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Abstract. Stability of high-order linear multistep Störmer-Cowell and symmetric methods are discussed
in detail in this paper. Efficient algorithms for obtaining intervals of absolute stability and periodicity
are given for these methods. To demonstrate the accuracy of numerical integration of the orbit over an
interval about one year two model problems are considered. First problem is the 3D Kepler problem.
Second one is a specially designed 3D model problem that has the exact solution and simulates the
Earth-Moon-satellite system.

Keywords: linear multistep method, symmetric method, Störmer-Cowell method, PECE scheme, orbit.

Citation: E.D.Karepova, I.R.Adaev, Y.V. Shan’ko, Accuracy of the Symmetric Multi-Step Methods
for the Numerical Modelling of Satellite Motion, J. Sib. Fed. Univ. Math. Phys., 2020, 13(6), 781–791.
DOI: 10.17516/1997-1397-2020-13-6-781-791.

Introduction

Accuracy of the numerical integration of a satellite motion still remains one of the top prob-
lems associated with Global Navigation Satellite Systems. A review of the approaches used by
Analysis centres of International GNSS Service [1] shows that the basic techniques of the nu-
merical integration of a satellite orbit are the Adams-Bashforth/Moulton PECE-algorithms, the
nonlinear Everhart’s procedure [2] and collocation methods [3, 4]. However, a linear multi-step
symmetric methods shows considerable promise [5] for near-circular orbits that are typical for
navigation satellites.

The theory of multi-step methods, including the Adams family which are traditional for the
numerical integration of the motion of celestial objects, are widely discussed in many textbooks
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on numerical methods [6,7,9–12]. The Störmer-Cowell methods were developed and successfully
used since the early 20th century. However, in 2016 an interesting result concerning instability for
small step size of some Störmer-Cowell methods was presented by Nørsett and Asheim [13]. The
general theory of the symmetric multi-step methods was developed by Lambert and Watson [14].
The symmetric methods of high order were discussed in relation to the numerical integration of
planetary orbits over a long period of time.

The orbital motion is described by the system of second order ordinary differential equations
(ODE). It is generally agreed that is better to solve numerically the second order ODE rather
than equivalent system of two first order equations [6,15]. We also confirm this in our numerical
experiments.

In this paper, we discuss the accuracy and stability of high-order explicit symmetric multi-
step methods and their advantage over the Störmer-Cowell methods with/without "predict –
evaluate – correct evaluate" (PECE) mode. We propose an efficient way to calculate intervals of
absolute stability and periodicity for any linear multi-step method.

To study stability and periodicity we used the general-purpose computer algebra system
REDUCE over the complex field with an accuracy of 40 significant digits. Numerical algorithms
were implemented in C++ using the library quadmath for quadruple precision calculations.

1. Linear multistep methods

On the discrete point set {tn : tn = t0 + nh, h > 0, n = 0, 1, . . . }, we consider the k-step
linear multistep method

k∑
j=0

αjxn+j = h2
k∑

j=0

βjfn+j , k > 2, (1)

for the numerical solution of the special second-order initial value problem

x′′ = f(t, x), x(t0) = x0, x′(t0) = x̂. (2)

Here xn is the approximation of the exact solution x(tn) ∈ R and fn = f(tn, xn). Method (1) is
characterized by polynomials ρ(ξ) and σ(ξ), where

ρ(ξ) =

k∑
j=0

αjξ
j , σ(ξ) =

k∑
j=0

βjξ
j , ξ ∈ C.

We suppose that ρ and σ have no common factors, αk = 1, |α0| + |β0| ̸= 0, and
k∑

j=0

|βj | ̸= 0.

If βk = 0 the method is explicit, otherwise it is implicit. For method (1) to be consistent, it is
necessary and sufficient that ρ(1) = ρ′(1) = 0 and ρ′′(1) = 2σ(1). Method (1) has the order p if
for all sufficiently smooth test functions z(t)

k∑
j=0

αjz(t+ jh)− h2
k∑

j=0

βjz
′′(t+ jh) = Cp+2h

p+2z(p+2)(t) +O(hp+3).

We assume that if the Cauchy problem (2) is solved with the use of method (1) the accuracy of
first starting values xn, n = 0, . . . , k − 1 is at least not less than the order of the method.

All Störmer-Cowell methods have ρ(ξ) = ξk − 2ξk−1 + ξk−2. Method (1) is symmetric if
αj = αk−j , βj = βk−j , j = 0, . . . , k. A symmetric method has only even order [7]. We study
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higher order methods, namely, from 6th to 12th order Störmer-Cowell methods and even order
symmetric methods. Coefficients αj and βj for these methods are presented in [13] and [5, 14],
respectively.

These methods are consistent and zero-stable. Hence they are convergent [6,14] and polyno-
mial ρ has the root of multiplicity two at +1. Let us denote the roots of ρ by ξs, s = 1, . . . , k,
where ξ1 = ξ2 = 1 are the principal roots and the remaining k−2 roots are spurious. All spurious
roots of any Störmer-Cowell method are zero.

We demonstrate main differences between symmetric and Störmer-Cowell methods by the
example of the harmonic oscillator equation

x′′ = −λ2x, x(t0) = x0, x′(t0) = x̂, λ ∈ R (3)

That has general solution x(t) = A cosλt+B sinλt with period T = 2π/λ.
Using method (1) to solve (3), we obtain the difference equation

k∑
j=0

(
αj +H2βj

)
xn+j = 0 (4)

with general solution

xn = D1r
n
1 +D2r

n
2 +

k∑
s=3

Dsr
n
s . (5)

Here H = λh, Ds ∈ C are constant. Let us assume that all the roots rs, s=1,. . . ,k of the stability
polynomial

π(r;H2) = ρ(r) +H2σ2(r) (6)

are distinct. Since the roots of the polynomial are continuous functions of its coefficients, rs are
perturbation of ξs when H2 > 0. Thus, the numerical solution of (3) xn may be represented
by the sum of the component (xn)P = D1r

n
1 + D2r

n
2 associated with the perturbation of the

principal roots and (xn)S that arises from perturbation of spurious roots.

Absolute stability of the Störmer and Cowell methods. Root-locus curves for some Störmer
and Cowell methods are shown in Fig. 1 (a–i). They are constructed by the "boundary locus"
method [12] which gives a general shape of the boundary |r| = | exp(iφ)| = 1 of the open stability
region in the complex plane H2. The stability region is always at the left of the curve when we
move along the curve as φ increases from 0 to 2π. For example, there is no stability region
for the 10th order Störmer’s method (Fig. 1 c). Moreover, the stability region near the interval
of absolute stability is shown in more detail in Figs. 1 (b, f, h) for methods that are used in
our numerical experiments. Let us note that in the general case λ ∈ C the stability region is
determined, while for the harmonic oscillator we obtain the stability interval on the real axis.

In order to determine the stability interval more accurately the Routh-Hurwitz criterion [16]
can be used. In this case, a transformation of the region |r| 6 1 into the region Re(z) 6 0

is required. There are the Schur-Cohn [12] and the Jury [17–19] criteria that test the strong
stability of π(r;H2) directly. The Schur-Cohn and the Jury criteria are convenient for program
implementation and they are easily tested for a given H2.

According to the Jury criterion, the problem of determining the set of all values of H2

that all roots of π(r;H2) are inside of the unit circle, is reduced to solving the system of k

inequalities, where k is the degree of π(r;H2). The left-hand side of each inequality is the ratio
of polynomials in H2 and the right-hand side is zero. The polynomial coefficients are obtained
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Table 1. Stability intervals of H2 for Störmer’s and Cowell methods and the interval of periodicity
of H2 for symmetric methods

Order 5 6 7 8

Störmer
(
360

323
;
60

49

)
unstable (0; 0.3820447 . . . )

(
0;

27

128

)
Cowell

(
0;

60

11

) (
0;

60

13

) (
87280

308407
;
189

52

) (
4221504

1824647
;
189

71

)
Order 9 10 11 12

Störmer unstable unstable
(
0;

51975

1686934

) (
0;

9450

595163

)
Cowell (0; 0.3597184 . . . ) (0; 1.0218233 . . . )

(
0.1898631;

20790

28687

)
unstable

Order 6 8 10 12
Symmetric (0; 0.8021734 . . . ) (0; 0.5157665 . . . ) (0; 0.1724269 . . . ) (0; 0.0456343 . . . )

from the coefficients of π(r;H2). Even for small k the system of the inequalities can be analysed
analytically only in some cases. For high order methods this task becomes computationally
intensive. For example, when the Jury criterion is applied to the 8th order Störmer method the
maximum degree of the polynomial equals to 12, and for the 8th order Cowell method it equals
to 117!

We propose the following effective method to determine the boundaries of the stability interval
of method (1). We have to define all H2 for which the polynomial π(r;H2) has a root that belongs
to the unit circle. Consider the roots r∗ = exp(iφ) and r∗ = exp(−iφ) of (6), 0 < φ < π. Let us
represent π(r;H2) in the form:

π(r;H2) = S(r;H2)(r2 − 2r cosφ+ 1) +R(r;H2)

where S(r;H2) is a polynomial of the order (k − 2) in r with real coefficients, R(r;H2) =

= a0(H
2, cosφ) + a1(H

2, cosφ)r, a0, a1 ∈ R. Since r∗ and r∗ are the roots of both polynomials
π(r;H2) and r2− 2r cosφ+1, R(r;H2) = 0. Therefore a0(H

2, cosφ) = 0 and a1(H
2, cosφ) = 0.

Consider solutions (H2
∗ , φ∗) of the last two equations, where −1 < cosφ∗ < 1. In addition, the

case φ = 0 gives H2
∗ = 0 and the case φ = π immediately gives H2

∗ = −σ(−1)/ρ(−1). Choose
all H2

∗ ∈ R+ only, and they divide R+ into disjoint intervals. We test polynomial (6) using the
Jury criterion for strong stability for some value of Ĥ2 belonging to each interval. The interval
in R+ for which π(r; Ĥ2) is strongly stable corresponds to the interval of absolute stability of
method (1).

Tab. 1 presents the absolute stability intervals for the Störmer and Cowell methods of orders
from 5 to 12 . The results show that not all methods are stable at small H2. For example, the
Cowell method of order 8 has a very short stability interval separated from zero. The presented
results are the same as those from [13], with the exception of the 7th order Störmer method for
which one more root was found. It is close to but it does not agree with that found in [13]. This
reduces the stability interval. In addition, rational boundaries of the stability intervals can be
found with our approach find if they exist.

Interval of periodicity of symmetric methods. If ξ̂ is a root of a symmetric polynomial then
1/ξ̂ is also its root. Then for symmetric method (1) there is no such H2 that all roots of
the stability polynomial π(r;H2) are in the unit circle. Therefore, any symmetric method is
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absolutely unstable. On the other hand, symmetric methods can have another useful property,
namely, they can have a non-vanishing interval of periodicity [14].

According to [14] method (1) has non-vanishing interval of periodicity (0;H2
0 ) if for all H2 ∈

(0;H2
0 ) the roots rs of the stability polynomial π(r;H2) satisfy relations

r1 = exp (iθ(H)) , r2 = exp (−iθ(H)) , |rs| = 1, s = 3, . . . , k, θ(H) ∈ R

and if the order of (1) is p then θ(H) = H +O(hp+1) ∈ R.
If method (1) has non-vanishing interval of periodicity then it is symmetric. The opposite is

not true, but if polynomial ρ of symmetric method (1) has all roots in the unit circle and there
are no other double roots except the principal ones then the method has a non-vanishing interval
of periodicity. In this case, since the roots of the polynomial continuously depend on parameter
H2, all roots of π(r;H2) remain in the unit circle when H2 changes from 0 to some H2

0 . Then the
principal component (xn)P of the numerical solution is periodic with a period close to 2π/λ (the
period of the analytical solution of (3)), and (xn)P dominates over (xn)S which is also periodic.

The approach to determine the value of H0 is proposed [14]. Some polynomial is constructed
from π(r;H2) by special transformation of variable r [14]. The value of H2

0 is determined from the
condition that all roots of the polynomial are real, distinct and non-negative. This corresponds
to the condition that the absolute values of all roots of π(r;H2) are equal to 1 for H2 ∈ (0;H2

0 ).
We propose an alternative method based on determining of H2

0 in such a way that multiple
root arises for π(r;H2

0 ). Let symmetric method (1) has a non-vanishing interval of periodicity
(0;H2

0 )> Then for H ∈ (0;H2
0 ) all roots of π(r;H2) are distinct and lie on the unit circle.

Moreover, each root that does not lie on the real axis has the conjugate root as the root of a
polynomial with real coefficients (Fig. 2 a). If H2 > H2

0 then there exists ξ∗ = r∗(cos θ∗+i sin θ∗)

root of π(r;H2), where r∗ > 1. Therefore 1/ξ∗ = (cos θ∗ − i sin θ∗)/r∗ and its conjugate ξ∗ =

r∗(cos θ∗ − i sin θ∗), 1/ξ∗ = (cos θ∗ + i sin θ∗)/r∗ are also the roots of π(r;H2). Because r∗ is
continuously depends on parameter H there exists H = H∗ for which r∗ = 1, that is, ξ∗ is
root of multiplicity 2. Therefore, H∗ coincides with the right-hand boundary of the interval of
periodicity H0. Thus, H0 can be found as the minimum positive real root of the discriminant
of the stability polynomial of a symmetric method. In Fig. 2, the behaviour of the roots of the
stability polynomial for the 8th order symmetric method is shown when H approaches H0 and
when H is greater than H0. Table 1 shows the interval of periodicity for the symmetric methods
considered here.

The Störmer methods have a non-vanishing absolute stability interval but do
not have an interval of periodicity. Alternatively, symmetric methods are ab-
solutely unstable but they have a non-vanishing interval of periodicity. These
differences are shown in Fig. 3 for the following simple numerical example.
********************************************************************************
Let us consider problem (3) with the initial conditions x(0) = 1 and x′(0) = 0. Then the exact
solution is x(t) = cos(λt). Equation (3) has two the first integrals

E := λ2(x(t))2 + (x′(t))2 = const, θ := λt+ arctan
x′(t)

λx(t)
= const

Although the velocity x′(t) = v(t) is not directly defined by (3), it can be determined by equation
(3) through introduction of unknown function v with the initial data v(0) = 0, v′(0) = x′′(0) =

−λ2.
The error of the first integral ∆E = Eh − E for (3) is shown in Fig. 3 (a) and (b) for

λ = 1. equation (3) is integrated with the 8th order symmetric method and Störmer method,
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a) 8th order Störmer b) zoom in 8th order Störmer c) 10th order Störmer (unstable)

d) 12th order Störmer e) 8th order Cowell f) zoom in 8th order Cowell

g) 9th order Cowell h) zoom in 9th order Cowell i) 10th order Cowell

Fig. 1. The root-locus curves and the stability regions for some Störmer and Cowell methods in
the complex plane represented by H2

respectively. The error of the first integral ∆θ = θh − θ is demonstrated in Fig. 3 (c) for both
methods. Here E, θ are exact values of the first integrals (they equal to 1 and 0, respectively)
and Eh, θh are numerical values of the first integrals. The step-size h = π/128 belongs to the
interval of periodicity of symmetric method and to absolute stability interval of the Störmer
method.

The symmetric method gives a periodic solution, therefore Eh is a periodic function with
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a) b) c) d)

Fig. 2. The roots of stability polynomial π(r;H2) for the 8th order symmetric method (1) in the
complex plane; r is shown for H2 = H2

0/10 (a), H2 = 9H2
0/10 (b), H2 = H2

0 (c), H2 = 11H2
0/10

(d). The roots r1 and r2 that correspond to the perturbed principal roots ξ1 = ξ2 = 1 are marked
with black triangle marker

a) b) c)
Fig. 3. The errors of the first integrals for the equation of harmonic oscillator for the symmetric
(a,c) and Störmer (b,c) methods with step-size h/T = 256, t in radians.

constant amplitude. One can see in Fig. 3 (a) that the energy of the system does not increase
with time. Since all roots of π(r;H2) for the Störmer method are less than 1, the energy of the
numerical solution decreases (Fig. 3 (b)). Since the period of the numerical solution does not
coincide with the theoretical one, the numerical solution is either ahead of or lagging behind
the exact solution. For the symmetric method |∆θ| grows slower than for the Störmer method
(Fig. 3 (c)).

2. Numerical experiments

Let us consider two three-dimensional model problems that have exact solutions. By “exact
solution” is meant a solution that can be obtained by integrating Kepler’s equation.

Model problem 1 is the three-dimensional Kepler problem

x′′(t) = −µ
x

|x|3
(7)

where µ is the standard gravitational parameter, x = (x1, x2, x3) is the radius-vector of the
satellite and |x| is the Euclidean norm of x.
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Model problem 2 is specially constructed from the restricted three-body problem (Earth–
Moon–Earth’s satellite of negligible mass). In this problem, the force acting from the Moon
on the satellite is compensated by an additional force which depends only on time and it is
independent of the position of the satellite on the orbit. This force affects the movement of the
satellite in such a way that the exact solution of the problem describes the movement of the
satellite around the Earth in the absence of the Moon.

Let us consider the equation of motion for a satellite of negligible mass in an inertial reference
frame centred at the Earth-Moon barycentre

x′′(t) = −µE
x− xE

|x− xE |3
− µM

x− xM

|x− xM |3
+ f(t). (8)

Here x = (x1, x2, x3), xE = ((xE)1, (xE)2, (xE)3) and xM = ((xM )1, (xM )2, (xM )3) are posi-
tions of the satellite, the Earth and the Moon, respectively; µE=3.986004419E+14 m3/s2 and
µM=4.9048696E+12 m3/s2 are the standard gravitational parameters of the Earth and the Moon;
f(t) = (f1(t), f2(t), f3(t)) is an additional force. The coordinates of the Earth and the Moon are
determined by two-body problem. Let xES be the exact solution of the Kepler problem (7) for
the system Earth-satellite. Then x = xES + xE and

f(t) = µM
xES + xE − xM

|xES + xE − xM |3
− µM

xE − xM

|xE − xM |3
. (9)

Thus, model problem (8)–(9) has the exact solution, and the errors of the numerical solution
are calculated directly. Since the Jacobian of the problem coincides with the Jacobian of the re-
stricted three-body problem the stability properties of the numerical methods for these problems
coincide.

The following initial orbital parameters are adopted in numerical experiments. For the
Moon they are aM = 3.94748E + 08 m, εM = 0.042200, ωM = 22◦8′′, ΩM =4◦40′′,
iM =18◦31′′, (M0)M=340◦13′′. For satellite they are aSat=2.5500000004E+07 m, εSat=0.00068,
ωSat=135.0000214◦, ΩSat=120◦, iSat=64.9◦, (M0)Sat= 32.6650111◦, TSat=11h15′44′′.

We compare the accuracy of the orbit integration by the Störmer method and symmetric
methods. Additionally, the results for the Bashforth method are shown in the case when problems
(7) and (8) are represented in the form of six first-order ODEs. To improve the accuracy of
the Adams methods the predictor-corrector scheme is also used in the form P (EC)3E, where
the right-hand side (E) and the corrector (C) are evaluated three times at each step. Since
the absolute stability intervals of the 8th order Störmer and Cowell methods do not coincide,
calculations were carried out for the case when the orders of the predictor and corrector coincide,
and they are equal to 8 (P8(EC8)3E), and for the case of the 9th order corrector (P8(EC9)3E).

For each Model problem, we are interested in the maximum deviation of the calculated
satellite position from the exact one after integration for about a year. Let us denote the
numerical and exact solutions at the moment tn by xh

n and xex(tn), respectively, n = k, . . . ,K,
tK = 779Tsat, Tsat is a period of satellite. The following notations for errors are used

∆h
n = xh

n − xex(tn), ∆h
i = max

n=k,...,K
|
(
∆h

n

)
i
|, ρh = max

n=k,...,K
|∆h

n|.

In addition, we consider the decomposition of the error vector ∆h
n in terms of the basis vectors as-

sociated with the exact ellipse. They are r0(tn) = xex(tn)/|xex(tn)|, τ0(tn) = = vex(tn)/|vex(tn)|
and n0 = r0(tn)× τ0(tn). Then we have
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δhr = max
n=k,...,K

|r0(tn) ·∆h
n|, δhτ = max

n=k,...,K
|τ0(tn) ·∆h

n|, δhn = max
n=k,...,K

|n0(tn) ·∆h
n|.

Results of calculations with fixed step-size h = Tsat/512 for the Model problems 1 and 2
In Tabs are presented in 2, 3, respectively. One can see that the direct solving of the second
order ODE is more efficient. Explicit symmetric methods give more accurate results even in
comparison with the explicit–implicit PECE algorithms. In Model problem 1 the Störmer-Cowell
PECE algorithm offers slight advantage over other algorithms only in the error along the radius.
However, symmetric method offers advantage over other algorithms in calculating positions of
the satellite. The symmetric algorithm symmetric method offers advantage over other algorithms
in the case of Model problem 2.

Table 2. Accuracy of the orbit integration (h = Tsat/512). Model problem 1

Bashforth- Störmer- Störmer-
Bashforth Moulton Störmer Cowell Cowell symmetric

P8(EC8)3E P8(EC8)3E P8(EC9)3E
∆h

1 , m 7.43E-03 1.77E-04 7.06E-04 2.04E-05 8.45E-06 1.61E-06
∆h

2 , m 1.07E-02 2.55E-04 1.01E-03 2.93E-05 1.21E-05 2.20E-06
∆h

3 , m 1.08E-02 2.59E-04 1.03E-03 2.98E-05 1.23E-05 2.27E-06
ρh, m 1.20E-02 2.86E-04 1.14E-03 3.29E-05 1.36E-05 2.60E-06
δhr , m 4.98E-06 1.06E-07 3.82E-07 1.73E-08 1.30E-08 1.42E-07
δhτ , m 1.20E-02 2.86E-04 1.14E-03 3.29E-05 1.36E-05 2.60E-06
δhn, m 1.77E-24 1.74E-24 1.40E-22 7.03E-23 1.17E-22 5.07E-23

Table 3. Accuracy of the orbit integration (h = Tsat/512). Model problem 2

Bashforth- Störmer- Störmer-
Bashforth Moulton Störmer Cowell Cowell symmetric

P8(EC8)3E P8(EC8)3E P8(EC9)3E
∆h

1 , m 1.36E-01 3.23E-03 1.27E-02 3.62E-04 1.56E-04 8.89E-05
∆h

2 , m 1.95E-01 4.64E-03 1.82E-02 5.20E-04 2.23E-04 1.28E-04
∆h

3 , m 1.97E-01 4.70E-03 1.84E-02 5.27E-04 2.26E-04 1.29E-04
ρh, m 2.19E-01 5.22E-03 2.05E-02 5.85E-04 2.51E-04 1.43E-04
δhr , m 3.44E-04 8.14E-06 3.20E-05 9.05E-07 4.02E-07 3.70E-07
δhτ , m 2.19E-01 5.22E-03 2.05E-02 5.85E-04 2.51E-04 1.43E-04
δhn, m 7.55E-04 1.80E-05 9.56E-06 2.73E-07 1.17E-07 6.77E-08

Another series of calculations were carried out to determine the step at which the maximum
deviation of the numerical solution from the exact one does not exceed 2 mm for a year. The
results of calculations are presented in Tabs. 4, 5. The first row marked “rhp” shows the number of
evaluations of the right-hand side that were required to achieve the accuracy. In the last column,
the results are presented for the symmetric method with the step it takes the Störmer-Cowell
PECE algorithm to achieve the specified accuracy. The advantage of the symmetric method is
obvious, especially for Model problem 2. In addition, the symmetric methods have the lowest
number of right-hand side evaluations in comparison with other methods considered.

This work was supported by the Krasnoyarsk Mathematical Center and financed by the Min-
istry of Science and Higher Education of the Russian Federation in the framework of the establish-
ment and development of regional Censers for Mathematics Research and Education (Agreement
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Table 4. Accuracy of the orbit integration (h = Tsat/den). Model problem 1

Bashforth- Störmer- Störmer-
Bashforth Moulton Störmer Cowell Cowell symmetric symmetric

P8(EC8)3E P8(EC8)3E P8(EC9)3E

rhp 486876 1286888 377037 1012680 922316 174497 253176
den 625 413 484 325 296 224 325
h, sec 64.8 98.1 83.7 125 137 181 125
H2 1.01E-04 2.31E-04 1.69E-04 3.74E-04 4.51E-04 7.87E-04 3.74E-04

ρh, m 1.99E-03 1.98E-03 1.89E-03 1.98E-03 1.89E-03 1.91E-03 9.80E-05
δhr , m 6.56E-07 7.51E-07 6.86E-07 7.64E-07 1.81E-06 1.07E-04 5.41E-06
δhτ , m 1.99E-03 1.98E-03 1.89E-03 1.98E-03 1.89E-03 1.91E-03 9.80E-05
δhn, m 1.22E-24 1.12E-24 1.02E-22 4.49E-23 5.65E-23 2.41E-23 5.57E-23

Table 5. Accuracy of the orbit integration (h = Tsat/den). Model problem 2

Bashforth- Störmer- Störmer-
Bashforth Moulton Störmer Cowell Cowell symmetric symmetric

P8(EC8)3E P8(EC8)3E P8(EC9)3E

rhp 671499 1779216 519594 1402180 1274424 289789 350551
den 862 571 667 450 409 372 450
h, sec 47.0 71.0 60.8 90.1 99.1 109 90.1
H2 5.31E-05 1.21E-04 8.87E-05 1.95E-04 2.36E-04 2.85E-04 1.95E-04

ρh, m 2.00E-03 1.95E-03 1.87E-03 1.88E-03 1.89E-03 1.84E-03 4.02E-04
δhr , m 3.10E-06 3.03E-06 2.91E-06 2.92E-06 3.03E-06 4.75E-06 1.04E-06
δhτ , m 2.00E-03 1.95E-03 1.87E-03 1.88E-03 1.89E-03 1.84E-03 4.02E-04
δhn, m 6.89E-06 6.72E-06 8.75E-07 8.78E-07 8.86E-07 8.69E-07 1.90E-07
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Точность симметричных многошаговых методов
численного моделирования движения спутника
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Юрий В. Шанько
Институт вычислительного моделирования СО РАН

Красноярск, Российская Федерация

Аннотация. В статье мы подробно обсуждаем устойчивость линейных многошаговых симметрич-
ных методов высокого порядка в задаче гармонического осциллятора. Приведены эффективные
алгоритмы вычисления интервалов абсолютной устойчивости и периодичности. Численные экспе-
рименты демонстрируют точность вычисления орбиты на интервале около одного года для трех-
мерной задачи Кеплера и для специально разработанной трехмерной тестовой задачи, которая
моделирует систему Земля-Луна-спутник и имеет точное решение.

Ключевые слова: линейные многошаговые методы, симметричный метод, методы Адамса-
Штермера-Коуэлла, PECE схема, орбита.
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