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Abstract. We consider a perturbation of the de Rham complex on a compact manifold with boundary.
This perturbation goes beyond the framework of complexes, and so cohomology does not apply to it. On
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Introduction

De Rham cohomology is a tool belonging both to algebraic topology and to differential topol-
ogy, capable of expressing basic topological information about smooth manifolds in a form par-
ticularly adapted to computation and the concrete representation of cohomology classes. It is a
cohomology theory based on the existence of differential forms with prescribed properties. We
tracked out its analytic ingredients in [5].

In this paper we consider a perturbation of the de Rham complex on a compact manifold
with boundary X of dimension n. That is

0 −→ Ω0(X ) d+a−→ Ω1(X ) d+a−→ . . .
d+a−→ Ωn(X ) −→ 0, (0.1)

where Ω i(X ) stands for the space of all differential forms of degree i with C∞ coefficients on X ,
by d is meant the exterior differentiation of forms, and a is a given C∞ one-form on X . The
differential in (0.1) is defined by (d+ a)u = du+ a ∧ u for all u ∈ Ω i(X ) whence

(d+ a)2u = d2u+ da ∧ u− a ∧ du+ a ∧ du+ (a ∧ a) ∧ u =

= da ∧ u.

The differential square is sometimes referred to as the curvature of sequence (0.1) and it is
“small” in some relevant sense. This enables one to introduce the Euler characteristic and prove
a Lefschetz fixed point formula for (0.1), see [11,13].

However, (d+a)2 need not be zero and for this reason the standard cohomology construction
does not apply to (0.1). To introduce cohomology in (0.1) we use a construction of mathematical
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folklore. To wit, we factorise the null-space Zi of d + a in Ω i(X ) by the (part of the) range of
d+ a over Ω i−1(X ) belonging to the space Zi. Thus, we define

Hi(Ω ·(X ), d+ a) :=
Zi

(d+ a)(Ω i−1(X )) ∩ Zi

for i = 0, 1, . . . , n.
If f = (d + a)u belongs to Zi, then (d + a)f = (d + a)2u = 0, i.e., ω ∧ u = 0 in X , where

ω = da is a given C∞ two-form on X . Denote by Ω i
ω(X ) the subspace of Ω i(X ) consisting of all

forms u ∈ Ω i(X ) which satisfy ω ∧ u = 0 in X . By the very definition, Ω i
ω(X ) coincides with

Ω i(X ) for i = n− 1, n. Given any u ∈ Ω i
ω(X ), we get

ω ∧ (d+ a)u = ω ∧ du+ a ∧ (ω ∧ u) =

= (d+ a)(ω ∧ u) = 0,

for ω is a closed two-form on X . Hence it follows that d + a maps Ω i
ω(X ) into Ω i+1

ω (X ) for all
i = 0, 1, . . . , n− 1. We have thus associated the complex of linear mappings

0 −→ Ω0
ω(X )

d+a−→ Ω1
ω(X )

d+a−→ . . .
d+a−→ Ωn

ω (X ) −→ 0 (0.2)

to sequence (0.1).
Complex (0.2) gains in interest if we realise that its cohomology just amounts to

Hi(Ω ·(X ), d+ a) at each step i.
If the differential form a is closed in all of X , then (0.1) is actually a complex and both (0.1)

and (0.2) coincide. Otherwise Ω i
ω(X ) need not be a space of sections of some vector bundle

over X . Indeed, the forms u of Ω i
ω(X ) are described by the equation ω ∧ u = 0 on X . At any

fixed point x ∈ X the equation reduces to a system of Ci+2
n linear equations for Ci

n unknowns
which are the coefficients of u(x). The dimension of the space of solutions to this system just
amounts to Ci

n minus the rank of the bundle homomorphism ΛiT ∗X → Λi+2T ∗X determined by
the exterior multiplication with ω(x) = da(x). Hence, the dimension varies with x and the family
of subspaces of ΛiT ∗X defined pointwise by ω∧u = 0 fails to constitute a subbundle of ΛiT ∗X in
general. However, if the rank of the bundle homomorphism da(x)∧ is constant, i.e., independent
of x ∈ X , then Ω i

ω(X ) is specified within the framework of smooth sections of a subbundle V i

of ΛiT ∗X . In this case (0.2) is a complex of first order differential operators between sections of
vector bundles over X . However, it is not elliptic, and so the Neumann problem after Spencer [9]
does not apply to study the cohomology of complex (0.2).

Example 0.1. If a is an one-form on an open set U ∈ R3 with non-vanishing coefficient ω1,2 of
ω = da, then (0.2) reduces to

0 −→ 0 −→ C∞(U,R2)
A1

−→ C∞(U,R3)
A2

−→ C∞(U) −→ 0,

the principal symbols of A1 and A2 being

σ1(A1)(x, ξ) =

 q1(x)ξ2 q2(x)ξ2 − ξ3
−q1(x)ξ1 + ξ3 −q2(x)ξ1

−ξ2 ξ1,

 ,

σ1(A2)(x, ξ) = (ξ1, ξ2, ξ3)

up to the factor ı =
√
−1. Here,

q1 = −ω2,3

ω1,2
, q2 =

ω1,3

ω1,2
.

The rank of σ1(A1)(x, ξ) is equal to 1 for all ξ on the line ξ1 = ξ2, ξ3 = (q1 + q2)ξ2 in R3.
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Locally any closed differential form a is exact. If a = dp for some smooth function p on
X , then an easy calculation shows that (d + a)u = e−p d (epu) for all forms u ∈ Ω i(X ). In
this particular case complex (0.2) is obtained by a similarity transformation from the de Rham
complex. This conjugation was used in the work [15] who proved Morse inequality using some
spectral information of the Laplacian of the complex. The approach of [4] to solving the ∂̄
problem is basically the same, and it is from 1965, predating [15] by a couple of decades. By
varying the "weight" function p one can get L2 estimates for the solution of ∂̄ problem. The
paper [4] does not make explicit that it is perturbing the Dolbeault complex, but that is exactly
what it is doing. For a further development of this approach to Morse theory we refer the reader
to [6] and the references given there.

In this work we focus on the cohomology of complex (0.2) in the case where the form a is not
closed. Our basic assumption is that the rank of the bundle homomorphism da(x)∧ is constant.

1. The cohomology of the associated complex

A complex is said to be Fredholm if its cohomology is finite-dimensional at each step. This
concept can be extended within the framework of nonstandard cohomology to arbitrary sequences
(0.1). However, it should be noted that it differs from the concept of Fredholm quasicomplexes
studied in [11]. Since (0.1) is a "small" perturbation of the de Rham complex on X , it is a
Fredholm quasicomplex in the sense of [11]. This allows one to introduce an Euler character-
istic of (0.1). Still, the paper [11] does not contain any definition of cohomology for Fredholm
quasicomplexes.

Lemma 1.1. As defined above, the cohomology of complex (0.2) at step i coincides with
Hi(Ω ·(X ), d+ a).

Proof. For any f ∈ Ω i
ω(X ) ∩ Zi, we write [f ] for the equivalence class of f in Hi(Ω i

ω(X )). Let ι
be the embedding of Ω i

ω(X ) ∩ Zi into Ω i(X ) ∩ Zi. Consider the mapping

ι∗ : Hi(Ω i
ω(X ))→ Hi(Ω i

ω(X ), d+ a)

which assigns to any class [f ] ∈ Hi(Ω i
ω(X )) the class of ι(f) in Hi(Ω ·(X ), d+a). This definition

is correct, for if f = (d+a)u with some form u ∈ Ω i−1
ω (X ), then (d+a)f = (d+a)2u = ω∧u = 0,

i.e., the class of (d+ a)f in Hi(Ω ·(X ), d+ a) is zero.
The mappng ι∗ ist injective. For let f ∈ Ω i

ω(X ) ∩ Zi satisfy ι∗[f ] = 0. Then there is a form
u ∈ Ω i−1(X ) such that f = (d+ a)u. Hence it follows immediately that

ω ∧ u = (d+ a)2u =

= (d+ a)f = 0,

i.e., [f ] = 0, as desired.
It remains to show that ι∗ ist surjective. To this end, pick an arbitrary form f ∈ Zi. Then

ω ∧ f = (d+ a)2f = 0, and so f ∈ Ω i
ω(X ) and ι∗[f ] is the class of f in Hi(Ω ·(X ), d+ a).

The sequence of symbol mappings in (0.1) is exact away from the zero section of T ∗X , and so
(0.1) is an elliptic sequence in the interior of X . Moreover, the sequence of boundary symbols is
exact away from the zero section of T ∗∂X , both conditions are usually referred to as ellipticity on
a manifold with boundary. However, they characterise the Fredholm property in Sobolev spaces
while we go beyond these spaces in (0.2).
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2. Perturbations on 2 -dimensional manifolds

To learn complex (0.2) we consider the particular case n = 2, i.e., X is a manifold of dimen-
sion 2.

If da(x0) 6= 0 at some point x0 ∈ X , then by continuity da(x) 6= 0 holds for all x in a
neighbourhood U of x0 on X . We restrict our attention to some local chart U in X with this
property.

Write a = a1dx
1+a2dx

2 in the coordinates of U , then da = (∂1a2−∂2a1)dx1∧dx2 is different
from zero in U . By definition, we get

Ω0
ω(U) = {u ∈ C∞(U) : (∂1a2 − ∂2a1)u dx

1 ∧ dx2 = 0} = {0}

and Ω i
ω(U) = Ω i(U) for i = 1, 2 since da ∧ u has degree at least 3, if u ∈ Ω i(U). Complex (0.2)

thus becomes
0 −→ 0 −→ Ω1(U)

d+a−→ Ω2(U) −→ 0. (2.1)

The symbol sequence of (2.1) over a point (x, ξ) ∈ T ∗U reduces immediately to the complex

0 −→ 0 −→ Λ1T ∗
xU

ξ∧−→ Λ2T ∗
xU −→ 0

which is not exact at the term Λ1T ∗
xU , for ξ ∧ ξ = 0 for all ξ ∈ T ∗

xU . The exactness at the term
Λ2T ∗

xU is well known for all ξ ∈ R2 \ {0}. It follows that complex (2.1) fails to be elliptic.
We now turn to the cohomology of (2.1). Namely, given any form f ∈ Ω2(U), we look for a

solution u ∈ Ω1(U) to the inhomogeneous equation (d+ a)u = f in U . On writing

u = u1dx
1 + u2dx

2,

f = f12dx
1 ∧ dx2

we reduce the equation to
(∂1 + a1)u2 − (∂2 + a2)u1 = f12

in U .
An important class of solutions to this equation is constituted by the so-called potential

solutions, i.e., those of the form u = dp where p is a smooth function in U satisfying a∧ dp = f ,
i.e.,

a1∂2p− a2∂1p = f12.

This first order partial differential equation is known to have a unique solution p with prescribed
data on any curve S in U which is not characteristic, i.e., the vector field (−a2, a1) is tangent to
S at no point. Hence it follows that the cohomology of complex (2.1) is infinite dimensional at
the term Ω1(U) and zero at the term Ω2(U).

Thus, sequence (0.1) fails to be Fredholm in the sense of Section 1. unless the form a(x) is
closed. A substantial theory is hardly expected for the case of nonclosed differential forms a,
cf. [6]. If a is a closed one-form, then complex (0.1) falls into a useful general construction in
homological algebra called the Koszul complex, see Section 1.2.8 of [10].

3. Quasicomplexes

In this section we recall some basic facts about complexes and quasicomplexes in Hilbert
spaces. For the theory of quasicomplexes of Banach spaces we refer to [2] where quasicomplexes
are called essential complexes.
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Let us consider the sequence

(H ·, d) : 0 −→ H0 d0

−→ H1 d1

−→ . . .
dN−1

−→ HN −→ 0

where Hi are Hilbert spaces and di are continuous linear maps. The sequence (H ·, d) is called
a complex if didi−1 = 0 for all i = 1, . . . , N . The elements of the spaces Zi(H ·, d) = ker di

and Bi(H ·, d) = im di−1 are called cocycles and coboundaries, respectively. The quotient space
Hi(H ·, d) = ker di/im di−1 is the cohomology of the complex (H ·, d) at step i. The complex
(H ·, d) is said to be Fredholm if its cohomology is finite dimensional at each step i = 0, . . . , N .

It is well known that "small" perturbations of Fredholm operators do not affect the Fredholm
property. For example, perturbing a single Fredholm operator by a compact operator gives us
a Fredholm operator. It would be natural to have the same property for Fredholm complexes.
However, a "small" perturbation of a Fredholm complex need not be even a complex anymore,
i.e., the operators no longer satisfy didi−1 = 0.

Note that perturbing an elliptic complex by lower order terms does not change the complex
of principal symbols which remains to be exact. Hence, instead of complexes it is natural to
consider sequences (H ·, d) with the property that the compositions didi−1 are "small" in some
sense. By "small" operators one usually means compact operators. Let us denote by K(H, H̃)
the subspace of L(H, H̃) consisting of compact operators.

Definition 3.1. A sequence (H ·, d) of Hilbert spaces Hi and continuous linear maps di is a
quasicomplex if didi−1 ∈ K(Hi−1,Hi+1) for all i = 1, . . . , N .

For d1, d2 ∈ L(H, H̃), we write d1 ∼ d2 if d1 − d2 ∈ K(H, H̃). It is known that an operator
d ∈ L(H, H̃) is Fredholm if and only if its image in the Calkin algebra L(H, H̃)/K(H, H̃) is
invertible. Hence, the idea of Fredholm quasicomplexes is to pass in a given quasicomplex to
quotients modulo spaces of compact operators and require exactness. To make the definition
precise we introduce a functor φΣ studied in [7].

Taking an arbitrary Hilbert space Σ , we set φΣ (Hi) = L(Σ ,Hi)/K(Σ ,Hi) for each
Hilbert space Hi. Then, for any map di ∈ L(Hi,Hi+1), we introduce a map φΣ (di) ∈
L(φΣ (Hi), φΣ (Hi+1)) by

φΣ (di)(A+K(Σ ,Hi)) = diA+K(Σ ,Hi+1)

for all A ∈ L(Σ ,Hi). Obviously, this operator is well defined. It is easily seen that φΣ (didi−1) =
= φΣ (di)φΣ (di−1) and that φΣ vanishes on compact operators for every Hilbert space Σ . Hence,
if (H ·, d) is a quasicomplex then (φΣ (H ·), φΣ (d)) is a complex for each Hilbert space Σ .

Definition 3.2. A quasicomplex (H ·, d) is Fredholm if the complex (φΣ (H ·), φΣ (d)) is exact for
each Hilbert space Σ .

Let (H ·, d) and (H ·, d̃) be two quasicomplexes of Hilbert spaces, such that di ∼ d̃i for any
i = 0, 1, . . . , N . Then the complexes (φΣ (H ·), φΣ (d)) and (φΣ (H ·), φΣ (d̃)) coincide. Hence, the
quasicomplexes (H ·, d) and (H ·, d̃) are Fredholm simultaneously. Thus, any compact perturba-
tion of a Fredholm quasicomplex is a Fredholm quasicomplex.

A sequence

(H ·, π) : 0←− H0 π1

←− H1 π2

←− . . .
πN

←− HN ←− 0

with πi ∈ L(Hi,Hi−1) is said to be a parametrix of the quasicomplex (H ·, d), provided

πi+1di + di−1πi = IHi − κi

for all i = 0, 1, . . . , N , where κi ∈ K(Hi).
It is well known that a complex of Hilbert spaces is Fredholm if and only if it has a parametrix.

The same property is also true for quasicomplexes, see [11].
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Theorem 3.3. A quasicomplex (H ·, d) is Fredholm if and only if it possesses a parametrix.

Obviously, if a parametrix (H ·, π) of a quasicomplex (H ·, d) is a quasicomplex itself, then
(H ·, d) is in turn a parametrix of (H ·, π).

It should be noted that Theorem 3.3 does not extend to arbitrary complexes of Banach spaces.
The advantage of using Hilbert spaces lies in the fact that any quasicomplex of Hilbert spaces
admits the so-called adjoint quasicomplex. By this is meant

(H ·, d∗) : 0←− H0 d0∗

←− H1 d1∗

←− . . .
dN−1∗

←− HN ←− 0,

where di∗ ∈ L(Hi+1,Hi) stands for the adjoint of di in the sense of Hilbert spaces. Since
di∗di+1∗ = (di+1di)∗ are compact operators, (H ·, d∗) is a quasicomplex indeed. The selfadjoint
operators ∆i = di−1di−1∗ + di∗di are called the Laplacians of the quasicomplex (H ·, d). The
null-space of ∆i consists of all h ∈ Hi satisfying dih = 0 and di−1∗h = 0, as is easy to see.

Theorem 3.4. A quasicomplex (H ·, d) is Fredholm if and only if all its Laplacians ∆i are
Fredholm operators.

Proof. See Lemma 4.2 of [12].

As is proved in [11], every Fredholm quasicomplex can actually be transformed into a complex.
Another way of stating this theorem is to say that each Fredholm quasicomplex is a perturbation
of a Fredholm complex by compact operators.

Theorem 3.5. For any Fredholm quasicomplex (H ·, d) there are operators Di ∈ L(Hi,Hi+1)
satisfying Di ∼ di and DiDi−1 = 0 for all i.

4. A parametrix of the perturbation
We now return to the perturbation of the de Rham complex on X defined in (0.1). In order to

rewrite it in the context of Hilbert spaces, we choose any integer number s > n and set si = s− i
for i = 0, 1, . . . , n. Consider the sequence of linear mappings

0 −→ Hs0(X ,Λ0)
d+a−→ Hs1(X ,Λ1)

d+a−→ . . .
d+a−→ Hsn(X ,Λn) −→ 0, (4.1)

where Λi = ΛiT ∗X is the bundle of exterior forms of degree i over X and by Hsi(X ,Λi) is meant
the space of all differential forms of degree i with coefficients of the Sobolev class Hsi = W si,2

on X . We fix a unitary structure in each of these spaces, thus obtaining a sequence of Hilbert
spaces and their continuous linear mappings. By the above, the curvature of (4.1) just amounts
to the bundle homomorphism of Λi−1 to Λi+1 defined via the exterior multiplication by the
two-form da. On applying the Rellich theorem we conclude readily that it is a compact operator
from Hsi−1(X ,Λi−1) to Hsi+1(X ,Λi+1) for all i = 1, . . . , n. Hence, (4.1) is a quasicomplex.

We next show that this quasicomplex is Fredholm. By Theorem 3.3, for this purpose it suffices
to construct a parametrix of (4.1). To this end, we use the parametrix of the de Rham complex
on X obtained from the Neumann problem after Spencer, see Section 4 of [5]. More precisely,
there are operators Gi of order −2 in Boutet de Monvel’s algebra of pseudodifferential operators
acting in Ω i(X), such that

f = Hf + (d∗G)df + d(d∗G)f (4.2)

for all f ∈ Ω i(X ). Here, H stands for the orthogonal projection in L2(X ,Λi) onto the finite-
dimensional subspace of harmonic forms, i.e., those h ∈ Ω i(X ) which satisfy dh = 0, d∗h = 0
in X and n(f) = 0 on the boundary of X , where n(f) is the normal part of f on ∂X . By d∗

is meant the formal adjoint for the exterior derivative with respect to the L2 scalar product in
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Ω i(X ). The operator Gi satisfies n(Gf) = 0 and n(dGf) = 0 on the boundary of X for any
f ∈ Ω i(X ). It is usually referred to as the Green operator of the Hodge theory on manifolds
with boundary. Thus, on sufficiently smooth forms P = d∗G is a very special parametrix of the
de Rham complex.

Lemma 4.1. Let s be an arbitrary nonnegative integer. As defined above, the Green operator G
extends to a continuous mapping of Hs(X ,Λi) into Hs+2(X ,Λi).

Proof. Since u = Gf gives a solution to the Neumann problem after Spencer for the de Rham
complex on X and this latter problem is elliptic, the desired assertion follows from the regularity
theorem for elliptic boundary value problems in Sobolev spaces, see [1] and elsewhere.

The Rellich theorem on compact embeddings of Sobolev spaces implies that sequence (4.1)
is a compact perturbation of the de Rham complex evaluated in Sobolev spaces. The shortest
way to derive the Fredholm property of (4.1) from here is given by the next theorem.

Theorem 4.2. The sequence of pseudodifferential operators P i = d∗Gi of order −1 defines a
parametrix of sequence (4.1).

Proof. Using equality (4.2), we get

P i+1(d+ a)f + (d+ a)P if = (P i+1df + dP if) + (P i+1(a ∧ f) + a ∧ P if) =

= f −Kif
(4.3)

for all f ∈ Hsi(X ,Λi), where

Kif = Hif −
(
P i+1(a ∧ f) + a ∧ P if

)
.

The projector Hi is an operator with smooth Schwartz kernel on the product X × X , and so
it is a compact operator on Hsi(X ,Λi). On the other hand, the operator P i+1(a ∧ ·) + a ∧ P i·
acts on Hsi(X ,Λi) through the compact embedding Hsi+1(X ,Λi) ↪→ Hsi(X ,Λi), which is due
to the Rellich theorem. Hence, this operator is compact as well. On summing up we conclude
that Ki ∈ K(Hsi(X ,Λi)), as desired.

On applying the paper [11] we are in a position to introduce the Euler characteristic of
Fredholm quasicomplex (4.1). To wit, χ(Hs·(X ,Λ·), d + a) is defined to be equal to the Euler
characteristic χ(X ) of X , i.e., to that of the de Rham complex on X .

Our next goal is to improve the parametrix P i = d∗Gi of quasicomplex (4.1). It is surprising
that the standard procedure using the formal Neumann series for (I −Ki)−1 no longer works to
do this modulo smoothing operators. By abuse of notation we omit the indices of P i, Ki, etc.,
thus using the graded operators P and K defined by Pf = P if and Kf = Kif for f ∈ Ω i(X ),
respectively. According to (4.3) we get

K = −Pa− aP

modulo the harmonic projection.

Lemma 4.3. For any k = 0, 1, . . ., the commutator [Kk, d+a] := Kk(d+a) − (d+a)Kk just
amounts to

[Kk, d+ a] = −
k−1∑
j=0

Kj [P, (da)]Kk−1−j . (4.4)

Recall that by a is meant the operator on differential forms given by f 7→ a ∧ f . In contrast
to the composition da = d ◦ a we write (da) for the operator defined by the differential of a.
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Proof. For k = 0 the assertion is obvious, so we start with k = 1. We first observe that

[K, d] = [H − Pa− aP, d] =

= −[Pa+ aP, d],

for [H, d] = 0− 0 is zero by the very definition of harmonic projection H. Hence it follows that

[K, d] = dPa+ (da) ∧ P − adP − Pad− aPd =

= (dP + Pd)a− Pda− Pad+ (da) ∧ P − a(dP + Pd) =

= (I −H)a− [P, (da)]− a(I −H) =

= − [H, a]− [P, (da)]

the commutator [H, a] being smoothing and of finite rank. On the other hand, we get

[K, a] = (H − Pa− aP )a− a(H − Pa− aP ) = [H, a],

for a ∧ a = 0. Thus, [K, d+ a] = −[P, (da)], as desired.
For arbitrary integer k > 1 we proceed successively using the equality for k = 1. To wit,

[Kk, d+ a] = Kk−1K(d+ a)− (d+ a)Kk =

= Kk−1(d+ a)K −Kk−1[P, (da)]− (d+ a)Kk =

= Kk−2(d+ a)K2 −Kk−2[P, (da)]K −Kk−1[P, (da)]− (d+ a)Kk,

etc., which proves (4.4).

Note that each summand on the right-hand side of (4.4) is a pseudodifferential operator of
order −k.

Theorem 4.4. Given any N = 0, 1, . . ., the operators P i
N =

( N∑
k=0

(Ki−1)k
)
P i satisfy

PN (d+ a) + (d+ a)PN = I −KN+1 +

N∑
k=0

( k−1∑
j=0

Kj [P, (da)]Kk−1−j
)
P.

Proof. On multiplying both sides of (4.3) by
N∑

k=0

Kk from the left we immediately obtain

PN (d+ a) + (d+ a)PN = I −KN+1 −
[ N∑
k=0

Kk, d+ a
]
P.

Substituting the expressions for [Kk, d + a] of (4.4) into the latter equality yields the desired
formula.

In particular, if the differential form a is closed, then the operators P i
N constitute a parametrix

of complex (4.1) up to a remainder of order −N − 1, more precisely, KN+1. For perturbations
of nonzero curvature there is an additional residual term depending linearly on da.

5. Local calculation of the Laplacian
Denote by ∆a = (d+ a)∗(d+ a)+ (d+ a)(d+ a)∗ the Laplacian of the perturbed complex. A

trivial verification shows that

∆a = ∆0 + (d∗a+ a∗d+ da∗ + ad∗) + (a∗a+ aa∗),
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where ∆0 is the Laplacian of the de Rham complex on X . From this equality we deduce imme-
diately that ∆a is an elliptic operator of order two at each step i = 0, 1, . . . , n.

The Laplacian ∆a has especially simple form ∆0 + (a∗a + aa∗) if the first order differential
operator d∗a + a∗d + da∗ + ad∗ vanishes. This latter is the case if and only if the one-form a
satisfies an overdetermined system of first order partial differential equations on X . Since

d∗ = (−1)q ∗−1 d∗,
a∗ = (−1)q−1 ∗−1 a∗

holds on q -forms, where by ∗ is meant the Hodge star operator related to a Riemannian metric on
X , the system for a reduces to [d, ∗−1a∗] + [∗−1d∗, a] = 0 up to the inessential multiple (−1)q−1

on q -forms. It is linear over R but fails to be so over C.
To see if the system possesses solutions a among nonclosed one-forms a, we consider it in a

local chart U on X with coordinates x = (x1, . . . , xn). In these coordinates the form a can be
written as a = a1dx

1 + . . .+ andx
n, where a1, . . . , an are smooth functions of x. Moreover, any

bundle Λq is trivial over U under the representation of a form

u(x) =
∑

I=(i1,...,iq)

16i1<...<iq6n

uI(x) dx
i1 ∧ . . . ∧ dxxq

by the kq -column (uI(x)) of its coefficients, kq being the binomial coefficient Cq
n. The operator

d+a on q -forms is represented by a (kq+1×kq) -matrix of first order partial differential operators.
On assuming the canonical metric on Ckq we get the formula

∆a = ∆0 −
n∑

j=1

(
(aj(x)− aj(x))

∂

∂xj
+

1

2

∂

∂xj
(aj(x)− aj(x))

)
+ |a(x)|2

provided the coefficients of a satisfy

∂

∂xk
aj +

∂

∂xj
ak = 0 (5.1)

for all 1 6 j 6 k 6 n.

Example 5.1. For i = 1, . . . , n, choose ai(x) = ai,1x
1 + . . .+ ai,nx

n + ci, where A = (ai,j) is an
(n×n)-matrix of complex numbers and ci complex numbers independent of x. Then system (5.1)
is fulfilled if and only if aj,k+ak,j = 0 for all 1 6 j 6 k 6 n, i.e., the matrix A is skew-Hermitean.
An easy calculation shows that

da = −
∑

16i<j6n

∂

∂xj
(ai(x) + ai(x)) dx

i ∧ dxj = −
∑

16i<j6n

(ai,j + ai,j) dx
i ∧ dxj ,

which need not vanish.

Under conditions (5.1), if moreover the differential form a is real valued, then the Laplacian
∆a reduces to ∆0 + |a(x)|2.

6. Analytic torsion
For elliptic complexes on compact manifolds the cohomology is represented by harmonic

sections, i.e., those belonging to the null spaces of Laplacians. Hence, the harmonic spaces might
substitute for the cohomology of Fredholm quasicomplexes, provided the Hodge theory holds.
For manifolds with boundary the Hodge theory reduces to the Neumann problem after Spencer,
and so the question arises if it is elliptic.
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The calculations of Section 2 show that the Laplace operators under the homogeneous Neu-
mann conditions actually remain the only efficient tool to reveal resolving properties of an ar-
bitrary sequence of differential operators on a manifold with boundary. The null spaces of the
Laplace operators may substitute for the cohomology of such a sequence while their dimensions
can be thought of as generalised Betti numbers. This agrees completely with the definition of the
Euler characteristics for quasicomplexes of Banach spaces given in [11]. Moreover, the Fredholm
property of the Neumann problem after Spencer allows one to introduce the concept of analytic
torsion for a sequence. If it is independent on the choice of Hermitean structure of the sequence
and thus reveals a topological nature should be a subject of special treatments. In this section
we outline the concept of analytic torsion following to [8].

The Reidemeister torsion is a global invariant of a cell decomposition of a manifold and of an
acyclic representation of its fundamental group. It is an invariant of the piecewise linear struc-
ture of the manifold. The Reidemeister torsion for an arbitrary finite-dimensional unimodular
representation of the fundamental group can be defined as a canonical norm on the determinant
line of the cohomology of a manifold. It is a multiplicative analogue of the Euler characteristic in
the case of manifolds of odd dimension. (The Euler characteristic of a closed manifold is trivial
in the odd-dimensional case.) Formulas for the Reidemeister torsion of the Cartesian product of
two manifolds are similar to the multiplicative property of the Euler characteristic. The analytic
torsion was introduced in [8] for a closed Riemannian manifold {X , g} with an acyclic orthogonal
representation of the fundamental group π1(X ). It is equal to the product of the corresponding
powers of the determinants of the Laplace operators on differential forms of Ω ·(X ). These deter-
minants are regularised with the help of the zeta-functions of the Laplacians. (The Reidemeister
torsion can also be written by analogous formula where the Riemannian Laplacians are replaced
by the combinatorial ones.) The analytic torsion is defined with the help of a Riemannian metric
g on X . However, it is independent of g in the acyclic case, see [8]. So it is an invariant of the
smooth structure on X and behaves in much the same way as the Reidemeister torsion. As was
conjectured in [8], for any compact closed manifold X and acyclic representation ρ of the funda-
mental group π1(X ) the Reidemeister torsion of {X , ρ} has proven to be equal to the analytic
torsion of {X , ρ}.

On returning to sequence (0.1) we observe that it coicides with the de Rham complex up
lower order operators. Hence, in the algebra of boundary value problems on X the sequence
bears the same principal symbol structure as the de Rham complex. In particular, the tangential
and normal components of a differential form u ∈ Ω i(X ) on the boundary of X with respect to
sequence (0.1) coincide with those with respect to the de Rham complex. They are denoted by
t(u) and n(u), respectively, so that u = t(u) + d% ∧ n(u) on ∂X where % is a defining function
of the boundary with |d%| = 1 on ∂X , see Section 3.2.2 in [10]. The Neumann problem after
Spencer for sequence (0.1) at step i consists in finding, given any f ∈ Ω i(X ), a form u ∈ Ω i(X )
satisfying

∆au = f in X ,
n(u) = 0 on ∂X ,

n((d+ a)u) = 0 on ∂X .
(6.1)

By the above, the Laplace operator ∆i
a is elliptic in X . The boundary conditions are coercive

for the Laplacian, see e.g. [5]. Thus, (6.1) is a classical elliptic boundary value problem in X .
Moreover, it is formally selfadjoint with respect to the Green formula.

Elliptic theory applies well to problem (6.1). All solutions u ∈ H2(X ,Λi) of the homogeneous
problem corresponding to (6.1) belong actually to the space Ω i(X ), and they form a finite
dimensional space Hi

a(X ). The elements of Hi
a(X ) are called harmonic forms. Denote by Ha

the orthogonal projection of L2(X ,Λi) onto Hi
a(X ). Given any f ∈ L2(X ,Λi), the equation

∆au = f − Haf has a unique solution u in H2(X ,Λi) orthogonal to Hi
a(X ). The operator

f 7→ Gaf := u is called the Green (or Neumann after Spencer) operator and it maps L2(X ,Λi)
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continuously into H2(X ,Λi). The Green operator is known to be a selfadjoint operator in
L2(X ,Λi). Its smoothness properties are deduced from the fact that Ga is an operator of order −2
in the algebra of boundary value problems on X outlined in [3]. By the above,

f = Haf + Pa(d+ a)f + (d+ a)Paf + (d+ a)∗[d+ a,Ga]f

for all f ∈ L2(X ,Λi), where Pa = (d+a)∗Ga. The commutator [Ga, d+a] need not vanish unless
a is a closed one-form.

Lemma 6.1. Suppose that the perturbation satisfies n(da) = 0 on the boundary of X . Then

[d+ a,Ga] = Ga[(d+ a)∗, da]Ga. (6.2)

Proof. Denote by N i
a(X ) the subspace of Ω i(X ) consisting of those differential forms u which

satisfy the boundary conditions in (6.1), i.e., n(u) = 0 and n((d+ a)u) = 0 on ∂X .
We first show that A = d + a maps N i

a(X ) continuously into N i+1
a (X ). If u ∈ N i

a(X ), then
n(Au) = 0 and it remains to check if n(A2u) = 0 holds. We get A2u = da ∧ u and

da ∧ u = (t(da) + d% ∧ n(da)) ∧ (t(u) + d% ∧ n(u)) =

= t(da) ∧ t(u) + d% ∧ (t(da) ∧ n(u) + n(da) ∧ t(u))

on ∂X whence n(da ∧ u) = 0, as desired.
On applying the operator A to the equality I = Ha+∆aGa on Ω i(X ) from the left and from

the right we see that A∆aGa = ∆aGaA, for both AHa and HaA vanish. Thus,

∆a[A,Ga] = [∆a, A]Ga

and so the equality Ga∆a[A,Ga]u = Ga[∆a, A]Gau holds for all u ∈ Ω i(X ).
From the construction of the Green operator we deduce that (Ga∆a)g = g − Hag for all

g ∈ N i+1
a (X ). Now, if u ∈ Ω i(X ) then g = [A,Ga]u = A(Gau) − Ga(Au) belongs to the space

N i+1
a (X ), for A maps N i

a(X ) into N i+1
a (X ). Hence it follows that

Ga∆a[A,Ga] = (I −Ha)[A,Ga]

is valid on all of Ω i(X ). As HaA = 0 and HaGa = 0, we get Ga∆a[A,Ga] = [A,Ga], on the one
hand.

On the other hand, an easy calculation gives

[∆a, A] = (A∗A+AA∗)A−A(A∗A+AA∗) =

= A∗A2 −A2A∗ =

= [A∗, A2]

showing (6.2).

From Lemma (6.1) it follows that Pa(d+a)f + (d+a)Paf = f − Kaf for all f ∈ Ω i(X ),
where Ka = Ha + A∗Ga[A

∗, da]Ga is a pseudodifferential operator of order −2 on X . Hence,
Pa is a parametrix of sequence (4.1) whose remainder Ka is “smaller” than the remainder of the
parametrix constructed in Theorem 4.2. It is to be expected that the standard procedure using
the formal Neumann series for (I −Ka)

−1 works to construct a parametrix modulo smoothing
operators but we will not develop this point here.

Given any nonnegative linear mapping L of a unitary space V , one defines the zeta function
of L by ζL(s) = trL−s, where tr stands for the functional trace. Thus, we get

ζL(s) =
∑
j

λ−s
j ,
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where the sum is over all nonzero eigenvalues of L. For selfadjoint mappings L determined
by elliptic operators or boundary value problems, it is known that the eigenvalues of L can
be arranged in a monotone increasing sequence converging to infinity. Moreover, ζL(s) has a
meromorphic extension to the entire complex plane which is regular at s = 0. On formally
differentiating the series term-by-term one obtains

ζ ′L(s) = −
∑
j

log λj

λs
j

,

and so if the functional determinant is well defined and different from zero, then it should be
given by detL = exp (−ζ ′L(0)). Since the analytic continuation of the zeta function is regular at
zero, this can be rigorously adopted as a definition of the determinant.

For a sequence

(H ·, d) : 0 −→ H0 d0

−→ H1 d1

−→ . . .
dN−1

−→ HN −→ 0

of unitary spaces, the analytic torsion (or determinant) is now introduced by the formula

log T (H ·, d) =
1

2

N∑
i=0

(−1)i+1i log det∆i =

=

N∑
i=0

log
(
det∆i

)(−1)i+1i/2
=

= log

N∏
i=0

(
det∆i

)(−1)i+1i/2

or

T (H ·, d) =

N∏
i=0

(
det∆i

)(−1)i+1i/2
, (6.3)

where ∆i = di−1di−1∗+ di∗di are the Laplacians of the sequence (H ·, d). It is easy to check that
for short sequences (i.e, N = 1) the analytic torsion reduces to |det d0|.

Example 6.2. Consider the sequence of symbols corresponding to perturbation (0.1). It is the
complex

(Λ·T ∗
xX , σ(ξ)) : 0 −→ Λ0T ∗

xX
σ(ξ)−→ Λ1T ∗

xX
σ(ξ)−→ . . .

σ(ξ)−→ ΛnT ∗
xX −→ 0

parametrised by a point x ∈ X and a vector ξ ∈ T ∗
xX different from zero, where σ(ξ)v = ξ ∧ v

for all v ∈ ΛiT ∗
xX . Choosing an orthonormal basis in each tangent space TxX , we endow the

spaces ΛiT ∗
xX with a unitary structure in the usual manner. The dimension of ΛiT ∗

xX is equal
to the binomial coefficient ki := Ci

n. The Laplacians of the complex (Λ·T ∗
xX , σ(ξ)) reduce to

∆i = |ξ|2Ii, where Ii is the identity mapping of ΛiT ∗
xX . Hence it follows that det∆i = |ξ|2ki ,

and so the analytic torsion is

T (Λ·T ∗
xX , σ(ξ)) =

n∏
i=0

(
|ξ|2ki

)(−1)i+1i/2
=

= |ξ|−0 k0+1 k1−...+(−1)n−1nkn .

If n = 1, then the analytic torsion just amounts to |ξ|. For all n > 1, it reduces to 1 since the
exponent is n(1− 1)n−1 by the binomial formula.

Formula (6.3) can be used to introduce the concept of analytic torsion for quasicomplex (0.1).
To this end, as ∆i one takes the Laplacians ∆i

a of (0.1) under the homogeneous Neumann
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(after Spencer) boundary conditions, cf. (6.1). Of course, the product of the eigenvalues
of these Laplacians is infinite, so the notion of determinant must be regularised by means of
det∆i

a = exp
(
−ζ ′∆a

(0)
)
. If defined in this way, the analytic torsion is a subtle spectral invari-

ant. It is easy to check that the zeta function for the Laplacian on the simplest manifold with
boundary, the interval, is a slight variation of the Riemann zeta function. Geometers can perhaps
study the dependence of analytic torsion on the particular choice of Riemannian metric on X , a
technique usually unavailable to number theorists due to rigidity results.

The first author gratefully acknowledges the financial support of the Islamic Center Associa-
tion for Guidance and Higher Education.
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Возмущение комплекса де Рама
Исан Малас

Николай Тарханов
Потсдамский университет

Потсдам, Германия

Аннотация. Рассмотрим возмущение комплекса де Рама на компактном многообразии с краем.
Это возмущение выходит за рамки комплексов, и поэтому когомологии к нему не относятся. С
другой стороны, его кривизна "мала", поэтому существует естественный способ ввести характе-
ристику Эйлера и разработать теорию Лефшеца для возмущения. Данная работа предназначена
для попытки разработать теорию когомологий для произвольных последовательностей линейных
отображений.

Ключевые слова: комплекс де Рама, когомологии, теория Ходжа, проблема Неймана.
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