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1. Introduction and preliminaries

The notion of complexity is widely used in Mathematics and Computer Science in the context
of several various abstract objects. The computational complexity of algorithms, the algebraic
complexity of polynomials, the Rademacher complexity in the computational learning theory or
the social complexity in the social systems are the concepts of great importance in the corre-
sponding fields of science. The present work is devoted to the particular type of complexity —
the analytic complexity of bivariate holomorphic functions.

The notion of analytic complexity is closely related to Hilbert’s 13th problem, which was
solved by A.N.Kolmogorov and V.I.Arnold in 1957 [1]. The initial formulation of Hilbert’s
13th problem asks whether any continuous function of several variables can be represented as
a finite superposition of bivariate functions [17]. The problem of finding similar representations
for analytic functions has given rise to the theory of the analytic complexity. The main objects
under consideration in this theory are the analytic complexity classes.

Definition 1 (See [2]). Let O(U(zo,y0)) denote the set of holomorphic functions in an open
neighborhood U(zo,10) of a point (xq,yo) € C2. The class Cly of analytic functions of analytic
complexity zero is defined to comprise the functions that depend on at most one of the variables.
A function f(x,y) is said to belong to the class Cl,, of functions with analytic complexity n > 0 if
there exists a point (zo,yo) € C? and a germ §(z,y) € O(U(xo,90)) of this function holomorphic
at (xo,yo) such that f(x,y) = c(a(z,y) + b(x,y)) for some germs of holomorphic functions a,b €
Cl,—1 and ¢ € Cly. If there is no such representation for any finite n, then the function f is
said to be of infinite analytic complexity.
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Example 1. A generic element of the first complexity class Cl; is a function of
the form f3(fi(z) + f2(y)). A function in Cly can be represented in the form

fr (fs(fi(x) + f2(y)) + fo(f3(x) + fa(y))), where fi(-) are univariate holomorphic functions,
i=1,....7.

For any class of analytic complexity Cl,,n € N there exists a system of differential polyno-
mials with constant coefficients A,, which annihilates a function if and only if it belongs to Cl,,.

Example 2 (See [2]). For a bivariate function f(x,y) consider the differential polynomial
AL(f) = ol ) Fiay = ()2 Fofogy + Foy (P22 oy — Foy (£ Fia
This differential polynomial vanishes if and only if its argument f € Cl;.

The problem of defining whether a function belongs to an analytic complexity class is equiv-
alent to computing the corresponding system of differential polynomials. Note that this is a
problem of formidable computational complexity [4,11] and a direct approach to its solution
appears to be inappropriate.

An important question is a possible connection between the classes of finite analytic com-
plexity and hypergeometric functions. In this paper we consider hypergeometric functions
as solutions of hypergeometric systems in the sense of Horn [8,10]. We choose a matrix
AeZm™ " = (A, i=1,...,m,j=1,...,n) and a vector of parameters ¢ = (c1,...,¢n) € C™.
We denote the rows of this matrix by A;, ¢ =1,...,m

Definition 2. The hypergeometric system (or the Horn system) Horn(A,c) is the following
system of partial differential equations:

z;Pi(0)f(x) = Q;(0)f(x), j=1,...,n, (1)

where

- 11 H (AZ,S )i+ 1y )

i:Ai>0 () _g
J

|Ai]—1

- II 1II (AZ,S +cz+l“)

i A”<0 l( )_0
J

0

and 0 = (01,...,0,), b; :xjaj'
J

It has been conjectured in [14] that any hypergeometric function has finite analytic complexity.
Hypergeometric systems of equations differ greatly from the differential criteria for the analytic
complexity classes, but numerous computer experiments suggest that the conjecture is true in a
lot of particular cases [6,7]. The case of hypergeometric systems with low holonomic rank has
been considered in [9].

The set of functions of infinite analytic complexity is also a matter of interest. Until recently,
all known examples of such functions were differentially transcendental functions, that is, func-
tions that are not solutions to any nonzero differential polynomial with constant coefficients.
Important examples of differentially algebraic functions of infinite analytic complexity have been
presented in [15,16].

A bivariate hypergeometric system can be defined by an integer convex polygon and a complex
vector of parameters as explained in the next definition.
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Definition 3. Let l; denote the generator of the sublattice {s € Z™ : (A;,s) = 0} and let
k; be the number of elements in the set {A1,..., Ay}, which coincide with A;. Let us define
the polygon P(A) (see [13]) as the integer convexr polygon whose sides are translations of the
vectors k;l;, the vectors Aq,..., A, being the outer normals to its sides. We will say that the
hypergeometric system Horn(A,c) is defined by the polygon P(A) and the vector ¢ € C.

Definition 4. A polygon is called a zonotope if it can be represented as the Minkowski sum of
segments.

In this article we investigate the analytic complexity of solutions to hypergeometric systems
of equations (1) defined by zonotopes.

The present paper is organized as follows. In Section 2 we investigate particular cases of hy-
pergeometric systems defined by zonotopes and analyze the analytic complexity of their solutions.
We formulate and prove an estimate of the analytic complexity for Puiseux polynomial solutions
to such systems in terms of the defining matrices and parameter vectors. In Section 3 we present
algorithms for finding the supports of Puiseux polynomial solutions to hypergeometric systems
and estimating the analytic complexity of polynomials. In Section 4 we consider examples of
hypergeometric systems and estimate the analytic complexity of their solutions. Throughout
the rest of the paper by «polynomial solutions to hypergeometric systems» we mean Puiseux
polynomial solutions.

We use the Wolfram Mathematica package HyperGeometry for solving hypergeometric
systems we investigate in this article. The package is available for free public use at
https://www.researchgate.net/publication/318986894 HyperGeometry, the description of avail-
able functions is given in [12].

2. Hypergeometric systems defined by zonotopes

Let us consider the special case of hypergeometric systems defined by zonotopes. Numerous
experiments suggest that the analytic complexity of polynomial solutions to such systems can be
much lower than its estimate based on their supports (see [3, Proposition 4]).

The set of hypergeometric systems defined by zonotopes enjoys the following properties:

a) these systems are holonomic for generic values of parameters;
b) the holonomic rank of a hypergeometric system (see Theorem 2.5 in [5]) is given by

rank(Horn(4, ¢)) = di1ds — Z Vij, (2)
A;,A; lin. dependent

m
where d; = Y A;;,j=1,2and
i=1
Azz'j >0

- min (|41 Ajal, |Aj14i2]), if A;, A are in opposite open quadrants of Z2,
7771 0, otherwise.

For the hypergeometric systems defined by zonotopes there is another formula for computing
their holonomic rank (see Proposition 1 in [9]), which in some cases may be more suitable;

¢) for any number of rows (a;, b;) belonging to the matrix A defining such a system, A contains
the same number of rows (—a;, —b;). Thus the rows of A can be grouped into two matrices A, —A.
This representation is in general not unique.
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d) for a hypergeometric system defined by a zonotope one can always choose parameter
values such that any solution to the resulting system is a polynomial (see [10, Proposition 6.5]).
Namely, for such a hypergeometric system Horn(A,c¢), where the matrix A contains 2k rows,
let @ = (e, ..., ax) be the part of the parameter vector ¢, corresponding to the matrix A (see
the property (c) above), 3 = (f1,...,0k) be the part of this vector corresponding to —A. By
Proposition 4.7 in [10] the general solution to Horn(A4, ¢) is a polynomial if —a; — 8; € N\{0}
fori=1,... k.

The simplest instance of a zonotope is a parallelogram. The analytic complexity estimate of
the solutions to the systems defined by parallelograms is the basis for more complex cases.

Proposition 1. The analytic complexity of a solution to a hypergeometric system defined by a
parallelogram cannot exceed 2.

Proof. The solutions to the hypergeometric system Horn(A, ¢) defined by a parallelogram have
been described in Proposition 4.7 in [10]. For a bivariate system (n = 2) this formula leads to

(g ) (Lo a0y )~ (o (L )

where A1 = ( a2 ) ;¢ = (a1,02,01,82). The monomials 7 “"'x; “*' and xq “2x, %2
a1 022

both belong to Cly, thus for any univariate analytic functions ¢(-),%(-) the product

Gay “Mray ) - p(x] 2y ") belongs to Cl. O

The following example shows that the solutions to hypergeometric systems defined by more
complex polygons can still have low analytic complexity.

Example 3. A simple zonotope. Let us consider the hypergeometric system Horn(A’, ¢)

1 -1 1 -10 0\
defined by the matrix A’ = 1 -1 0 0 1 -1 and the parameter vector ¢ =
(—23,22,-10,0,—9,0). Using the formula (2) we conclude that the holonomic rank of this sys-

tem is equal to 3. The hypergeometric system Horn(A’,¢’) is defined by the zonotope shown in

Fig. 1.
] - \ +

Fig. 1. Polygon defining the system Horn(A’,¢’), and its representation as the Minkowski sum
of segments

The support of the polynomial solutions to the system Horn(A’, ¢’) is shown in Fig. 2.

Let us consider the part of the solution py(x,y) whose support is bounded by the straight lines
parallel to the coordinate axes. Note that pg(z, y) contains 110 monomials (we do not put here the
whole expression due to its large size) and the known estimates for polynomials [3, Proposition 4]
imply that the analytic complexity of po(x,y) does not exceed 5. Indeed, the support of py(z,y)
lies in the union of 10 lines parallel to the s axis. The analytic complexity of the polynomial
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Fig. 2. The support for the solution of the system Horn(A’,¢)

whose support lies on a straight line parallel to an axis cannot exceed 1. Then the analytic
complexity of the sum of k such polynomials cannot exceed 1+ [log, k], where by [z],z € R we
denote the smallest integer not exceeding x. Later we prove that in fact the analytic complexity
of po(z,y) does not exceed 3.

In general, appending a pair of rows (a;, b;), (—a;, —b;) to the matrix defining a hypergeometric
system is equivalent to adding a pair of parallel straight lines bounding the support of the solution
in the exponent space. Let the hypergeometric system be defined by a parallelogram, and let

po(x,y) = >, ¢st-2°y' be a polynomial solution of this system with the support S. Adding
(s,t)eS
a pair of straight lines in the exponent space leads to the system whose solution is given by

p1($7y) _ Z F(a18+51t+71 +1)

- Cg .xSt: O{S"‘ t+ $St:
T (ars + But + 1) Ty Z (a5 + Bit +71) 2°y

(s,t)ES (s,t)€S

- (alea: + Bloy + ’Yl) Z Cs,txsyt = (alex + ﬁley + 71)p0(m7y)'
(s,t)eS

Using this formula repetitively we obtain the solution for k& additional pairs of
rows (a;, b;), (—a;, —b;):

)
pr(T,y) = <H (ajOy + B0y + ;) )p0(937y)~

Thus the estimate for the analytic complexity of pi(x,y) depends on the analytic complexity
of po(z,y). This dependence is described in detail in the following Proposition and its corollaries.

Recall that we use the notation 0, = x—, 0

a .
oz’ y:y% and o, 35,7 €C,j=1,... k.
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Proposition 2. If f(z,y) € Cl,, then (o, + 0, + ) f(x,y) € Clopi1.

Proof. We use induction by n to show that (af, + 80,)f(x,y) € Clay,.
For n =1 we can represent f(x,y) in the form f(z,y) = c(a(z) + b(y)).

(b + B6y)c(a(x) +b(y)) = ' (a(z) + b(y)) - (azd () + Byb'(y)),

and this function belongs to Cly as a product of Cl; functions. If the statement holds for all
n < N, and f(z,y) belongs to Cly, which means it can be represented as f(z,y) = h(f1(z,y) +
fQ(fE, y))7 where fl(mv y)a fg({E, y) € ClN*h then

(05(993 + Beu)h(fl(may> + f2($,y>) =

= h/(fl ('Tvy) + f2($7y)) ((aez + Bey)fl(xa y) + (aew + ﬂ9y>f2(m?y)) .

Both of the functions fi(z,y) and fa(x,y) belong to Cly_1, so the estimate of the analytic
complexity for (ab, + 80,)fi(x,y), i = 1,2 is Clany_2. Then their sum belongs to Clan_1 and,
after the multiplication of the result by h'(fi(z,y) + f2(z,y)) € Cly, the product belongs to
Clan. Thus we conclude that for any n, if f(x,y) € Cl,, then (af, + 56,) f(x,y) € Cla,. Adding
~vf(z,y) € Cl,, to this expression we obtain a function in Cla, 1. O

Corollary 1. For any f(z,y) € Cl,, the analytic complezity of

k
(H (02 + B0y + ;) ) f(z,y)
j=1

cannot exceed 2F(n + 1) — 1.

Corollary 2. Assume that the analytic complexity of a polynomial solution po(x,y) to the hy-
pergeometric system Horn(A, ) does not exceed n, S is a support of po(x,y). Let the matriz A be
obtained from A by appending k pairs of vectors (a;,b;), (—as, —b;), vector ¢ be obtained from & by
appending 2k elements. Then the analytic complexity of a polynomial solution with the support S
to the hypergeometric system Horn(A,c) does not exceed 2F(n + 1) — 1.

Example 3.(Continued). Let us use Corollary 2 to estimate the analytic complexity of a solution
to the system Horn(A’,¢’). To do this, consider the system Horn(fi’ ,c), defined by the matrix
A= < (1) (1) 7(1) _(1) > and the vector of parameters ¢ = (—10, —9, 1, 1). This system differs
from the original one only by the absence of the pair of straight lines with the normal vectors (1, 1)
and (—1, —1) bounding the support of the solution. Thus this support for the system Horn([l’ e )
coincides with the support of pg(x,y). Note that this system is defined by a parallelogram and
hence by Proposition 2 the analytic complexity of its solutions cannot exceed 2. Computations
show that the basis in the space of solutions to the system Horn(/i’ . ) consists of the single
function (z — 1)*°(y — 1)? € Cly, and hence po(z,y) € Clz by Corollary 2. The supports of two
other solutions to Horn(A4’, ¢’) lie on two parallel straight lines, so a linear combination of these
solutions belongs to Cl3, and the general solution to Horn(A’,¢') is a function in Cly.

The following theorem is the main theoretical result of the paper. It contains the general
estimate of the analytic complexity for polynomial solutions to hypergeometric systems defined
by zonotopes.
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Theorem 1. Let Horn(A,c) be a hypergeometric system defined by a zonotope. Assuming that
the matriz A contains 2k rows, consider the matrices A and —A such that the union of their rows
coincides with the set of rows of A. Let o be a part of the parameter vector ¢ corresponding to the
matric /Al, B be a part of this vector corresponding to —A, and define the vector ¢ = (¢1,. .., Ck)

by & = —a; — B
If ¢; e N\{0},i = 1,...,k, then the analytic complexity of the general solution to Horn(A,c)
does not exceed

min (3 e [logQ bk — 1)],2 + [logy( max &+ 1)] + [logy(k — 1)1) :

2 =1,...,k
Proof. For any system defined by a parallelogram the condition ¢; € N\{0} provides the existence
of a polynomial solution (see [10, Proposition 4.7] and the proof of Proposition 2.). Appending
of the rows (a;, b;), (—a;, —b;) to the matrix defining the hypergeometric system affects only the
coefficients of this solution but not its support. Without loss of generality we can choose a vector
of parameters ¢ such that the support of the general solution to Horn(A, ¢) coincides with a union
of supports of the solutions to a finite number of systems defined by parallelograms (see proof of
Proposition 6.5 in [10]). Thus the condition ¢ € N\{0} provides the existence of a polynomial
basis in the space of solutions to Horn(A4, ¢).

The matrix A contains 2k rows, so supports of the solutions are bounded by k pairs of straight
lines. Let us assign a natural number from 1 to k to each pair of lines. The union of these supports

k(k — 1)
2

each intersection we denote as [0; j, where ¢ € {1,...,k} and j € {1,..., k} are numbers assigned
to pairs of straight lines which form the intersection, i < j. For any (i,7) € {1,...,k}? the
solution to Horn(A,c) whose support lies in the intersection 0;; belongs to Cls.oe-2_1 (by

k(k—1)
2

is a subset of parallelogram intersections (it is the sum of an arithmetic progression),

Corollary 2). The analytic complexity of the sum of functions in Clg.ox-2_; (that is, the

k
analytic complexity of the general solution to Horn(A, c¢)) cannot exceed estim1< U Di:j) =

i,j=1
=3.22 14 [log2 @—‘ (see [3, Section 5]).

On the other hand, there is the estimate based on the number of parallel straight lines con-
taining the points of the support (see Proposition 4 in [3]). While the analytic complexity of any
polynomial with the support belonging to a straight line does not exceed 2, the number of these
lines corresponding to the i-th row of A equals ¢;+1. Thus for any ¢ the analytic complexity of the
part of the solution whose support belongs to LkJ 0;,; cannot exceed 2 + [logQ(i Erllaxkéi +1)].

j=r =L,
Note that there is no need to use all of k pairs of bounding straight lines to estimate the an-

alytic complexity of the general solution this way, since k — 1 pairs already bound the whole

k
estimg( U Di,j) = 2 + [log, ( ‘_Irllaxkéi + 1)} + [logy(k — 1)]. The minimal of the numbers

i,j=1
k k
estiml( U Dm-),estimg( U Di,j) is the sought estimate. O
ij=1 ij=1

An example of using the estimate given in Theorem 1 is shown in Fig. 3. Note that there
are three sets of parallel lines, each corresponding to one of the ¢;. For each of the parallelogram
intersections there are 2 estimates: estim(0; ;), based on Corollary 2 and estimo(0; ;) based
on Proposition 4 in [3].
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é3 =2

estimy(0y,3) =3-2F72 —1

estimg (g 3) = 2 + [loga(min(éy +1,é3 +1))] =3

estimy (0p 9) =3-2F"2 -1

estimg(0y 2) = 2 4 [loga(min(éy + 1,82 +1))] =3

Fig. 3. The analytic complexity estimate for a polynomial solution to a simple hypergeometric
system

We order ¢; by the ascension and choose v to be a vector with the elements v; =
= min (2 + [logy(& + 1)],3- 2572 — 1+ [logy(k —4)]),i = 1,...,k — 1. To find more accurate
value for the analytic complexity estimate from Theorem 1, one could use Algorithm 2 from
Section 3 using v as an input vector. The general estimate from Theorem 1 can be rough, if
values of ¢; vary greatly for different ¢. For example in Fig. 3 estima(01 2) = estima(013) = 3,
estimy(0sz,3) = 4, and for the general estimate we use the maximal of these values. The vector
v in this case provides the choice of the better estimate.

3. Algorithms of analytic complexity estimation

The following algorithm allows one to compute the analytic complexity of any given bivariate
polynomial.

Algorithm 1: Finding an analytic complexity estimate for a polynomial

Input: p(z,y) - a polynomial, z,y € C.

Output: N - an estimate for the analytic complexity of p(z,y).
result < 0

short + {}

polys < {pi(z,y)Ip(z,y) = > pi(z, y), Supp pi(z,y)||Supp p;(z,y)Vi, j}

W N =

4 for p € polys do

5 curr = getShort(p)

6 if curr ¢ short then
7 L result +=1

8 short = short U curr

©

N < 2+ [Logs(result)]

The main advantage of this algorithm compared to the existing ones is its ability to distinct
the powers of lower degree polynomials included in the original polynomial as summands. With-
out this feature, even the analytic complexity of the function like p(a(z) + b(y)) € Cly, where
p(t), a(z), b(y) are univariate polynomials, is estimated based on its support, which becomes very
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inaccurate with the growth of degree of p(t).

The input of the function getShort() is a homogeneous polynomial and the output contains
elements of its decomposition into the sum of powers. Note that the definition of polys assumes
the ambiguity of the representation of the polynomial as the sum of finitely many polynomials
supported in parallel straight lines. Any of such representations yields an estimate, but some of
them may be better than the other ones.

To estimate the analytic complexity of the general solution to the hypergeometric system
from Theorem 1 one can use the following algorithm.

Algorithm 2: Finding an analytic complexity estimate for a sum of functions

Input: ¢ = {c1,¢a,...,¢n} - a set of known estimates of the analytic complexity values for
bivariate functions fi(z,y), f2(z,v), ..., fo(x,y), where (z,y) € C2.
n

Output: N - an estimate for the analytic complexity of the function Y fi(x,y).
i=1
1 while ¢ contains more than 1 element do

2 find 2 minimal elements of ¢, namely, ¢; and c;.
¢ = (cU {max(es,c;) + 1)\ e 05 -
4 N < only element of c.

3

Algorithm 2 is finite, since at each step the number of elements in ¢ decreases by 1.

The following algorithm allows one to find the support of a polynomial solution to a given
hypergeometric system defined by a zonotope, provided that such a solution exists. The algorithm
is based on Proposition 4.7 in [10].

Algorithm 3: Constructing the support of a polynomial solution to a hypergeometric
system

Input: the matrix A, the parameter vector ¢ for the hypergeometric system Horn(A, ¢)
defined by a zonotope

Output: supp - the support for the polynomial solution to Horn(4, ¢).

supp + {}

find A : rows(A)U rows(—A) = rows(A)

for (r;,7;) C rows(A),i < j do

Aij < (riry)T

a  elements of ¢ corresponding to (r;,r;)

=

<+ elements of ¢ corresponding to (—r;, —r;)
if —a; — ;>0 for j =1,2 then

At LAl T A1, T2 b2
8 supp = supp U Supp | ™ i @ (1 +z w‘“) (1 +z w‘”)

9 else
10 L the general solution to Horn(A, ¢) is not a polynomial

N 0 Gk WwN

For some pairs of rows 7;,7; the solution to the corresponding system defined by a parallelo-
gram is not a polynomial. In this case, a part of the basis in the solution space can still consist
of polynomials, and their supports can be found by means of Algorithm 3.

4. Examples

Example 3 (Continued). Let us replace the parameter vector ¢’ in the system Horn(A’, ¢') by
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the vector (k,0,0,0,0,0). The corresponding system is given by

205(0, + 0, + k) —0,(0, +6,),
YOy (0 + 0y + k) — 0, (05 + 6y).

k=1 (_1)i k=1 (=1)J

T = L R,
x—1 j:13($*1)j y—1 j:l](yfl)J

so there is no polynomial basis for these parameter values. Nevertheless, the analytic complexity

of the general solution is equal to 1.

T

A basis in its solution space is given by 1, log

The present example shows that the analytic complexity of solutions to hypergeometric sys-
tems can be heavily dependent on parameter vectors defining these systems. A resonant choice
of their parameters can drastically reduce the analytic complexity of general solutions to such
systems.

Example 4. An octagon zonotope. Consider Example 6.8 in [10]. In order to find the analytic
complexity of a polynomial solution to the hypergeometric system defined by the matrix

q_(1 -1 -1 1 =33 2 2\
“\l2 2 1 -1 22 -1 1

and the vector of parameters ¢ = (3,—5,—-2,1,—2,—1,—1,—1) we can use the basis of the
solutions to this system, computed in [10]. There are 3 solutions whose analytic complexity is
equal to 2, and 28 solutions in Cl;, two of them also belonging to Cly. Therefore the analytic
complexity of the general solution to this system cannot exceed 7. Note that this estimate is
based on a trivial grouping of the basis functions into pairs, but the very specific structure of
the solution support makes it possible to show that the analytic complexity does not exceed 6.

Let us estimate the analytic complexity of the general solution to this system using Theorem 1.
The vector ¢, ordered by the ascension, is (1,2, 2,3). Then the vector v = (3,4,4) (it includes only
support-based estimates, because of low values of the elements of ¢), and, by using Algorithm 2,
we conclude that the general solution belongs to Clg.

Futhermore, we can estimate the analytic complexity of a solution to any hypergeometric
system we obtain by appending a pair of rows to A (the only condition is that these rows
are not collinear to the rows of A). Note that this estimate does not depend much on the
difference between new parameters. If this difference is big, it becomes the last element of
the ordered vector ¢, and does not affect the new vector v, the new element of the vector v is
equal to 2 + [log,(3 + 1)] = 4, and the resulting analytic complexity is 6. On the contrary, if
this difference is low, for example, if it is equal to 1, the new vector é = (1,1,2,2,3), the new
vector v = (3,3,4,4), and the analytic complexity is also equal to 6. Thus we conclude that
appending 2 rows to the matrix A does not affect the analytic complexity of the solution to the
system.

Example 5. A decagon zonotope. Consider the hypergeometric system Horn(Aq,¢;), defined by
the matrix

3)

and the parameter vector ¢; = (—1,0,4,—5,1,—4,—9,6, —4,0). The zonotope defining the ma-
trix 3 is shown in Fig. 4.

By Theorem 2.5 in [5] the holonomic rank of the system Horn(A1, ¢1) equals 34. The support
to the solution to this system computed by the means of Algorithm 3 is shown in Fig. 5.

A polynomial basis in the solution space to Horn(Aj,c;) consists of the 4 monomials
26 17/3 43 48/3
P E R R

11 00 -2 23 -3 3 -3\
00 -1 1 1 -1 1 -1 2 -2

and 30 polynomials

<
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Fig. 4. The zonotope which defines the matrix (3)

1 5643 247095 329460 27455 82365 741285+724812

637zy®  8281xy* = 8281xy3 * 286y* * 493 + 492 Ty
20y° 497 4y® 18y 3y*/?  3969y°/%  1323y"* 51 24
63z 35z 5 5 © 380z 41990z 16796z 55
11y'? 33yt 297410 244° 3y° % 3697 2
- - - - + oo Tas Tz TV W -
115311z 38437z 100555z 5915z = 1105 26 = 143 13
8y° 4yt | 50y° 155077527/%y° 31465272y e 517527/2y*
99z 3r ' 81 Y0 82808479 61400001 4 89947
154724y 9laty*  91a%y® e 806y°  84656y* N yt z13/3 N 451213/3
103455 6840 1026 Yo 1200873 T 735058 T 48/ Y6 261y5
87y° 5220y° 36575y* 4 44y° 33y° 4 16/3 1378216/3
v v v,y y._ | 33y - % AN L
8247/3 ' 275561410/3  239224/3 © 27/3 118323 ' 18222 ' =z y® 451y7
1 223y 4 230 119 £5/3,4 12 FByP 4 By 364 /xy°® 2z
167 VT T aggt Y Yt 1045 R
11985 g7 o7 | 1438225%/7 287 120022/7  345z%/7  29/7 2103 261510/3
———x"y + ) - 1 + ) — T )
299 253y5/7 y12/7 1643y3/7  31y3/7  10/7 y 238y3
11477425/7y5/7  118826/7 N x0/7 x10/7 N 731237 N 1763210/7
28405 65y2/7 ' y9/7’ y8/7 6387y 754y
x4/7 N 32680211/7 1558x4/7\7f 169 57 T4 T x5/7 N 65212/7
yo/7 T 8613457 T 261 Y 1507 Y 7 T 136y
11/5,,7/5 11/5,,12/5
_ i5x2y3 n §x2y2 _ §x2y+x2, P1V/5,2/5 _ 4301211 /5y7/5 2322540 11/5y12/ ’
66 7 28 4277 1056419

a%/5y3/% 128729/5y8/5  5591329/513/5

68 116
G125y 405 _ 22, 7/5,9/5 _ 222 12/5,9/5

1634 346408 19 231 ’
/5,675 5824x'3/5¢5/5  10642%/5y!1/5 b N 82° 21zt 1822  9la?
Y 432837 2829 0 47 1545 55y0 15y 2dyd
z14/3 N 828x14/3  585488x11/3 N 21758z'4/3 2488324211/
y7 856 48825y° 23715y5 35805y

There are 14 functions in Cl; and 20 functions in Cls\Cly among these polynomials.
The analytic complexity estimate of the general solution to Horn(A;, ¢1) obtained by grouping
these functions into pairs is Cly. Theorem 1 gives a better estimate: since é = (2,2,3,3,4),
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Fig. 5. The support for the solution of the system Horn(A41,c1)

v = (4,4,4,4), it follows that the general solution belongs to Clg.

The following examples present hypergeometric systems defined by polygons other than zono-
topes whose solutions have low analytic complexity.

T
Example 6. A pentagon. The matrix ( -l 0 1 -1 00 ) and the vector of

1 0 -1 0 0 -1 1
parameters (—4,0,0,—1,—2, —1, —2) define the hypergeometric system
(0 + 0y —4)(0, — 1) — 0,(0, — 2),
y(0z + 0y — 4)(0, — 1) — 0,(6, — 2).

This system is holonomic and its holonomic rank equals 4. The pure basis (see [10]) in its solution
space is given by the Taylor polynomials

(4)

22y?, 1 —dx —4y + 122y, 627 — 423 + 2t — 122%y + 423y, 6y — 120y% — 49> + 4y + .

The first and the second of these polynomials belong to Cly, the third and the fourth belong
to Cly. Thus the general solution is a function in Cly.

Example 7. A trapezoid, high holonomic rank. A basis in the solution space of the hypergeo-
metric system with holonomic rank %k defined by the operators

$9§_1(91 +0,) — (_1)k9§>
y(0s +0y) + 0y

is given by {log? ((y + 1)/x),j = 0,...,k — 1} (see Fig. 6). The generating solution equals
logk_l((y + 1)/z). Thus the general solution to this system belongs to Cl; by the conserva-
tion principle. This example shows that the analytic complexity of solutions to hypergeometric
systems with high holonomic rank can still be low.
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a) b)

Fig. 6. a) the supports of solutions to the system (4); b) polygon defining the system (4)

Example 8. A triangle with no symmetries. The hypergeometric system

2(0p+ 0, — 4) (0, + 20, — 4) — (20, + 30, — 4)(20, + 36, — 5),

(5)
Y(On+ 0, — 4) (04 + 20, — 4) (0, + 20, — 3) — (20, + 30, — 4)(20, + 30, — 5)(20, + 36, — 6)

is holonomic and its holonomic rank equals 6. The pure basis in its solution space is given by

the Laurent polynomials

I74y4, I72y3, I7y73, I8y74, 3y2 —|—2I71y2,

622 + 122° + 2t + 42%y 2 + 625y 72 — 1221y 71 — 42y~ — 122y — 4a?y.
In the Fig. 7 the small filled circles correspond to monomial solutions, the two empty circles

indicate the binomial solution and the big filled circles correspond to the remaining polynomial
solution. The analytic complexity of the general solution to the system (7) does not exceed 5.

[V

Fig. 7. The supports of solutions to the system (5)

This research was performed in the framework of the state task in the field of scientific activity
of the Ministry of Science and Higher Education of the Russian Federation, project "Development
of the methodology and a software platform for the construction of digital twins, intellectual
analysis and forecast of complex economic systems"”, Grant no. FSSW-2020-0008.
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BepxHue rpaHuiibl aHAJIUTUYECKOI CJIOXKHOCTH PeIleHM’id
JABYMEPHBIX I'MIepreoMeTpruvecKnX CUCTEM B KJacce

MHorowienoB IIron3o

Burtanuit A. Kpacukos
Poccuiickuit skonomuaeckuit yuusepcurer uM. I'. B. [lnexanosa
Mockga, Poccuiickast @enepariust

AHHOTaI_lI/Iﬂ. B craTbe HUCCJIeyeTCd aHaJIUTUIEeCKasd CJI02KHOCTD peIlIeHI/If/'I JABYMEPHBIX I'OJIOHOMHBIX I'H-
nepreoMeTpuieCKux CucreM THUIla FopHa. HOJIyquI)I OII€CHKH AHAJIUTUYIECKON CJIO>KHOCTHU peH_IeHI/Iﬁ B
KJjIacce MHOTO4IeHOB Ilion3o JJId TUIIEPreOMEeTPUICCKHUX CUCTEeM, 3aJaHHbIX 30HOTOIIaMHU. Taxzke upen-
JIO?KE€HDBI aJITOPUTMBI IJIfd OIEHKN AHAJIMTUIECKON CJIOKHOCTU MHOT'OYJIEHOB.

KiroueBsblie ciioBa: runepreoMerpryecKue CUCTEMBbI uddepeHnuaabHbIX YPABHEHNH B 9aCTHBIX IPO-
WM3BOJHBIX, TOJIOHOMHBIH PaHT, IOJUHOMUAIBHBIE PEIIEHIs, 30HOTOIIbI, AHAJUTHIECKAsI CIIOXKHOCTD, -

depeHITnaTbHBIT MHOTOYJIEH.
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