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1. Problem Statement

The urgency of a theoretical study of filtration problems in porous media is associated with
their wide application in solving important practical problems: filtration near river dams, reser-
voirs and other hydraulic structures; movement of magma in the earth’s crust, etc. In many
practical problems the porosity of the medium is variable, and the medium is deformed. The
model of fluid filtration in a viscous non-isothermal porous medium considered in the work is
based on the laws of conservation of masses and energy, Darcy’s law, as well as rheological
relationships for porosity and pressures. The system of equations has the following form [1,2]:

∂(1− ϕ)ρs
∂t

+
∂

∂x
((1− ϕ)ρsvs) = 0,

∂(ρfϕ)

∂t
+

∂

∂x
(ρfϕvf ) = 0, (1)

ϕ(vf − vs) = −K(ϕ)

µ
(
∂pf
∂x

− ρfg),
∂vs
∂x

= − 1

ξ(ϕ, θ)
pe, (2)

∂ptot
∂x

= −ρtotg, ρtot = ϕρf + (1− ϕ)ρs, pe = ptot − pf , ptot = ϕpf + (1− ϕ)ps, (3)

(ρfcfϕ+ ρscs(1− ϕ))
∂θ

∂t
+ (ρfcfϕvf + ρscs(1− ϕ)vs)

∂θ

∂x
=

∂

∂x
(λ

∂θ

∂x
), (4)

and is solved in the domain (x, t) ∈ QT = Ω× (0, T ), Ω = (0, 1), under the boundary and initial
conditions
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vs |x=0,x=1= vf |x=0,x=1=
∂θ

∂x
|x=0,x=1= 0, ϕ |t=0= ϕ0(x), θ |t=0= θ0(x). (5)

This initial-boundary value problem describes the one-dimensional motion of a two-phase
medium between impenetrable heat-insulated walls [1, 2]. Here ρs, ρf , vs, vf , are, respectively,
the constant real densities and velocities of phases (s is solid porous medium, f is liquid), ϕ is
porosity (fraction of pores), ps and pf are pressures in solid and liquid phases, ptot is total
medium pressure, pe is effective pressure, ρtot is two-phase density, θ is absolute temperature,
g isdensity of the mass forces, cs and cf are heat capacities for at constant volume of phases,
K(ϕ) is permeability coefficient, µ is dynamic fluid viscosity, ξ(ϕ, θ) is bulk viscosity coefficient,
λ(ϕ) is heat conductivity coefficient (the prescribed functions). The problem is written in Euler
coordinates (x, t).

For the permeability coefficient K(ϕ), a well-known dependence of the form is used K(ϕ) =

K ′ϕn, where K ′ = const > 0, n = 3 [1]. The bulk viscosity coefficient ξ(ϕ, θ) is usually taken as
ξ(ϕ, θ) = η(θ)/ϕm, m ∈ [0, 2], where η(θ) is the coefficient of dynamic viscosity of the skeleton,
which characterizes the relationship between the strain rate tensor and the stress tensor and is
determined from the experiment under uniaxial compression [3, 4]. The following dependence is
taken as a model one: η(θ) = ηr exp(Qr(1−θ/θr)/Rθ), ηr, Qr, θr, R are positive constants (analog
of the Arrhenius formula for the dependence of the reaction rate on temperature) [1]. The thermal
conductivity coefficient of the medium λ(ϕ) is taken in the form λ(ϕ) = λfϕ+ λs(1− ϕ), where
λf , λs are the thermal conductivity of liquid and solid phase (averaged thermal conductivity) [2].
In what follows, the notations are used k(ϕ) = K(ϕ)/µ, 1/ξ(ϕ, θ) = a1(ϕ)ξ1(θ), a1(ϕ) = ϕm,
ξ1(θ) = 1/η(θ).

The local in time solvability of the initial-boundary value problem for the equations (1)–(3)
at constant temperature in the case of a compressible fluid was established in the work [5]. A
numerical analysis of the initial-boundary value problem for the system (1)–(3) is carried out in
[6]: difference schemes are constructed and their convergence is established. In paper [7], the
global solvability of the problem (1)– (3) is proved in the case of constant phase densities.

Systems of equations similar in structure were considered in [8–16]. The local solvability of
the Cauchy problem in Sobolev spaces was established in [8]. The simplest models of deformation
of a poroelastic medium were studied in [9, 10]. Self-similar solutions of the traveling wave type
for the equations of magma motion were considered in [11,12]. The works [14,15] are devoted to
numerical calculations. The problem of substantiating multidimensional models of fluid filtration
in poroelastic media is open.

In the notation of function spaces, we follow [15]: Cl+α,r+β(QT ) is the Hölder space, where
l, r are natural numbers, (α, β) ∈ (0, 1], with the norm ||f ||Cl+α,r+β(QT ).

In this paper, we prove the local classical solvability of the problem (1)–(4) in the case
when the bulk viscosity coefficient ξ is a function of porosity and temperature. An example of
decidability "in the whole" is given.

Definition. By a solution of problem (1)–(5) we mean the set of functions ϕ, ϕt, θ, vs, vf ∈
C2+α,1+β(QT ), pf , ps ∈ C1+α,1+β(QT ), such that 0 < ϕ < 1, 0 < θ < ∞. These functions satisfy
the equations (1)–(4) and the initial and boundary conditions (5) and regarded as continuous
functions in QT .

Theorem 1. Suppose that the data of problem (1)–(5) satisfies the following conditions:
1) the functions k(ϕ), a1(ϕ), λ(ϕ), ξ1(θ) and their derivatives up to the second order are

continuous for ϕ ∈ (0, 1), θ ∈ (0,∞) and satisfy the conditions

k−1
0 ϕq1(1− ϕ)q2 6 k(ϕ) 6 k0ϕ

q3(1− ϕ)q4 ,
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k−1
0 ϕq5(1− ϕ)q6 6 λ(ϕ) 6 k0ϕ

q7(1− ϕ)q8 , ξ1(θ) > 0, θ ∈ (0,∞),

1

ξ(ϕ)
= a0(ϕ)ϕ

α1(1− ϕ)α2−1, 0 < R1 6 a0(ϕ) 6 R2 < ∞,

where k0, αi, Ri, i = 1, 2 are positive constants, q1, ..., q8 are fixed real numbers.
2) the function g, the initial functions ϕ0 and θ0 satisfy the following smoothness conditions:

g ∈ C1+α,1+β(Q̄T ), θ0, ϕ0 ∈ C2+α(Ω̄),

and the inequalities

0 < m0 6 ϕ0(x) 6 M0 < 1, 0 < m 6 θ0(x) 6 M < ∞, |g(x, t)| 6 g0 < ∞, x ∈ Ω̄, t ∈ (0, T ),

where m0,M0,m,M, g0 are given positive constants.
Then problem (1)–(5) has a local solution, i.e., there exists a value of t0 such that

ϕ(x, t), ϕt(x, t), θ(x, t) ∈ C2+α,1+β(Q̄t0), (vs(x, t), vf (x, t)) ∈ C2+α,β(Q̄t0), (pf (x, t), ps(x, t)) ∈
C1+α,β(Q̄t0).

Moreover, 0 < ϕ(x, t) < 1, 0 < θ(x, t) < ∞ in Q̄t0 .

Theorem 2. Let, in addition to the conditions of Theorem 1, the functions k(ϕ), ξ(ϕ, θ) satisfy
the conditions

k(ϕ) =
K

µ
, ξ(ϕ, θ) =

η(θ)

ϕ
,

where K,µ are positive constants.
Then for all t ∈ [0, T ], T < ∞ uniqueness solution of problem (1)–(5) exists, and there are

numbers 0 < m1 < M1 < 1, 0 < m2 < M2 such that m1 6 ϕ(x, t) 6 M1, m2 6 θ(x, t) 6 M2,
(x, t) ∈ QT .

2. Local solvability

Proof of Theorem 1. When proving Theorems 1 and 2, it is convenient to use the Lagrange
variables [17]. Suppose that x̄ = x̄(τ, x, t) is a solution of the Cauchy problem

∂x̄

∂τ
= vs(x̄, τ), x̄ |τ=t= x.

We set x̂ = x̄(0, x, t) and take x̂ and t for the new variables. Then Ĵ(x̂, t) =
∂x̂

∂x
(x, t) =

= (1 − ϕ(x̂, t))/(1 − ϕ0(x̂)) is the Jacobian of the transformation. Following [5], we rewrite the
system (1)–(4):

∂

∂t

(
ϕ

1− ϕ

)
=

∂

∂x

(
k(ϕ)(1− ϕ)

∂

∂x

(
1

ξ1(θ)

∂G(ϕ)

∂t

)
− k(ϕ)g(ρtot + ρf )

)
, (6)

(
(1− ϕ)

∂

∂x

(
1

ξ1(θ)

∂G

∂t

)
− g(ρtot + ρf )

)
|x=0,x=1= 0, ϕ |t=0= ϕ0(x), (7)(

csρs + cfρf
ϕ

1− ϕ

)
∂θ

∂t
+ cfρfϕ(vf − vs)

∂θ

∂x
=

∂

∂x

(
λ(1− ϕ)

∂θ

∂x

)
, (8)

∂θ

∂x
|x=0,x=1= 0, θ |t=0= θ0(x), (9)

∂G(ϕ)

∂t
= ξ1(θ)pe,

dG

dϕ
=

1

a1(ϕ)(1− ϕ)
. (10)
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In the system (6)–(10), the basic equations are (6) and (8) for the required functions ϕ and θ.
We substitute in the coefficients of the equation (6) and the boundary condition (7) instead

of θ(x, t) an arbitrary smooth function θ0(x, t) ∈ C2+α1,1+β1(QT ), which satisfies the inequalities
0 < m 6 θ0(x) 6 M < ∞. We retain the previous notation ϕ for solving the arising problem and
the latter is called Problem I.

Lemma 1. Let the data of problem I satisfy the conditions of the theorem. Then problem I has
a unique local solution, i.e., there exists a value of t0 such that

(ϕ, ϕt) ∈ C2+α,1+β(Qt0), ϕ ∈ (0, 1).

Proof. Suppose that z =
1

ξ1(θ0)

∂G

∂t
, we arrive at the following problem for G, z :

z =
1

ξ1(θ0)

∂G

∂t
, G |t=0= G(ϕ0) = G0(x), (11)

z

d(G, θ0)
− ∂

∂x

(
a(G)

∂z

∂x
− b(G)

)
= 0,

(
a(G)

∂z

∂x
− b(G)

)
|x=0,x=1= 0, (12)

where

d(G, θ0))) =
1− ϕ(G)

a1(ϕ(G))ξ1(θ0)
, a(G) = k(ϕ(G))(1− ϕ(G)), b(G) = k(ϕ(G))g(ρtot + ρf ).

Since 0 < m0 6 ϕ0(x) 6 M0 < 1 and the function G(ϕ) is monotone, then G(m0) 6 G0(x) 6
G(M0). From (11) when the inequality max(x,t) |ξ1(θ)z(x, t)| 6 c0 we have that there is a value
t0, such that for all t 6 t0 the estimates take place

G1(m0) = G(m0)− c0t0 6 G(x, t) 6 G(M0) + c0t0 = G2(M0),

0 6 G−1(G1(m0)) 6 ϕ(x, t) 6 G−1(G2(M0)) < 1.

(13)

Let G0(x, t) be a function continuous in x and t, satisfying inequalities (13) and having a
continuous derivative ∂G0/∂x with respect to x, t. Substituting G0(x, t) instead of G(x, t) into
the coefficients of the equation (12) and the boundary conditions, we arrive at a linear problem
for z, in which a > 0, b > 0 and d > 0. The solution to this problem is unique. Existence follows,
for example, from Hilbert’s theorem [18] for ordinary linear equations of the second order. The t

variable plays the role of a parameter. Thus, (z, zx, zxx) ∈ C(Qt0). After finding z(x, t), we can
find a new value G(x, t) from the equation (11). This value will satisfy the condition (13).

To prove the solvability of problem I, we use the method of successive approximations. Let
zi(x, t) and Gi(x, t) be a solution to the problem

∂Gi+1

∂t
= ξ1(θ0)z

i+1, Gi+1(x, 0) = G0(x),

zi+1

d(Gi)
− ∂

∂x

(
a(Gi)

∂zi+1

∂x
− b(Gi)

)
= 0,(

a(Gi)
∂zi+1

∂x
− b(Gi)

)
|x=0,x=1= 0,

where i = 0, 1, 2, . . . . Substituting G0(x) into the equation for z at the first step, we find z1(x, t).

After that, from the equation for G we find G1(x, t), etc. For each i there is a unique solution
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zi(x, t) and Gi(x, t), satisfying (13). It is checked in a standard way that for a small value of t0
the solutions zi(x, t), Gi(x, t) and their derivatives up to the second order inclusive are bounded
uniformly in i.

We put yi+1 = zi+1 − zi, ωi+1 = Gi+1 −Gi. We have

∂ωi+1

∂t
= ξ1(θ0)y

i+1, ωi+1 |t=0= 0,

yi+1

d(Gi)
+A1ω

i − ∂

∂x

(
ayi+1

x +A2ω
i
)
= 0,

(ayi+1
x +A2ω

i)|x=0,x=1 = 0,

where the coefficients A1, A2 are easily recovered and are limited. We have from this system the
following inequalities∫ 1

0

(|yi+1|2 + |yi+1
x |2)dx 6 c1

∫ 1

0

|ωi|2dx 6 c1 max
x

|ωi|2,

max
x

|ωi+1| 6 c1

∫ t

0

max
x

|yi+1|dτ,

where the constant c1 does not depend on i. Taking into account the last inequality for the

function vi(t) = maxx |yi(x, t)|2 we get vi+1(t) 6 c2
t∫
0

vi(τ)dτ and therefore [19], vi(t) 6

(c2T )
iv0/i! → 0 for i → ∞. After that it is easy to establish that the sequences zi, Gi are

fundamental in C(Qt0) and have limits z(x, t) ∈ C(Qt0) and G(x, t) ∈ C(Qt0). The sequences
zix, z

i
xx, G

i
t are also fundamental. Passing to the limit as i → ∞, we obtain that the limit func-

tions satisfy the problem (11), (12). The uniqueness of the solution is proved similarly to [7].
Increasing the smoothness of the initial data to those specified in the conditions of Theorem 1
allows us to obtain that ϕ(x, t), ϕt(x, t) ∈ C2+α,1+β(Q̄t0).

Lemma 1 is proved. �
Substituting θ0(x, t) and the solution to Problem I into the coefficients of equation (8), we

arrive at a linear problem for θ(x, t) of the form

Q
∂θ

∂t
+ V

∂θ

∂x
=

∂

∂x

(
λ(1− ϕ)

∂θ

∂x

)
,

∂θ

∂x
|x=0,x=1= 0, θ |t=0= θ0(x),

where

Q = ρscs + ρfcf
ϕ

1− ϕ
, V = cfρfϕ(vf − vs) = ρfcfk(ϕ)

(
(1− ϕ)

∂z

∂x
+ g(ρtot + ρf )

)
.

The unique solvability of this problem in Holder classes follows from [19], and the solution
satisfies the estimate

0 < θ = min
x

θ0(x) 6 θ(x, t) 6 max
x

θ0(x) = θ̄ < ∞.

After these remarks, the local solvability of the problem (6)–(9) can easily be obtained using the
Schauder theorem according to the scheme used in [7].
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After finding ϕ, θ, the remaining functions from the system (1)–(4) can be defined as follows.
We find the phase velocities from (1)

vf (x, t) = − 1

ϕ

∫ x

0

∂ϕ

∂t
dξ ∈ C2+α,β(Qt0),

vs(x, t) = − 1

1− ϕ

∫ x

0

∂(1− ϕ)

∂t
dξ ∈ C2+α,β(Qt0).

From (3) we find ptot(x, t) = p0(t)−
x∫
0

ρtotgdξ ∈ C3+α,1+β(Qt0).

From (2) we have pe(x, t) = −∂vs
∂x

ξ(ϕ, θ) ∈ C1+α,β(Qt0), then

pf (x, t) = ptot − pe ∈ C1+α,β(Qt0), ps(x, t) =
ptot
1− ϕ

− ϕ

1− ϕ
pf ∈ C1+α,β(Qt0).

Theorem 1 is proved. �

3. Global solvability

Proof of Theorem 2. By Theorem 1, we will assume that on the interval [0, t0] there exists a
solution to the problem (1)–(5), and 0 < ϕ(x, t) < 1, 0 < θ(x, t) < ∞, x ∈ Ω, t ∈ [0, t0]. After
obtaining the necessary a priori estimates that do not depend on the value of t0, the local solution
can be continued to the entire segment [0, T ].

Lemma 2. Under the conditions of Theorem 2, for all t ∈ [0, T ] the following relations hold:∫ 1

0

s(x, t)dx =

∫ 1

0

s0(x)dx, s =
ϕ

1− ϕ
, s0 = s(x, 0), (14)

0 < θ ≡ min
x∈[0,1]

θ0(x) 6 θ(x, t) 6 max
x∈[0,1]

θ0(x) ≡ θ < ∞, (15)

∫ 1

0

1

ξ1(θ)

a1
1− ϕ

(
∂G

∂t

)2

dx+
1

2

∫ 1

0

k(ϕ)(1− ϕ)

∣∣∣∣ ∂∂x
(

1

ξ1(θ)

∂G

∂t

)∣∣∣∣2 dx 6

6 1

2

∫ 1

0

k(ϕ)

1− ϕ
g2(ρtot + ρf )

2dx 6 N. (16)

Hereinafter, N denotes a constant that depends only on the data of the problem (1)–(5) and does
not depend on t0.

Proof. Let us integrate the equation (6) over x from 0 to 1 and take into account the boundary
condition (7). After integration over time from 0 to the current value of t, we arrive at the
equality (14).

The equation (8) is written in a divergent form:

∂

∂t

(
θ(csρs + cfρf

ϕ

1− ϕ
)

)
+

∂

∂x

(
θcfρfϕ(vf − vs)− λ(1− ϕ)

∂θ

∂x

)
=

= θ

[
∂

∂t

(
csρs + cfρf

ϕ

1− ϕ

)
+

∂

∂x
(cfρfϕ(vf − vs))

]
. (17)
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The right-hand side of this equality is equal to zero, since the second equation from (1) in
Lagrange variables becomes [5]

∂

∂t

(
ϕ

1− ϕ

)
+

∂

∂x
(ϕ(vf − vs)) = 0.

In particular, from (17) we have∫ 1

0

(
cfρf

ϕ

1− ϕ
+ csρs

)
θdx =

∫ 1

0

(
cfρf

ϕ0

1− ϕ0
+ csρs

)
θ0dx,

and therefore θ(x, t) ∈ L1[0, 1] for all t ∈ [0, T ].
Let the smooth function κ(θ) satisfy the condition κ′′(θ) = d2κ/dθ2 > 0. Multiplying the

equation (8) by κ′(θ) = dκ/dθ, and following the equality (17) we reduce the resulting equality
to the form

∂

∂t

((
csρs + cfρf

ϕ

1− ϕ

)
κ(θ)

)
+

∂

∂x
(cfρfϕ(vf − vs)κ(θ)) =

=
∂

∂x

(
λ(1− ϕ)

∂κ(θ)

∂x

)
− κ′′(θ)

(
∂θ

∂x

)2

λ(1− ϕ). (18)

In the case κ(θ) = θp, p > 1, from (18) we deduce∫ 1

0

θp(x, t)dx 6 max
x∈[0,1]

(
cfρf
csρs

ϕ0(x)

1− ϕ0(x)
+ 1

)∫ 1

0

|θ0(x)|pdx.

Whence, in the standard way, we get that θ(x, t) 6 maxx∈[0,1] θ
0(x) for all t ∈ [0, T ], x ∈ [0, 1].

Put θ1 = 1/θ and the equation (6) can be represented as‘(
csρs + cfρf

ϕ

1− ϕ

)
∂θ1
∂t

+ cfρf (vf − vs)
∂θ1
∂x

=
∂

∂x

(
λ(1− ϕ)

∂θ1
∂x

)
− 2λ(1− ϕ)

(
∂θ1
∂x

)2

θ.

Multiplying (8) by κ′
1(θ1) = dκ1/dθ1, κ1 = θp1 , and integrating over x, we arrive at a relation of

the form (14) for θ1(x, t). Therefore θ(x, t) > minx∈[0,1] θ
0(x) for all t ∈ [0, T ], x ∈ [0, 1].

Multiplying the equation (6) by
1

ξ1(θ)

∂G

∂t
and integrating over x we arrive at the relation

∫ 1

0

1

ξ1(θ)

a1(ϕ)

1− ϕ

(
∂G

∂t

)2

dx+

∫ 1

0

k(ϕ)(1− ϕ)| ∂
∂x

(
1

ξ1(θ)

∂G

∂t

)
|dx =

=

∫ 1

0

k(ϕ)g(ρtot + ρf )
∂

∂x

(
1

ξ1(θ)

∂G

∂t

)
dx 6

6 1

2

∫ 1

0

k(ϕ)(1− ϕ)

∣∣∣∣ ∂∂x
(

1

ξ1(θ)

∂G

∂t

)∣∣∣∣2 dx+
1

2

∫ 1

0

k(ϕ)

1− ϕ
g2(ρtot + ρf )

2dx.

The last term on the right-hand side is bounded uniformly in t0, since ϕ < 1 and, therefore,
ρtot 6 max(ρf , ρs). Finally, due to (14) we have∫ 1

0

dx

1− ϕ
= 1 +

∫ 1

0

s0(x)dx.

Lemma 2 is proved. �
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Lemma 3. Under the conditions of Theorem 2, for all t ∈ [0, T ], x ∈ [0, 1] the estimate takes
place

0 < m 6 ϕ(x, t) 6 M < 1. (19)

Proof. From the inequality (16) by the conditions of Theorem 2 it follows

∫ 1

0

∣∣∣∣ ∂∂x
(

1

ξ1(θ)

∂G

∂t

)∣∣∣∣ dx 6
(∫ 1

0

dx

1− ϕ

)1/2
(∫ 1

0

(1− ϕ)

∣∣∣∣ ∂∂x
(

1

ξ1(θ)

∂G

∂t

)∣∣∣∣2 dx
)1/2

.

From (6) it also follows that ∫ 1

0

a1
1− ϕ

∂G

∂t
dx = 0,

and, therefore, there is a point x0(t) at which
∂G

∂t
(x0(t), t) = 0. Therefore

min
x∈(0,1)

∣∣∣∣ 1

ξ1(θ)

∣∣∣∣ ∣∣∣∣∂G∂t
∣∣∣∣ 6 ∣∣∣∣ 1

ξ1(θ)

∂G

∂t

∣∣∣∣ 6 ∫ 1

0

∣∣∣∣ ∂∂x
(

1

ξ1(θ)

∂G

∂t

)∣∣∣∣ dx 6 N.

Taking into account (15) and the conditions of Theorem 2, from the last inequality we have

|lns(x, t)| 6 |G(x, t)| 6 |G0(x)|+N1T 6 N2.

Then we arrive at (19) with m = (1 + eN2)−1, M = (1 + e−N2)−1.

Let z =
1

ξ1(θ)

∂G

∂t
. The problem (6), (7) takes the form

a1(ϕ)ξ1(θ)z

(1− ϕ)
=

∂

∂x

(
k(ϕ)(1− ϕ)

∂z

∂x
− k(ϕ)g(ρtot + ρf )

)
,

(
k(ϕ)(1− ϕ)

∂z

∂x
− k(ϕ)g(ρtot + ρf )

)
|x=0,x=1= 0.

By Lemmas 2 and 3, we have∫ t

0

∫ 1

0

θ2xdxdτ +

∫ 1

0

(z2 + z2x + θ2x)dx 6 N3,

where N3 is a positive constant depending on the initial data, parameters and problem constants,
but does not depend on t0.

Using the representation

G(ϕ) =

∫ t

0

ξ1(θ)zdτ +G(ϕ0),

we get

G′(ϕ)ϕx =

∫ t

0

(zxξ1(θ) + zξ′1θx)dτ +Gx(ϕ
0).

Therefore ∫ 1

0

ϕ2
xdx 6 N4.

The equation for function z(x, t) takes form

a0(ϕ, θ)z = a1(ϕ)zxx + a′1(ϕ)ϕxzx + a′2(ϕ)ϕx.
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The coefficients a0(ϕ, θ) > 0, a1(ϕ) > 0, a2(ϕ) are limited and easy to calculate.
We have ∫ 1

0

z2xxdx 6 C1

(∫ 1

0

(z2 + ϕ2
x)dx+

∫ 1

0

|zxxzxϕx|dx
)
,

where

I1 =

∫ 1

0

|zxx||zxϕx|dx 6 max |zx|
(∫ 1

0

z2xxdx

)1/2(∫ 1

0

ϕ2
xdx

)1/2

6

6 C1

((∫ 1

0

z2xxdx

)1/2(∫ 1

0

ϕxdx

)1/2

+

(∫ 1

0

z2xxdx

)3/4(∫ 1

0

ϕxdx

)1/2
)
.

The constant C1 is not depend on t0.
Therefore

max
x

|zx|+
∫ 1

0

z2xxdx 6 N4.

The equation for the function θ(x, t) has the form

θt + a3(ϕ, zx)θx = a4(ϕ)θxx + a5(ϕ)ϕxθx,

where the coefficients a4(ϕ) > 0, a3(ϕ, zx), a5(ϕ) are limited and easy to calculate.
Since ∫ 1

0

|θxθxxϕx|dx 6 max
x

|θx|
(∫ 1

0

θ2xxdx

)1/2(∫ 1

0

ϕ2
xdx

)1/2

6

6 c

(∫ 1

0

θ2xxdx

)3/4(∫ 1

0

ϕ2
xdx

)1/2(∫ 1

0

θ2xdx

)1/4

,

then from the equation for θ we have∫ 1

0

θ2xdx+

∫ t

0

∫ 1

0

(θ2t + θ2xx)dxdτ 6 N5.

To complete the proof of Theorem 2, it is necessary to obtain the Holder continuity in x, t

of the functions ϕx and zx included in the coefficients of the equations for z and θ. From the
embedding zxx ∈ L2[0, 1] and the representation for ϕ we have ϕxx ∈ L2[0, 1]. Then for w = θx
we get ∫ 1

0

(θ2t + w2
x)dx+

∫ t

0

∫ 1

0

(w2
t + w2

xx)dxdτ 6 N6.

After that we deduce that |ϕxt| 6 N7. Finally, following [7] for the function σ = zt we get
σx ∈ L2[0, 1].

Theorem 2 is proved. �

Conclusion

The local solvability in the Holder classes of the initial-boundary value problem of one-
dimensional fluid motion in a nonisothermal viscous porous medium is proved. An example of
decidability is given at any finite time interval.

The work was carried out in accordance with the State Assignment of the Russian Ministry
of Science and Higher Education entitled ‘Modern methods of hydrodynamics for environmental
management, industrial systems and polar mechanics’ (Govt. contract code: FZMW-2020-0008,
24 January 2020).
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Фильтрация жидкости в неизотермической вязкой
пористой среде

Александр А.Папин
Маргарита А. Токарева

Рудольф А. Вирц
Алтайский государственный университет

Барнаул, Российская Федерация

Аннотация. Для системы уравнений одномерного нестационарного движения жидкости в тепло-
проводной вязкой пористой среде доказана разрешимость начально-краевой задачи.

Ключевые слова: закон Дарси, пороупругость, фильтрация, разрешимость, теплопроводность.
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