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Abstract. We analyze the dynamical behavior of the N-soliton train in the adiabatic approximation of

the Manakov model. The evolution of Manakov N-soliton trains is described by the complex Toda chain
(CTC) which is a completely integrable dynamical model. Calculating the eigenvalues of its Lax matrix
allows us to determine the asymptotic velocity of each soliton. So we describe sets of soliton parameters
that ensure one of the two main types of asymptotic regimes: the bound state regime (BSR) and the free
asymptotic regime (FAR). In particular we find explicit description of special symmetric configurations of
N solitons that ensure BSR and FAR. We find excellent matches between the trajectories of the solitons
predicted by CTC with the ones calculated numerically from the Manakov system for wide classes of
soliton parameters. This confirms the validity of our model.
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1. Introduction and preliminaries

The solitons and their interactions find numerous applications of in many areas of today
nonlinear physics, such as hydrodynamics, nonlinear optics, Bose-Einstein condensates, etc.
[1-3,7,27,28,34]. This explains why it is important to study their interactions. The first results
on soliton interactions were obtained by Zakharov and Shabat [35,36]. There they proved that
the nonlinear Schrédinger equation

. 1

Tuy + o U + |uPu(z, t) = 0. (1)
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can be integrated by the inverse scattering method (ISM). Then they constructed the N-soliton
solution of (1) and calculated their limits for ¢ — oo and ¢ — —oo, assuming that all solitons
have different velocities. Comparing the asymptotics they concluded that the soliton interactions
are purely elastic, i.e., no new solitons can be created. In addition the solitons preserve their
amplitudes and velocities, and the only effect of the interactions are relative shifts of the center
of masses and phases.

Later Karpman and Solov’ev proposed another approach to the soliton interactions based on
the adiabatic approximation [25,26]. They proposed to model the N-soliton trains of the NLS
eq. (1). By N-soliton train they meant a solution of the NLS eq. with initial condition:

N .
o . - _ Quy,etPr
u(x,t—())—];“k(fvt_o)v uk(x,t)—m,
2
2 = 20l — & (1), (1) = 2t + Ex o, ?

The adiabatic approximation holds true if the soliton parameters satisfy [26]:

vk —vo|l < vo, |k — po] < pos vk — voll&k+1,0 — Eko| > 1, (3)

1 XN 1 XN
where vy = N > vk, and po = ~ > pi are the average amplitude and velocity respectively.
k=1 k=1

In fact we have two different scales:

1/2 1/2

v — o] > ey’ 7, |k — pol ~ €7, I€k+1,0 — &k0 2651~

In this approximation the dynamics of the N-soliton train is described by a dynamical system
for the 4N soliton parameters. What Karpman and Solov’ev did was to derive the dynamical
system for the two soliton interactions: a system of 8 equations for the 8 soliton parameters.
They were able also to solve it analytically.

Later their results were generalized to N-soliton trains [16,17,24]|. The corresponding model
can be written down in the form :

dAg — 4y, (er+1*Qk _ er*Qk—l) ,

dt (4)
dQx = —4ygA

dt 0k

where A\, = pg + v, and

Qr = 21 + kln4u§ — (0 + 00 + km — 2u0ék),
1 Y 1 & 1 &
= X7 Sy = 37 s do = — §s~

Obviously the system (4) becomes the Toda chain with free ends for the complex variables Qy:

®)

4 X
L Ay —E = 1612 (eQr+17Qr Q1= Qro1) k=2,...,N—1,

d? d?
dgl = 16V§€Q2_Q1, d?zN = —16V§6QN—QN*1.
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which is known as the complex Toda chain (CTC).

It is well known that the standard (real) Toda chain is an integrable system [9,28,31]. In
the case of (6), which is known as Toda chain with open ends, it was possible to write down its
solutions explicitly [31]. An important fact is that these solutions depend analytically on their
parameters and can be easily generalized to the CTC.

In fact some time ago a special configurations of soliton trains that are modeled by the real
Toda chain [4, 5] were found. For them we must choose solitons with equal amplitudes (i.e.,
v = Vg), vanishing initial velocities (ur = 0), and out-of phase dx11 — 0 = 7. It is easy to see
that under these assumptions @ become real valued and (6) become the standard Toda chain.

The adiabatic approach of Karpman and Solov’ev has a drawback: it is an approximate
method whose precision is determined by £9. On the other hand it has the advantages: first,
it is not limited only to solitons with different velocities, and second, it can take into account
possible perturbations of the NLS [16,17,24].

Another important generalization of the NLS equation is known as the Manakov model [28]
(vector NLS):

1
ity + Sl + (@', @)i(x, t) = 0. (7)

The corresponding vector N-soliton train is determined by the initial condition:

. N . R et
u(x,tzO)zguk(x,tzO), uk(x,t)zmnk,
4= 2o~ 600, 64(6) = 2t + o, ®
b = 5—:%4-%(15)7 Sk (t) = 2(uz + vt + k.0,

where the constant polarization vector 71 is normalized by

S COS(G/C)e'L"”C . n ) -
= (Sin(ek)e_i’)’k ? (nk:’nk‘) - 1a ; a’rg nk);s - 0

Therefore each Manakov soliton is parametrized by 6 parameters.

It was natural to extend the Karpman-Solov’ev method to the Manakov model. The result is
known as the generalized CTC (GCTC) [10-12,14]. Of course later the GCTC was also adapted
to treat the effects of several types of perturbations on solitons [8,13, 19,30, 32, 33].

The advantage of the integrability of the CTC and GCTC is in the fact that knowing the initial
set of soliton parameters one can predict the asymptotic regime of the soliton train [16,17,24].
On the other hand it is possible to find the set of constraints on the soliton parameters that
would ensure given asymptotic regime. These constraints were derived and analyzed for 2 and 3-
soliton trains; for larger number of solitons only fragmentary results such as the quasi-equidistant
propagation of solitons [16] are known.

The aim of the present paper is to reinvestigate these results and to demonstrate several
configuration of multisoliton trains for which one can predict that they will go into bound state
regime (BSR) or into free asymptotic regime (FAR). In Section 2 we outline the derivation of
the GCTC model, see eq. (16) below which now depends also on the polarization vectors 7y
and models the behavior of the N-soliton train of the vector NLS. We also formulate the Lax
representation for the GCTC and explain how it can be used to determine the asymptotic regime
of the soliton train. In Section 3 we formulate two classes of explicit constraints on the soliton
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parameters that are responsible for BSR and FAR. The first class are generic conditions that
ensure that the Lax matrix becomes either real or purely imaginary. The second class are based
on special explicit constraints on the soliton parameters that make the eigenvalues of the Lax
matrix proportional to each other, so it is easier to establish if they are real or purely imaginary.

2. Preliminaries

2.1. Variational approach and generalized CTC

The Lagrangian of the vector NLS perturbed by external potential is:

I S N . > | PR
Ld] = dt = [(uT,ut) — (u},a)| — H, Hlud = de |—= (@), 4,) + = (@', @)% . (9)
oo 2 oo 2 2
Then the Lagrange equations of motion:
d L oL —0, (10)

doq ot
coincide with the vector NLS with external potential V(z).
N
Next we insert @(z,t) = > Up(z,t) (see eq. (8)) and integrate over = neglecting all terms of

k=1
order € and higher. In doing this we assume that & < & < --- < &y at t = 0 and use the fact,

that only the nearest neighbor solitons will contribute. All integrals of the form:

[ g, [ ) (1)

with |p — k| > 2 can be neglected. The same holds true also for the integrals
[ ds @,

where at least three of the indices k, p, s, have different values. In doing this key role play the
following integrals:

® dzel?? Ta
J2(a) = / =
2(a) — o 2cosh? 2 2sinh %F (12)
Koa= [* ot e
"7 ) 2coshzcosh(z + A)  2isinh(A)sinh(7a/2)’
Thus after long calculations we obtain:
N N N
L= Letd D Lin  Lin =160 (Rin+ RE,),
k=1 k=1n=k+1 (13)
Ry = ei(é"f&")(ﬁlﬁn)v Ok = O — 2008k,
Apn =285 010(E — &n) > 1, Skk+1 = —1, Skk—1 = 1,
where
. 4+ ot d dé, 8u3
Ly = —2iyy ((n?t,nk) — (nz,nk,to + 8,11;61/;6% - 4ukd—tk — 8uivg + ?k (14)
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The equations of motion are given by:

d oL oL
ad _ =0, 15
dt dopr,:  Opk (15)

where pj stands for one of the soliton parameters: &k, &, pr, Vi and fiz The corresponding
system is a generalization of CTC:

% = —4u, (er+1 Qk (n;; 1,ﬁk) — @k Qk—l(ﬁT ﬁk71>) ,

dt (16)
L Wy

dt = 0Nk> dt - ’

where again A\ = pg + ivg and the other variables are given by (5). Now we have additional
equations describing the evolution of the polarization vectors. But note, that their evolution is
slow, and in addition the products (ﬁL +1,ﬁk) multiply the exponents e@++1~@% which are also
of the order of €. Since we are keeping only terms of the order of € we can replace (ﬁ,TC 1 ix) by
their initial values

(ﬁL+1’ﬁk)’t:0 = mgk€2igk, k= 1,..., N —1. (17)

We will consider most general form of the polarization vectors:

1) = cos (0 ) el
R sin(0g)em e )
<ﬁ£+1|fik> = cos(Ok+1 cos(9k)e_i('“°+1_'”°) + sin(0k41 sin(@k)ei(”*"'ﬂ_”’“) = pre'r,

pr = cos® (Vo1 — Vi) €08 (1 — Ok) + sin® (Y1 — Vi) c08® (Op+1 + Ok).

cos(Op11 + 9k)>
cos(Opi1—0) )’

(18)

o = — arctan <tan(7k+1 — k)
1y .

ar = ?OP% exp(—v0(Ept1 — &k)) exp(—i(Ok41 — O — ok +7)/2).

In our previous papers we considered configurations for which |fix) are real, i.e., 7, = 0. Note
that the effect of the polarization vectors could be viewed as change of the distance between the
solitons and between the phases.

The system (16) was derived for the Manakov system n = 2 by other methods in [18].
There the GCTC model was tested numerically and found to give very good agreement with the
numerical solution of the Manakov model. However the tests were done only for real values of
the polarization vectors, i.e., all vy =0, k = 1,..., N. Below we will take into account the effect
of 7, onto the dynamical regimes of the solitons.

2.2. Asymptotic regimes: general approach

We first briefly remind the main results concerning the CTC model [14,16-18,24]. The CTC
is completely integrable model; it allows Lax representation L; = [A.L], where:

N N
L= Z (bsEss + as (Es,erl + Es+1,s)) P A= Z (as(Es,s+1 - E5+1,s)) 3 (19)

s=1 s=1
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where as = exp((Qsy1 — Qs)/2), bs = pst + ivsy and the matrices Eys are determined by
(Eks)pj = Okpdsj. The eigenvalues of L are integrals of motion and determine the asymptotic
velocities.

The GCTC derived in [10-12,14,18] is also a completely integrable model. It allows Lax
representation just like the standard real Toda chain [9,29,31] L; = [A.L], where:

N N
L Z (b Ess + as Es7s+1 + Es+1,s)) ) A - Z (as(Es,s+l - Eerl,s)) 3 (2())

s=1 s=1

where @, = mose’®*as, by = s +iv,. Like for the scalar case, the eigenvalues of L are integrals of
motion. If we denote by C; = ks+in, (resp. Cs = i+iijs) the set of eigenvalues of L (resp. L) then
their real parts ks (resp. &s) determine the asymptotic velocities for the soliton train described
by CTC (resp. GCTC). Thus, starting from the set of initial soliton parameters we can calculate
Ll|i—o (resp. f/|t:0), evaluate the real parts of their eigenvalues and thus determine the asymptotic
regime of the soliton train.

Regime (i). K, # k; (resp. Ry # Kj) for k # j, i.e., the asymptotic velocities are all different.
Then we have asymptotically separating, free solitons, see also [4,16,17,24].

Regime (ii). k1 = ko =+ =Kky =0 (resp. &1 = Rg = -+ = ky = 0), i.e., all N solitons move
with the same mean asymptotic velocity, and form a "bound state."

Regime (iii). A variety of intermediate situations when one group (or several groups) of parti-
cles move with the same mean asymptotic velocity; then they would form one (or several)
bound state(s) and the rest of the particles will have free asymptotic motion.

Remark 1. The sets of eigenvalues of L and L are generically different. Thus varying only the
polarization vectors one can change the asymptotic regime of the soliton train.

Let us consider several particular cases.

Case 1. 1y = --- = fiy. Since the vector 77; is normalized, then all coefficients m,; = 1 and
o, = 0. Then the interactions of the vector and scalar solitons are identical.

Case 2. (7! fly1,7s) = 0. Then the GCTC splits into two unrelated GCTC: one for the solitons
{1,2,...,s} and another for {s 4+ 1,s + 2,....N}. If the two sets of soliton parameters
are such that both groups of solitons are in bound state regimes, then we have two bound
states.

Case 3. <n2+1|ﬁk> = mge’?® — effective change of distance and phases of solitons. In this case
we can rewrite as = exp((Qs4+1 — Qs)/2), where:

Qs+1 — Qs = Qsi1 — Qs + Inmg + o, (21)

i.e., the distance between any two neighboring vector solitons has changed by In(mg/2vp);
similar changes have the phases.
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3. Asymptotic regimes for N-soliton trains with N > 4

The asymptotic regimes for scalar solitons and for small values of N are known for long
time now, see [16,17,24]. Obviously for N = 2 we have only two possibilities: BSR and FAR.
For N = 3 for the first time there appears MAR when two of the solitons form a bound state
while the third one goes away off them. For N > 3 there were only fragmentary results, see the
quasi-equidistant propagation of solitons in [16].

For the Manakov solitons formally the method is the same. The idea to use the integrability
of CTC in order to develop a tool for the analysis of asymptotic behavior of N-soliton trains was
developed in [10, 12,14, 18]. Roughly speaking we have to use the characteristic polynomial of
Ly whose generic form is:

N
P(z) =det(Ly — 21) = Y pi(d, b)" =
k=0 k

=

(z — z1). (22)

Next we have to analyze the roots z; and formulate the conditions on the soliton parameters for
which

i) Re z; =0; ii) Im 2, =0. (23)

Formally condition i) in (23) ensures the BSR, while condition ii) in (23) is responsible for the
FAR.

However each soliton now has 6 parameters, so 3, 4 and 5 solitons will be parametrized
by 18, 24 and 30 parameters respectively. The large number of parameters makes it difficult
to derive explicit analytical results, or to do an exhaustive numerical studies. Of course some
configurations of Manakov solitons behave just like the scalar ones. This happens if all 77 are
equal. Naturally our aim is consider more interesting cases and demonstrate the important
role that the polarization vectors play for the soliton interactions. Indeed mgx in (17) take
any value from 0 to 1, i.e., they ‘regulate’ the strength of the interaction. In particular, if the
polarization vectors of two neighboring solitons are orthogonal, then they do not interact. In
addition the phases o; modify the phase difference of the solitons which is a substantial factor
in their interaction.

Situations when we have 2, 3 and 4 solitons are easier because we can write down explicit
formulae for z; in terms of the soliton parameters in the generic case. For two and three solitons
most of this analysis for scalar solitons were done [16,17,24]. For bigger values of N such formulas
are not done even for the scalar case, in which the number of the soliton parameters are 4/V.
For N = 4 already the formulae for z; are involved; in addition the number of the parameters
is 4N = 16. Therefore for N > 4 even for the scalar case only special configurations of soliton
parameters are known. They are related to special choices of the soliton parameters that simplify
the characteristic polynomial so that it reduces to, say a biquadratic equation. In addition, when
it comes to Manakov solitons, the number of the parameters becomes 6.V.

Our aim here will be: first to revisit the particular cases considered before and, second,
to propose special soliton configurations responsible for the BSR and FAR for any number of
solitons. We will illustrate our results by several figures.

3.1. Asymptotic regimes for Manakov solitons

Let us now outline some effective ways of choosing soliton parameters that would ensure given
asymptotic behavior of the solitons. The soliton parameters of the Manakov N-soliton train are
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6N and detailed study of the regions in which the solitons will develop given asymptotic regime
does not seem possible. However we will outline several ways to effectively pick up configurations
ensuring BSR or FAR asymptotic regimes.

Let us also remind several important issues that one needs to consider. First we need to
specify what we will consider as asymptotic state. Obviously we need a criterium that would
ensure us that we are in the asymptotic region. In our case we have two scales: €'/ and e that
are fundamental for the adiabatic approximation. It is reasonable to assume that the asymptotic
times must be of the order of 1/e. Our choices of soliton parameters are such that e ~ 1072. So
one could expect that the asymptotic times would be of the order of ! ~ 100. At the same
time we extend our numerics to about t,s ~ 1000 and in most cases we find good match between
the CTC prediction and the numerics of Manakov model during all that period. This means that
CTC models the Manakov model much better that we can expect. We can see from the figures
presented here and from many others that we have done that the match could be much better.

Indeed, let us assume that we know how to split the 30-dimensional space of our soliton
parameters into regions that correspond to the different asymptotic regimes. Obviously, if we
choose the soliton parameters to be close to the ‘border’ between two different regimes we can
expect that we would have a ‘transition’ area between the regimes, so the deviation from the
CTC model will come up sooner than 1000. This is what we can see in Figs. 1, 2. In the right
panel of Fig. 3 for ¢ > 300 we see that the bound state of 5 solitons in fact transforms into a
MAR. It ‘peels off’ the first and the fifth solitons that go freely away, and the other three still
stay in a BSR. It seems that choosing the difference between the amplitudes stabilizes the BSR.

The general criterium that ensures FAR or BSR is based on the following well known propo-
sition coming from linear algebra.

Proposition 1. Let Ly be symmetric Ly = LY matriz with real-valued matriz elements. Then
its eigenvalues zo; will be real and different, i.e., zo; 7 2ok for k # j.

Corollary 1. Let Ly be symmetric (not hermitian) Ly = LT matriz with purely imaginary
matriz elements. Then its eigenvalues z1; will be purely imaginary and different, i.e., z1; # 21k

fork #3j.

Proof. Follows directly from the Proposition if we consider L = iLy. O

In addition below we will assume that vy = 0.5 and ug = 0.

3.2. Generic FAR configurations

These configurations are characteristic for the real Toda chain solved by Moser [9,29,31].
In what follows we choose the polarization vectors 7, by setting:

kmw km
0, = — = 24
k 13 ) Vi 9 ( )
where go = 8, or go = 9.
For the CTC using the Proposition we obtain:
Im bli=o = 0, Im agli=o = 0, (25)
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Fig. 1. Left panel: FAR with initial conditions rg = 7.0, pgo = 0.01, vgo = 0.0, go = 9; Right
panel: BSR for ¢ up to 600 and MAR for ¢ > 700 with initial conditions rg = 8.0, pge = 0.0,
voo = 0.05, go = 9. The rest of the parameters are defined by eqs. (26) and (28) respectively

which means that

km km
Vklt=0 = 0.5, bili=0 = tkli=0 = ok, Ok = —%, Y= —,

13 9o
Sow = (k= 3)ro,  por = (k — 3) 00, vor = 0.5+ (k — 3)vo, (26)
00,1 =0, 00,k+1 — 00,k = Ok.

Indeed, from the Proposition the eigenvalues of L will be real and different, which is FAR.
A particular case of (26) as configuration ensuring FAR for scalar solitons was noticed long
ago, namely choosing solitons with equal amplitudes (i.e., Ay, = 0) and and out-of phase
Ok+1 — 0 = 7 [4]. However, eq. (26) provides more general configurations, in which the solitons
may have non-vanishing initial velocities, see Fig. 1.

3.3. Generic BSR configurations

Here we use the Corollary and impose on L the conditions:

Re bk|t=0 = 0, Re ak|t=0 = 0, (27)
which means that
. . km km
bi|i=0 = k(=0 = ivor, Op = —, Ve = —,
13 go
28
ok = (k’ — 3)7“(), wor = 0.0, vor = 0.5 + (k‘ — 3>V00, ( )
00,1 =0, 00,k+1 — 00,k = O + T,

This is also rather general and simple condition on the soliton parameters that fixes the initial
velocities to be 0, but does not put restrictions (except the adiabatic ones) on the amplitudes
and on the initial positions of the solitons.
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Fig. 2. Left panel: FAR with initial conditions ro = 8.0, pgo = 0.02, oo = 0.0, go = 4; Right
panel: BSR for ¢ up to 300 and MAR for ¢t > 500 with initial conditions rq = 8.0, pgo = 0.0,
voo = 0.03, go = 4. The rest of the parameters are defined by eqs. (26) and (28) respectively

3.4. Symmetric configurations of soliton parameters

In addition to these we find other configurations of soliton parameters that provide FAR or
BSR. To this end we use special symmetric constraints on L described below. These constraints
will leave only one of vg; and agr independent. As a result the characteristic polynomial of L
will factorize and we will find that all roots are proportional to each other.

Let us give few examples of them. We will provide the corresponding Lax matrix, its charac-
teristic polynomial and eigenvalues.

o N =3, P3=2(22 —4(a® + b?)):

b vV2a 0
L3 = \/ia 0 \/éa' )
0 V2a —b (29)

z12 = £2v/a? + b2, 23 = 0;

o N =4, Py =(22—-a?—-1b?)(22 — 9(a® + b?))

3b V3a 0 0
V3a b 2a 0
0 2 =b V3a |’ (30)
0 0 +3a —-3b

z12 = £Va? + b2, 234 = £3V a? + b%;
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o N =5 P5=2(2%2—a?—b?)(2% — 4(a® + b?))

20 V3a 0 0 0
V2a b 22 0 0
Ly = 0 2« 0 V3 0
0 0 V3a —b V2a (31)
0 0 0 v2a—2b

z1,2 = £V a? + b2, 234 = £2v/a? + b2, z5 = 0;

s W T wf L]
700 3 ‘ ’ 700 \ \
NN
::: | \ / . 300 >
L
)

-130 -80 -50 0 50 80 130 -30 -20 -10 0 10 20 30
Position Position

Time

/
.
Time
IS
o
o
T
MeaA—
~

et 4 7 VAU R IS S S S S
——

\
%
5
4

Fig. 3. Left panel: FAR with initial conditions pgg = 0.02, vgg = 0.0, go = 4; Right panel: BSR
for ¢ up to 300 and MAR for ¢ > 400 with initial conditions ugg = 0.0, vg9 = 0.03, go = 4. The
rest of the parameters are defined by egs. (37) and (38) respectively

o N=6, Ps=(22—a%—-b%)(2%2 - 9(a® + b?))(2? — 25(a® + b?)):

50 vV5a 0 0 0 0
VBa 3 V3a 0 0 0
0 V8 b 3a 0 0
0 0 3a¢a —-b V8 0 ’
0 0 0 +8a —3b+5a
0 0 0 0 +5a —5b

21,2 =4 (Z2 —+ b2, 2’374 = :|:3 \V4 (12 + b2, 25,6 = :t5 \Y4 (12 + b2.

Lg =

Such examples can be found for any value of N; from algebraic point of view they are related to
the the maximal embedding of s/(2) as a subalgebra of si(IV).
In order to ensure FAR or BSR we need to impose on a and b the condition that

FAR a*+b0*>0, BSR a*+b*<0. (33)
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Initial conditions for BSR of 5 scalar solitons:

In6 In3 In3 In 6
§1=—"2r0+ -—, S=-r0o+5—, &=0, §a=r0— 35— & =2r0—5—,
2V0 21/0 2V0 2V0
Vk:O.5+(3—k)V00, we =0, 5k:/€7T, k=1,...,5
(34)
Initial conditions for FAR of 5 scalar solitons:
In 6 In3 In3 In 6
G =-"2ro+5—, &L=-ro+t5—, &=0, a=r0o—5—, &=2rg—5—,
2V0 2V0 2 21/0 (35>
k
v, = 0.5, 1k = (3 — k) oo, 5,€:7”, k=1,...,5
For Manakov solitons the initial positions are determined by:
1 1
€10 = —2r0 — — In m01m02m03m04’ €30 = —10 — —1In Mp21M031M04
2ug 6 2vg 3mo1
1 mo3m
§30=—5 ~In —B 2 (36)
Vo Mo1MMo2
1 mMo1Mo2My 1 M1 MO2 M3 M
€10 =70+ — In 01702 03’ €50 = 20 4+ —— In 0171027037204
2V0 3m04 21/0 6

For the numerics we again fix the polarization vectors as in (24) and evaluate &y by the
formula (36). The result are given in Tab. 1 and 2 below.
In order to have FAR we choose the amplitudes, velocities and the phases of the solitons by:

Vk:0.5, uk:(k—?))uoo, k:1,2,...,5,
610 =0, d20 = 010 + 01 + T, 030 = 010 + 01 + 02 + T, (37)
040 = 030 + 01 + 02 + 03 + , 050 = 040 + 01 + 02 + 03 + 04 + 7.
For the BSR we choose the amplitudes, velocities and the phases of the solitons by:
v = 0.5+ (k — 3)voo, i =0, k=1,2,...,5,
010 = 0, d20 = 10 + 01, 930 = 010 + 01 + 02, (38)

040 = 030 + 01 + 02 + 03, 050 = 040 + 01 + 02 + 03 + 04.

3.5. Numeric values for the intial parameters

In Tabs. 1 and 2 we list the numeric values for mg; and o for the two typical choices of 0,
and 7 used above.

Table 1. Initial phases for Fig. 1 and Fig. 2

Sok left panel | right panel dok left panel | right panel
k=1 0.0 0.0 k=1 0.0 0.0
k=2 | 2868037 | —0.273554 k=2 | 2484841 | -0.656751
k= -0.405708 | —0.405708 k=3 | -1.006917 | -1.006917
k=4 | 2781038 | —0.360554 k= 2.258187 | —0.883405
k=5 | -0.150741 | -0.150741 k=5 | -0.354039 | —0.354039
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Table 2. Initial phases and positions for Fig. 3

left panel right panel

dok Sok dok Sok
k=1 0.0 | —15.154654 0.0 | —15.154654
k=2 2.484841 —7.133487 | —0.656751 —7.133487
k=3 1| -1.006917 0.140982 | —1.006917 0.140982
k=4 2.258187 7.305540 | —0.883405 7.305540
k=5 1| -0.354039 15.154654 | —0.354039 15.154654

4. Conclusions and discussion

The above analysis can be extended to any number of solitons. As we mentioned above,
the symmetric Lax matrices are realizations of the maximal embedding of the si(2) algebra
as a subalgebra of sI(N). In this case we effectively reduce the N-soliton interactions to an
effective 2-soliton interactions. Therefore the symmetric configurations studied above allow only
two asymptotic regimes: BSR and FAR. We make the hypothesis that it would be possible to
construct more general symmetric Lax matrices that would be responsible for effective 3-soliton
interactions. In this paper we included numerical tests only for 5 soliton interactions. However
previously we have run test starting with 2-solitons and ending with 9-soliton configurations.
Our results are that the CTC models adequately not only the purely solitonic interactions, but
also the effects of external potentials and other perturbations on them.

An interesting question is how long should we wait for the asymptotic regime. This question
is directly related to the other one: What are the limits of applicability of CTC? In our simula-
tions we have chosen g9 ~ 0.01 which means that the asymptotic time must be of the order of
1/eg =~ 100. At the same time in a number of cases we find good match between the CTC and
the numeric solutions of Manakov model even until 1000. This is what we see in our tests in
this paper for the free asymptotic regimes (left panels of all figures). The situation is different
for the bound state regimes. While in Fig. 1 we see good match until about 700, in Figs. 1 and 3
the good match goes until 300. After that the trajectories of CTC keep to the BSR, but some of
the real solitons ‘escape away‘ after that. However in all cases we find that CTC provides good
descriptions until times about three times larger than the asymptotic one.

MDT was supported by Fulbright — Bulgarian-American Commission for Educational Fx-
change under Grant No 19-21-07.
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06 acuMITOTYECKOM IoBeaeHnu N-COJIMTOHHBIX
rnmocJjeaoBaresibHocTeil MaHakoBa B aJnadbaTmIecKOM
MPUOJIMKEHU N

Baagnmup C. I'epa2kukosn

HanwmonanwHubrit uccienoBarenbeckuit saepusbiit yausepcurer "MUDOU"
Mocksa, Poccuniickast @enepartust

WNucruryT Maremaruku n nHdopMmarrky Bosrapckoil akaileMun HayK
Codwusi, Bosrapust

MHcTUTYT NIepCIeKTUBHBIX (bU3ndIecKux ucciiegopanuit, HoBblit 6o/irapckuii yHUBEpCUTET
Codwusi, Bosrapust

Mwuxaun /1. Tonopos

Tocynapcrsennsiii yuusepcurer Can-/Iuero

Can-/luero, Kamudopuus, CIITA

Texunuecknuit yausepcurer Codun

Codusi, Boarapus

Awnnoranusi. Mbl ananmusupyeM JuHAMHYECKOE MOBesieHne N-COUTOHHBIX MOCaeaoBaTeabHocTel Ma-
HaKOBa B a/[MabaTUIeCKOM IPUOIIMKEHUU. DBOJIIOIHS ITUX COJUTOHHBIX II0CJIEI0BATEILHOCTEN MOIEIN-
pyerca kommiekcHoit nenoukoit Toga (KIIT), koTopast siBIsS€TCS BIOJIHE HHTETPUPYEMON IMHAMAYECKOM
cucreMoii. Borauciss cobCcTBeHHbIE 3HAYEHUsT ee MATPUIbl JIakca Mbl MOXKEM ONpPEJIEeJIUTh ACUMIITOTH-
YECKYI0 CKOPOCTH KasKJOr'0 M3 COJUTOHOB. DTO IO3BOJISIET HAM OIUCATH KOHMUIYDPAIUH COJTUTOHHBIX
mapaMeTpOB DX KOTOPBLIX COJUTOHHASI IIOCJIEJOBATEIBHOCTD IIEPEXOINAT B KarXKJIOM M3 JBYX OCHOBHBIX
SICUMIITOTHIECKAX PEKUMOB: (a) PE2KUM CBIA3AHHOTO COCTOAHUS U (6) PEsKUM ACUMIITOTUIECKH CBOOOIHO-
ro 10BeJleHus. B 4acTHOCTH MBI HAIILIM sIBHOE OIMCAHUE CIIENAJIbHBIX CUMMETPUYECKUX KOHMUrYparuit
N cOJIMTOHOB KOTOPBIE 06ECIEUNBAIOT KaK, PE?KUM CBSI3AHHOI'O COCTOSIHUS, TAK M PEXKUM ACHUMITOTHIECKHI
¢cBOGOIHOTO TIOBEIeHUsI. Mbl YCTAHOBU/IM OTJIUYHOE COBIIAJICHUE MEXK]Iy TPAEKTOPUIMH, MPEICKA3bIBae-
Mbix KIIT ¢ Temu, KOTOpBIE MOJIy4YarOTCs IIPU YMCJIEHHOM perreHuu Mojeaun ManakoBa Jjisi IIIPOKOTO
KJIACcCa COJIMTOHHBIX IIapaMeTpPOB. DTO MOATBEPXKIACT CIIPABEIJIMBOCTD HAIIIEH MOEIIH.

KuaroueBbie ciioBa: mojieb MaHakoBa, COTMTOHHBIE B3aNMOJIEHCTBHSI, a/IiabaTuIecKoe IpubJImKeHne,
KOMILIEKCHas 1enodka Toma.
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