continuous
transformations that correspond to the operators of algebra (5). The invariant solutions of the
plasticity equations and methods of their construction are described more fully in [2] and in the
literature therein. The procedure of deformation of the exact solutions using point symmetries
and the reduction of an exact solution into another one in the case of plane steady equations
of ideal plasticity were shown [7]. We use the group of point symmetries for transformation of
new stationary solutions into new non-stationary ones for the case of three-dimensional plasticity
equations. This approach was firstly applied for construction of new solutions in [8].

3. New stationary solution of system (1)–(4)

As system (1)–(4) admits the operator X0 = ∂t, one can find the invariant solutions of this
system that do not depend on the variable t. These solutions can be determined from the system

vj∂jvi = ∂iσij , σij − δijp = λeij = λ(∂jvi + ∂ivj)/2,

∂ivi = 0, (σ11 − p)2 + (σ22 − p)2 + (σ33 − p)2 + 2(σ2
12 + σ2

13 + σ2
23) = 2k2s .

(6)

System (6) is simpler than the initial one because it has fewer independent variables. Some
of solutions of the system are given in [8]. As far as we know, there are no other solutions
of the considered system [1–3]. Let us find an invariant solution of system (6) regarding the
one-dimensional subalgebra that admits the operator 1

α∂x + 1
β∂y − 2

γ ∂z. This solution has the
following form

u = Ag(αx+βy+γz), v = Bg(αx+βy+γz), w = Cg(αx+βy+γz), p = F (αx+βy+γz). (7)

Here A, B, C, α, β, γ are arbitrary constants, and functions g, F are determined from
system (6). One can obtain the following relations between the functions and the constants

αA+ βB + γC = 0, F =
1

2
g2 + δ,

αA2 + βAB + γAC = α, αAB + βB2 + γBC = β, αAB + βBC + γC2 = γ,
(8)

here δ is an arbitrary constant. Equalities (7) and (8) imply that all components of the stress
tensor are constant and have the form

σ11 = p+
αA

D
, σ22 = p+

βB

D
, σ33 = p+

γC

D
,

σ12 =
βA+ αB

2D
, σ13 =

γA+ αC

2D
, σ23 =

γB + βC

2D
,

D2 = 2k2s

(
(αA)2 + (βB)2 + (γC)2 +

1

2
(βA+ αB)2 +

1

2
(γA+ αC)2 +

1

2
(γB + βC)2

)
.

(9)

The similar solution with the absence of convective terms was constructed in [8].

4. Deformation of stationary solution of system (1)–(4)

Here, the stationary solution obtained above with the use of transformations (5) is deformed
into non-stationary solution of initial system (1)–(4). For this purpose, a notable property of
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the point symmetries is used, namely, the symmetries transform any exact solution of system
(1)–(4) into a new exact solution of this system.

System (1)–(4) admits operators S = φ(t)∂p, Ti = fi(t)∂xi + f ′
i(t)∂vi − xif

′′
i (t)∂p, (i =

1, 2, 3). It means that the system is not changed under the following transformations

x′
i = xi + aifi(t), v′i = vi + aif

′
i(t), p′i = p−

3∑
i=1

aixif
′′
i (t) + a4φ(t). (10)

Here variables without primes are initial ones and variables with primes are obtained as a result of
point symmetries that correspond to subalgebra generated by the operators S, Ti. Parameters ai
are group parameters which change continuously in neighbourhood of zero x1 = x, x2 = y, x3 =

z.
Let us assume that v1i , p1 is a solution of system (1)–(4). Then, in accordance with (9), v2i , p2

of the form

v21 = v11

(
t, x1 + a1f1(t), x2 + a2f2(t), x3 + a3f3(t)

)
+ a1f

′
1(t),

v22 = v12

(
t, x1 + a1f1(t), x2 + a2f2(t), x3 + a3f3(t)

)
+ a2f

′
2(t),

v23 = v13

(
t, x1 + a1f1(t), x2 + a2f2(t), x3 + a3f3(t)

)
+ a3f

′
3(t),

p2 = p1

(
t, x1 + a1f1(t), x2 + a2f2(t), x3 + a3f3(t)

)
−

3∑
i=1

xif
′′
i (t)

)
(11)

are also an exact solution of the same system. This property is used to construct new solutions
of system (1)–(4). Let us apply formulae (11) to the solution constructed above. Then we obtain

u = Ag

(
α(x+ a1f1(t)) + β(y + a2f2(t)) + γ(z + a3f3(t)

)
+ a1f

′
1(t),

v = Bg

(
α(x+ a1f1(t)) + β(y + a2f2(t)) + γ(z + a3f3(t)

)
+ a2f

′
2(t),

w = Cg

(
α(x+ a1f1(t)) + β(y + a2f2(t)) + γ(z + a3f3(t)

)
+ a3f

′
3(t),

p =
1

2
g2
(
α(x+ a1f1(t)) + β(y + a2f2(t)) + γ(z + a3f3(t)

)
−

−xa1f
′′
1 (t)− ya2f

′′
2 (t)− za3f

′′
3 (t) + φ(t).

(12)

The components of the stress tensor corresponded to the velocity field (12) coincide with (9).

Conclusion

A non-steady solution containing 5 variable functions was constructed from a stationary
solution. The method of construction of non-stationary solutions of dynamical equations of
plasticity from a stationary solution was shown in the paper. These solutions can be used for
the analysis of technological processes when the stress state is stationary but the process is
dynamical.
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Аннотация. Динамические задачи – это наименее изученная область теории пластичности.
Динамические задачи возникают в самых разных областях техники и науки, но сложность исход-
ных дифференциальных уравнений не позволяет строить точные решения и корректно численно
решать краевые задачи. Неплохо исследованы одномерные динамические задачи пластичности, но
уже двумерные вызывают непреодолимые математические сложности, вызванные нелинейно-
стью основных уравнений. Изучение симметрий уравнений пластичности позволило построить
некоторые точные решения. Наиболее известное из них это решение Б.Д.Аннина, описывающее
нестационарное сжатие пластического слоя жесткими плитами. Это решение линейно по про-
странственным переменным, но в него входят произвольные функции времени. В предлагаемой
работе также используются симметрии.
Ключевые слова: дифференциальные уравнения, пластичность, динамические задачи, точные
решения, симметрии.
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