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Abstract. We analyze the dynamical behavior of the N -soliton train in the adiabatic approximation of
the Manakov model. The evolution of Manakov N -soliton trains is described by the complex Toda chain
(CTC) which is a completely integrable dynamical model. Calculating the eigenvalues of its Lax matrix
allows us to determine the asymptotic velocity of each soliton. So we describe sets of soliton parameters
that ensure one of the two main types of asymptotic regimes: the bound state regime (BSR) and the free
asymptotic regime (FAR). In particular we find explicit description of special symmetric configurations of
N solitons that ensure BSR and FAR. We find excellent matches between the trajectories of the solitons
predicted by CTC with the ones calculated numerically from the Manakov system for wide classes of
soliton parameters. This confirms the validity of our model.
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1. Introduction and preliminaries

The solitons and their interactions find numerous applications of in many areas of today
nonlinear physics, such as hydrodynamics, nonlinear optics, Bose-Einstein condensates, etc.
[1–3,7, 27,28,34]. This explains why it is important to study their interactions. The first results

on soliton interactions were obtained by Zakharov and Shabat [35, 36]. There they proved that
the nonlinear Schrödinger equation

iut +
1

2
uxx + |u|2u(x, t) = 0. (1)
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can be integrated by the inverse scattering method (ISM). Then they constructed the N -soliton
solution of (1) and calculated their limits for t → ∞ and t → −∞, assuming that all solitons
have different velocities. Comparing the asymptotics they concluded that the soliton interactions
are purely elastic, i.e., no new solitons can be created. In addition the solitons preserve their
amplitudes and velocities, and the only effect of the interactions are relative shifts of the center
of masses and phases.

Later Karpman and Solov’ev proposed another approach to the soliton interactions based on
the adiabatic approximation [25, 26]. They proposed to model the N -soliton trains of the NLS
eq. (1). By N -soliton train they meant a solution of the NLS eq. with initial condition:

u(x, t = 0) =
N∑

k=1

u⃗k(x, t = 0), uk(x, t) =
2νke

iϕk

cosh(zk)
,

zk = 2νk(x− ξk(t)), ξk(t) = 2µkt+ ξk,0,

ϕk =
µk

νk
zk + δk(t), δk(t) = 2(µ2

k + ν2k)t+ δk,0.

(2)

The adiabatic approximation holds true if the soliton parameters satisfy [26]:

|νk − ν0| ≪ ν0, |µk − µ0| ≪ µ0, |νk − ν0||ξk+1,0 − ξk,0| ≫ 1, (3)

where ν0 =
1

N

N∑
k=1

νk, and µ0 =
1

N

N∑
k=1

µk are the average amplitude and velocity respectively.

In fact we have two different scales:

|νk − ν0| ≃ ε
1/2
0 , |µk − µ0| ≃ ε

1/2
0 , |ξk+1,0 − ξk,0| ≃ ε−1

0 .

In this approximation the dynamics of the N -soliton train is described by a dynamical system
for the 4N soliton parameters. What Karpman and Solov’ev did was to derive the dynamical
system for the two soliton interactions: a system of 8 equations for the 8 soliton parameters.
They were able also to solve it analytically.

Later their results were generalized to N -soliton trains [16,17,24]. The corresponding model
can be written down in the form :

dλk

dt
= −4ν0

(
eQk+1−Qk − eQk−Qk−1

)
,

dQk

dt
= −4ν0λk,

(4)

where λk = µk + iνk and

Qk = −2ν0ξk + k ln 4ν20 − i(δk + δ0 + kπ − 2µ0ξk),

ν0 =
1

N

N∑
s=1

νs, µ0 =
1

N

N∑
s=1

µs, δ0 =
1

N

N∑
s=1

δs.
(5)

Obviously the system (4) becomes the Toda chain with free ends for the complex variables Qk:

d2Qk

dt2
= −4ν0

dλk

dt
= 16ν20

(
eQk+1−Qk − eQk−Qk−1

)
k = 2, . . . , N − 1,

d2Q1

dt2
= 16ν20e

Q2−Q1 ,
d2QN

dt2
= −16ν20e

QN−QN−1 .

(6)
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which is known as the complex Toda chain (CTC).
It is well known that the standard (real) Toda chain is an integrable system [9, 28, 31]. In

the case of (6), which is known as Toda chain with open ends, it was possible to write down its
solutions explicitly [31]. An important fact is that these solutions depend analytically on their
parameters and can be easily generalized to the CTC.

In fact some time ago a special configurations of soliton trains that are modeled by the real
Toda chain [4, 5] were found. For them we must choose solitons with equal amplitudes (i.e.,
νk = ν0), vanishing initial velocities (µk = 0), and out-of phase δk+1 − δk = π. It is easy to see
that under these assumptions Qk become real valued and (6) become the standard Toda chain.

The adiabatic approach of Karpman and Solov’ev has a drawback: it is an approximate
method whose precision is determined by ε0. On the other hand it has the advantages: first,
it is not limited only to solitons with different velocities, and second, it can take into account
possible perturbations of the NLS [16,17,24].

Another important generalization of the NLS equation is known as the Manakov model [28]
(vector NLS):

iu⃗t +
1

2
u⃗xx + (u⃗†, u⃗)u⃗(x, t) = 0. (7)

The corresponding vector N -soliton train is determined by the initial condition:

u⃗(x, t = 0) =
N∑

k=1

u⃗k(x, t = 0), u⃗k(x, t) =
2νke

iϕk

cosh(zk)
n⃗k,

zk = 2νk(x− ξk(t)), ξk(t) = 2µkt+ ξk,0,

ϕk =
µk

νk
zk + δk(t), δk(t) = 2(µ2

k + ν2k)t+ δk,0,

(8)

where the constant polarization vector n⃗k is normalized by

n⃗k =

(
cos(θk)e

iγk

sin(θk)e
−iγk

)
, (n⃗†

k, n⃗k) = 1,
n∑

s=1

arg n⃗k;s = 0.

Therefore each Manakov soliton is parametrized by 6 parameters.
It was natural to extend the Karpman-Solov’ev method to the Manakov model. The result is

known as the generalized CTC (GCTC) [10–12,14]. Of course later the GCTC was also adapted
to treat the effects of several types of perturbations on solitons [8, 13,19,30,32,33].

The advantage of the integrability of the CTC and GCTC is in the fact that knowing the initial
set of soliton parameters one can predict the asymptotic regime of the soliton train [16, 17, 24].
On the other hand it is possible to find the set of constraints on the soliton parameters that
would ensure given asymptotic regime. These constraints were derived and analyzed for 2 and 3-
soliton trains; for larger number of solitons only fragmentary results such as the quasi-equidistant
propagation of solitons [16] are known.

The aim of the present paper is to reinvestigate these results and to demonstrate several
configuration of multisoliton trains for which one can predict that they will go into bound state
regime (BSR) or into free asymptotic regime (FAR). In Section 2 we outline the derivation of
the GCTC model, see eq. (16) below which now depends also on the polarization vectors n⃗k

and models the behavior of the N -soliton train of the vector NLS. We also formulate the Lax
representation for the GCTC and explain how it can be used to determine the asymptotic regime
of the soliton train. In Section 3 we formulate two classes of explicit constraints on the soliton
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parameters that are responsible for BSR and FAR. The first class are generic conditions that
ensure that the Lax matrix becomes either real or purely imaginary. The second class are based
on special explicit constraints on the soliton parameters that make the eigenvalues of the Lax
matrix proportional to each other, so it is easier to establish if they are real or purely imaginary.

2. Preliminaries

2.1. Variational approach and generalized CTC

The Lagrangian of the vector NLS perturbed by external potential is:

L[u⃗] =
∫ ∞

−∞
dt

i

2

[
(u⃗†, u⃗t)− (u⃗†

t , u⃗)
]
−H, H[u⃗] =

∫ ∞

−∞
dx

[
−1

2
(u⃗†

x, u⃗x) +
1

2
(u⃗†, u⃗)2

]
. (9)

Then the Lagrange equations of motion:

d

dt

δL
δu⃗†

t

− δL
δu⃗†

= 0, (10)

coincide with the vector NLS with external potential V (x).

Next we insert u⃗(x, t) =
N∑

k=1

u⃗k(x, t) (see eq. (8)) and integrate over x neglecting all terms of

order ϵ and higher. In doing this we assume that ξ1 < ξ2 < · · · < ξN at t = 0 and use the fact,
that only the nearest neighbor solitons will contribute. All integrals of the form:∫ ∞

−∞
dx (u⃗†

k,x, u⃗p,x),

∫ ∞

−∞
dx (u⃗†

k, u⃗p), (11)

with |p− k| > 2 can be neglected. The same holds true also for the integrals∫ ∞

−∞
dx (u⃗†

k, u⃗p)(u⃗
†
s, u⃗l),

where at least three of the indices k, p, s, l have different values. In doing this key role play the
following integrals:

J2(a) =

∫ ∞

−∞

dz eiaz

2 cosh2 z
=

πa

2 sinh aπ
2

,

K(a,∆) ≡
∫ ∞

−∞

dz eiaz

2 cosh z cosh(z +∆)
=

π(1− e−ia∆)

2i sinh(∆) sinh(πa/2)
,

(12)

Thus after long calculations we obtain:

L =

N∑
k=1

Lk +

N∑
k=1

∑
n=k±1

L̃k,n, Lk,n = 16ν30e
−∆k,n(Rk,n +R∗

k,n),

Rk,n = ei(δ̃n−δ̃k)(n⃗†
kn⃗n), δ̃k = δk − 2µ0ξk,

∆k,n = 2sk,nν0(ξk − ξn) ≫ 1, sk,k+1 = −1, sk,k−1 = 1,

(13)

where

Lk = −2iνk

(
(n⃗†

k,t, n⃗k)− (n⃗†
k, n⃗k,t)

)
+ 8µkνk

dξk
dt

− 4νk
dδk
dt

− 8µ2
kνk +

8ν3k
3

(14)
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The equations of motion are given by:

d

dt

δL
δpk,t

− δL
δpk

= 0, (15)

where pk stands for one of the soliton parameters: δk, ξk, µk, νk and n⃗†
k. The corresponding

system is a generalization of CTC:

dλk

dt
= −4ν0

(
eQk+1−Qk(n⃗†

k+1, n⃗k)− eQk−Qk−1(n⃗†
k, n⃗k−1)

)
,

dQk

dt
= −4ν0λk,

dn⃗k

dt
= O(ϵ),

(16)

where again λk = µk + iνk and the other variables are given by (5). Now we have additional
equations describing the evolution of the polarization vectors. But note, that their evolution is
slow, and in addition the products (n⃗†

k+1, n⃗k) multiply the exponents eQk+1−Qk which are also
of the order of ϵ. Since we are keeping only terms of the order of ϵ we can replace (n⃗†

k+1, n⃗k) by
their initial values

(n⃗†
k+1, n⃗k)

∣∣∣
t=0

= m2
0ke

2iσk , k = 1, . . . , N − 1. (17)

We will consider most general form of the polarization vectors:

|n⃗k⟩ =
(

cos(θk)e
iγk

sin(θk)e
−iγk

)
,

⟨n⃗†
k+1|n⃗k⟩ = cos(θk+1 cos(θk)e

−i(γk+1−γk) + sin(θk+1 sin(θk)e
i(γk+1−γk) = ρke

iσk ,

ρ2k = cos2(γk+1 − γk) cos
2(θk+1 − θk) + sin2(γk+1 − γk) cos

2(θk+1 + θk).

σk = − arctan

(
tan(γk+1 − γk)

cos(θk+1 + θk)

cos(θk+1 − θk)

)
,

ak =
ν0
2
ρ2k exp(−ν0(ξk+1 − ξk)) exp(−i(δk+1 − δk − σk + π)/2).

(18)

In our previous papers we considered configurations for which |n⃗k⟩ are real, i.e., γk = 0. Note
that the effect of the polarization vectors could be viewed as change of the distance between the
solitons and between the phases.

The system (16) was derived for the Manakov system n = 2 by other methods in [18].
There the GCTC model was tested numerically and found to give very good agreement with the
numerical solution of the Manakov model. However the tests were done only for real values of
the polarization vectors, i.e., all γk = 0, k = 1, . . . , N . Below we will take into account the effect
of γk onto the dynamical regimes of the solitons.

2.2. Asymptotic regimes: general approach

We first briefly remind the main results concerning the CTC model [14,16–18,24]. The CTC
is completely integrable model; it allows Lax representation Lt = [A.L], where:

L =
N∑
s=1

(bsEss + as(Es,s+1 + Es+1,s)) , A =
N∑
s=1

(as(Es,s+1 − Es+1,s)) , (19)
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where as = exp((Qs+1 − Qs)/2), bs = µs,t + iνs,t and the matrices Eks are determined by
(Eks)pj = δkpδsj . The eigenvalues of L are integrals of motion and determine the asymptotic
velocities.

The GCTC derived in [10–12, 14, 18] is also a completely integrable model. It allows Lax
representation just like the standard real Toda chain [9, 29,31] L̃t = [Ã.L̃], where:

L̃ =
N∑
s=1

(
b̃sEss + ãs(Es,s+1 + Es+1,s)

)
, A =

N∑
s=1

(ãs(Es,s+1 − Es+1,s)) , (20)

where ãs = m0se
iσsas, bs = µs+ iνs. Like for the scalar case, the eigenvalues of L̃ are integrals of

motion. If we denote by ζs = κs+iηs (resp. ζ̃s = κ̃+iη̃s) the set of eigenvalues of L (resp. L̃) then
their real parts κs (resp. κ̃s) determine the asymptotic velocities for the soliton train described
by CTC (resp. GCTC). Thus, starting from the set of initial soliton parameters we can calculate
L|t=0 (resp. L̃|t=0), evaluate the real parts of their eigenvalues and thus determine the asymptotic
regime of the soliton train.

Regime (i). κk ̸= κj (resp. κ̃k ̸= κ̃j) for k ̸= j, i.e., the asymptotic velocities are all different.
Then we have asymptotically separating, free solitons, see also [4, 16,17,24].

Regime (ii). κ1 = κ2 = · · · = κN = 0 (resp. κ̃1 = κ̃2 = · · · = κ̃N = 0), i.e., all N solitons move
with the same mean asymptotic velocity, and form a "bound state."

Regime (iii). A variety of intermediate situations when one group (or several groups) of parti-
cles move with the same mean asymptotic velocity; then they would form one (or several)
bound state(s) and the rest of the particles will have free asymptotic motion.

Remark 1. The sets of eigenvalues of L and L̃ are generically different. Thus varying only the
polarization vectors one can change the asymptotic regime of the soliton train.

Let us consider several particular cases.

Case 1. n⃗1 = · · · = n⃗N . Since the vector n⃗1 is normalized, then all coefficients mok = 1 and
σk = 0. Then the interactions of the vector and scalar solitons are identical.

Case 2. (n⃗†
s+1, n⃗s) = 0. Then the GCTC splits into two unrelated GCTC: one for the solitons

{1, 2, . . . , s} and another for {s + 1, s + 2, . . . .N}. If the two sets of soliton parameters
are such that both groups of solitons are in bound state regimes, then we have two bound
states.

Case 3. ⟨n†
k+1|n⃗k⟩ = m0e

iφ0 — effective change of distance and phases of solitons. In this case
we can rewrite ãs = exp((Q̃s+1 − Q̃s)/2), where:

Q̃s+1 − Q̃s = Qs+1 −Qs + lnm0 + iφ0, (21)

i.e., the distance between any two neighboring vector solitons has changed by ln(m0/2ν0);
similar changes have the phases.
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3. Asymptotic regimes for N-soliton trains with N > 4

The asymptotic regimes for scalar solitons and for small values of N are known for long
time now, see [16, 17, 24]. Obviously for N = 2 we have only two possibilities: BSR and FAR.
For N = 3 for the first time there appears MAR when two of the solitons form a bound state
while the third one goes away off them. For N > 3 there were only fragmentary results, see the
quasi-equidistant propagation of solitons in [16].

For the Manakov solitons formally the method is the same. The idea to use the integrability
of CTC in order to develop a tool for the analysis of asymptotic behavior of N -soliton trains was
developed in [10, 12, 14, 18]. Roughly speaking we have to use the characteristic polynomial of
LN whose generic form is:

P (z) = det(LN − z11) =
N∑

k=0

pk (⃗a, b⃗)z
k =

N∏
k=1

(z − zk). (22)

Next we have to analyze the roots zk and formulate the conditions on the soliton parameters for
which

i) Re zk = 0; ii) Im zk = 0. (23)

Formally condition i) in (23) ensures the BSR, while condition ii) in (23) is responsible for the
FAR.

However each soliton now has 6 parameters, so 3, 4 and 5 solitons will be parametrized
by 18, 24 and 30 parameters respectively. The large number of parameters makes it difficult
to derive explicit analytical results, or to do an exhaustive numerical studies. Of course some
configurations of Manakov solitons behave just like the scalar ones. This happens if all n⃗k are
equal. Naturally our aim is consider more interesting cases and demonstrate the important
role that the polarization vectors play for the soliton interactions. Indeed m0k in (17) take
any value from 0 to 1, i.e., they ‘regulate’ the strength of the interaction. In particular, if the
polarization vectors of two neighboring solitons are orthogonal, then they do not interact. In
addition the phases σk modify the phase difference of the solitons which is a substantial factor
in their interaction.

Situations when we have 2, 3 and 4 solitons are easier because we can write down explicit
formulae for zk in terms of the soliton parameters in the generic case. For two and three solitons
most of this analysis for scalar solitons were done [16,17,24]. For bigger values of N such formulas
are not done even for the scalar case, in which the number of the soliton parameters are 4N .
For N = 4 already the formulae for zk are involved; in addition the number of the parameters
is 4N = 16. Therefore for N > 4 even for the scalar case only special configurations of soliton
parameters are known. They are related to special choices of the soliton parameters that simplify
the characteristic polynomial so that it reduces to, say a biquadratic equation. In addition, when
it comes to Manakov solitons, the number of the parameters becomes 6N .

Our aim here will be: first to revisit the particular cases considered before and, second,
to propose special soliton configurations responsible for the BSR and FAR for any number of
solitons. We will illustrate our results by several figures.

3.1. Asymptotic regimes for Manakov solitons

Let us now outline some effective ways of choosing soliton parameters that would ensure given
asymptotic behavior of the solitons. The soliton parameters of the Manakov N -soliton train are
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6N and detailed study of the regions in which the solitons will develop given asymptotic regime
does not seem possible. However we will outline several ways to effectively pick up configurations
ensuring BSR or FAR asymptotic regimes.

Let us also remind several important issues that one needs to consider. First we need to
specify what we will consider as asymptotic state. Obviously we need a criterium that would
ensure us that we are in the asymptotic region. In our case we have two scales: ϵ1/2 and ϵ that
are fundamental for the adiabatic approximation. It is reasonable to assume that the asymptotic
times must be of the order of 1/ϵ. Our choices of soliton parameters are such that ϵ ≃ 10−2. So
one could expect that the asymptotic times would be of the order of ϵ−1 ≃ 100. At the same
time we extend our numerics to about tas ≃ 1000 and in most cases we find good match between
the CTC prediction and the numerics of Manakov model during all that period. This means that
CTC models the Manakov model much better that we can expect. We can see from the figures
presented here and from many others that we have done that the match could be much better.

Indeed, let us assume that we know how to split the 30-dimensional space of our soliton
parameters into regions that correspond to the different asymptotic regimes. Obviously, if we
choose the soliton parameters to be close to the ‘border’ between two different regimes we can
expect that we would have a ‘transition’ area between the regimes, so the deviation from the
CTC model will come up sooner than 1000. This is what we can see in Figs. 1, 2. In the right
panel of Fig. 3 for t ≫ 300 we see that the bound state of 5 solitons in fact transforms into a
MAR. It ‘peels off’ the first and the fifth solitons that go freely away, and the other three still
stay in a BSR. It seems that choosing the difference between the amplitudes stabilizes the BSR.

The general criterium that ensures FAR or BSR is based on the following well known propo-
sition coming from linear algebra.

Proposition 1. Let L0 be symmetric L0 = LT
0 matrix with real-valued matrix elements. Then

its eigenvalues z0j will be real and different, i.e., z0j ̸= z0k for k ̸= j.

Corollary 1. Let L1 be symmetric (not hermitian) L1 = LT
1 matrix with purely imaginary

matrix elements. Then its eigenvalues z1j will be purely imaginary and different, i.e., z1j ̸= z1k
for k ̸= j.

Proof. Follows directly from the Proposition if we consider L1 = iL0.

In addition below we will assume that ν0 = 0.5 and µ0 = 0.

3.2. Generic FAR configurations

These configurations are characteristic for the real Toda chain solved by Moser [9, 29,31].
In what follows we choose the polarization vectors n⃗k by setting:

θk =
kπ

13
, γk =

kπ

g0
. (24)

where g0 = 8, or g0 = 9.
For the CTC using the Proposition we obtain:

Im bk|t=0 = 0, Im ak|t=0 = 0, (25)
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Fig. 1. Left panel: FAR with initial conditions r0 = 7.0, µ00 = 0.01, ν00 = 0.0, g0 = 9; Right
panel: BSR for t up to 600 and MAR for t > 700 with initial conditions r0 = 8.0, µ00 = 0.0,
ν00 = 0.05, g0 = 9. The rest of the parameters are defined by eqs. (26) and (28) respectively

which means that

νk|t=0 = 0.5, bk|t=0 = µk|t=0 = µ0k, θk =
kπ

13
, γk =

kπ

g0
,

ξ0k = (k − 3)r0, µ0k = (k − 3)µ00, ν0k = 0.5 + (k − 3)ν00,

δ0,1 = 0, δ0,k+1 − δ0,k = σk.

(26)

Indeed, from the Proposition the eigenvalues of L will be real and different, which is FAR.
A particular case of (26) as configuration ensuring FAR for scalar solitons was noticed long
ago, namely choosing solitons with equal amplitudes (i.e., ∆νk = 0) and and out-of phase
δk+1 − δk = π [4]. However, eq. (26) provides more general configurations, in which the solitons
may have non-vanishing initial velocities, see Fig. 1.

3.3. Generic BSR configurations

Here we use the Corollary and impose on L the conditions:

Re bk|t=0 = 0, Re ak|t=0 = 0, (27)

which means that

bk|t=0 = iνk|t=0 = iν0k, θk =
kπ

13
, γk =

kπ

g0
,

ξ0k = (k − 3)r0, µ0k = 0.0, ν0k = 0.5 + (k − 3)ν00,

δ0,1 = 0, δ0,k+1 − δ0,k = σk + π,

(28)

This is also rather general and simple condition on the soliton parameters that fixes the initial
velocities to be 0, but does not put restrictions (except the adiabatic ones) on the amplitudes
and on the initial positions of the solitons.
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Fig. 2. Left panel: FAR with initial conditions r0 = 8.0, µ00 = 0.02, ν00 = 0.0, g0 = 4; Right
panel: BSR for t up to 300 and MAR for t > 500 with initial conditions r0 = 8.0, µ00 = 0.0,
ν00 = 0.03, g0 = 4. The rest of the parameters are defined by eqs. (26) and (28) respectively

3.4. Symmetric configurations of soliton parameters

In addition to these we find other configurations of soliton parameters that provide FAR or
BSR. To this end we use special symmetric constraints on L described below. These constraints
will leave only one of ν0k and a0k independent. As a result the characteristic polynomial of L
will factorize and we will find that all roots are proportional to each other.

Let us give few examples of them. We will provide the corresponding Lax matrix, its charac-
teristic polynomial and eigenvalues.

• N = 3, P3 = z(z2 − 4(a2 + b2)):

L3 =

 b
√
2a 0√

2a 0
√
2a

0
√
2a −b

 ,

z1,2 = ±2
√
a2 + b2, z3 = 0;

(29)

• N = 4, P4 = (z2 − a2 − b2)(z2 − 9(a2 + b2))

L4 =


3b

√
3a 0 0√

3a b 2a 0

0 2a −b
√
3a

0 0
√
3a −3b

 ,

z1,2 = ±
√
a2 + b2, z3,4 = ±3

√
a2 + b2;

(30)
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• N = 5, P5 = z(z2 − a2 − b2)(z2 − 4(a2 + b2))

L5 =


2b

√
3a 0 0 0√

2a b 2a 0 0

0 2a 0
√
3a 0

0 0
√
3a −b

√
2a

0 0 0
√
2a −2b


z1,2 = ±

√
a2 + b2, z3,4 = ±2

√
a2 + b2, z5 = 0;

(31)
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Fig. 3. Left panel: FAR with initial conditions µ00 = 0.02, ν00 = 0.0, g0 = 4; Right panel: BSR
for t up to 300 and MAR for t > 400 with initial conditions µ00 = 0.0, ν00 = 0.03, g0 = 4. The
rest of the parameters are defined by eqs. (37) and (38) respectively

• N = 6, P6 = (z2 − a2 − b2)(z2 − 9(a2 + b2))(z2 − 25(a2 + b2)):

L6 =



5b
√
5a 0 0 0 0√

5a 3b
√
3a 0 0 0

0
√
8a b 3a 0 0

0 0 3a −b
√
8a 0

0 0 0
√
8a −3b

√
5a

0 0 0 0
√
5a −5b


,

z1,2 = ±
√
a2 + b2, z3,4 = ±3

√
a2 + b2, z5,6 = ±5

√
a2 + b2.

(32)

Such examples can be found for any value of N ; from algebraic point of view they are related to
the the maximal embedding of sl(2) as a subalgebra of sl(N).

In order to ensure FAR or BSR we need to impose on a and b the condition that

FAR a2 + b2 > 0, BSR a2 + b2 < 0. (33)
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Initial conditions for BSR of 5 scalar solitons:

ξ1 = −2r0 +
ln 6

2ν0
, ξ2 = −r0 +

ln 3

2ν0
, ξ3 = 0, ξ4 = r0 −

ln 3

2ν0
, ξ5 = 2r0 −

ln 6

2ν0
,

νk = 0.5 + (3− k)ν00, µk = 0, δk = kπ, k = 1, . . . , 5.
(34)

Initial conditions for FAR of 5 scalar solitons:

ξ1 = −2r0 +
ln 6

2ν0
, ξ2 = −r0 +

ln 3

2ν0
, ξ3 = 0, ξ4 = r0 −

ln 3

2ν0
, ξ5 = 2r0 −

ln 6

2ν0
,

νk = 0.5, µk = (3− k)µ00, δk =
kπ

2
, k = 1, . . . , 5.

(35)

For Manakov solitons the initial positions are determined by:

ξ10 = −2r0 −
1

2ν0
ln

m01m02m03m04

6
, ξ20 = −r0 −

1

2ν0
ln

m02m03m04

3m01
,

ξ30 = − 1

2ν0
ln

m03m04

m01m02
,

ξ40 = r0 +
1

2ν0
ln

m01m02m03

3m04
, ξ50 = 2r0 +

1

2ν0
ln

m01m02m03m04

6
.

(36)

For the numerics we again fix the polarization vectors as in (24) and evaluate ξ0k by the
formula (36). The result are given in Tab. 1 and 2 below.

In order to have FAR we choose the amplitudes, velocities and the phases of the solitons by:

νk = 0.5, µk = (k − 3)µ00, k = 1, 2, . . . , 5,

δ10 = 0, δ20 = δ10 + σ1 + π, δ30 = δ10 + σ1 + σ2 + π,

δ40 = δ30 + σ1 + σ2 + σ3 + π, δ50 = δ40 + σ1 + σ2 + σ3 + σ4 + π.

(37)

For the BSR we choose the amplitudes, velocities and the phases of the solitons by:

νk = 0.5 + (k − 3)ν00, µk = 0, k = 1, 2, . . . , 5,

δ10 = 0, δ20 = δ10 + σ1, δ30 = δ10 + σ1 + σ2,

δ40 = δ30 + σ1 + σ2 + σ3, δ50 = δ40 + σ1 + σ2 + σ3 + σ4.

(38)

3.5. Numeric values for the intial parameters

In Tabs. 1 and 2 we list the numeric values for m0k and σk for the two typical choices of θk
and γk used above.

Table 1. Initial phases for Fig. 1 and Fig. 2

δ0k left panel right panel
k = 1 0.0 0.0
k = 2 2.868037 –0.273554
k = 3 –0.405708 –0.405708
k = 4 2.781038 –0.360554
k = 5 –0.150741 –0.150741

δ0k left panel right panel
k = 1 0.0 0.0
k = 2 2.484841 –0.656751
k = 3 –1.006917 –1.006917
k = 4 2.258187 –0.883405
k = 5 –0.354039 –0.354039
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Table 2. Initial phases and positions for Fig. 3

left panel right panel
δ0k ξ0k δ0k ξ0k

k = 1 0.0 –15.154654 0.0 –15.154654
k = 2 2.484841 –7.133487 –0.656751 –7.133487
k = 3 –1.006917 0.140982 –1.006917 0.140982
k = 4 2.258187 7.305540 –0.883405 7.305540
k = 5 –0.354039 15.154654 –0.354039 15.154654

4. Conclusions and discussion

The above analysis can be extended to any number of solitons. As we mentioned above,
the symmetric Lax matrices are realizations of the maximal embedding of the sl(2) algebra
as a subalgebra of sl(N). In this case we effectively reduce the N -soliton interactions to an
effective 2-soliton interactions. Therefore the symmetric configurations studied above allow only
two asymptotic regimes: BSR and FAR. We make the hypothesis that it would be possible to
construct more general symmetric Lax matrices that would be responsible for effective 3-soliton
interactions. In this paper we included numerical tests only for 5 soliton interactions. However
previously we have run test starting with 2-solitons and ending with 9-soliton configurations.
Our results are that the CTC models adequately not only the purely solitonic interactions, but
also the effects of external potentials and other perturbations on them.

An interesting question is how long should we wait for the asymptotic regime. This question
is directly related to the other one: What are the limits of applicability of CTC? In our simula-
tions we have chosen ε0 ≃ 0.01 which means that the asymptotic time must be of the order of
1/ε0 ≃ 100. At the same time in a number of cases we find good match between the CTC and
the numeric solutions of Manakov model even until 1 000. This is what we see in our tests in
this paper for the free asymptotic regimes (left panels of all figures). The situation is different
for the bound state regimes. While in Fig. 1 we see good match until about 700, in Figs. 1 and 3
the good match goes until 300. After that the trajectories of CTC keep to the BSR, but some of
the real solitons ‘escape away‘ after that. However in all cases we find that CTC provides good
descriptions until times about three times larger than the asymptotic one.

MDT was supported by Fulbright – Bulgarian-American Commission for Educational Ex-
change under Grant No 19-21-07.
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Об асимптотическом поведении N-солитонных
последовательностей Манакова в адиабатическом
приближении

Владимир С. Герджиков
Национальный исследовательский ядерный университет "МИФИ"

Москва, Российская Федерация
Институт математики и информатики Болгарской академии наук

София, Болгария
Институт перспективных физических исследований, Новый болгарский университет

София, Болгария
Михаил Д. Тодоров
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Технический университет Софии
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Аннотация. Мы анализируем динамическое поведение N -солитонных последовательностей Ма-
накова в адиабатическом приближении. Эволюция этих солитонных последовательностей модели-
руется комплексной цепочкой Тода (КЦТ), которая является вполне интегрируемой динамической
системой. Вычисляя собственные значения ее матрицы Лакса мы можем определить асимптоти-
ческую скорость каждого из солитонов. Это позволяет нам описать конфигурации солитонных
параметров при которых солитонная последовательность переходит в каждом из двух основных
ясимптотических режимов: (а) режим связанного состояния и (б) режим асимптотически свободно-
го поведения. В частности мы нашли явное описание специальных симметрических конфигураций
N солитонов которые обеспечивают как, режим связанного состояния, так и режим асимптотически
свободного поведения. Мы установили отличное совпадение между траекториями, предсказывае-
мых КЦТ с теми, которые получаются при численном решении модели Манакова для широкого
класса солитонных параметров. Это подтверждает справедливость нашей модели.

Ключевые слова: модель Манакова, солитонные взаимодействия, адиабатическое приближение,
комплексная цепочка Тода.
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