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Abstract. In this article, we study the property of being equationally Artinian in groups. We define the
radical topology corresponding to such groups and investigate the structure of irreducible closed sets of
these topologies. We prove that a finite extension of an equationally Artinian group is again equationally
Artinian. We also show that a quotient of an equationally Artinian group of the form G[t] by a normal
subgroup which is a finite union of radicals, is again equationally Artnian. A necessary and sufficient
condition for an Abelian group to be equationally Artinian will be given as the last result. This will
provide a large class of examples of equationally Artinian groups.
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In the mid-twentieth century, Alfred Tarski asked whether two arbitrary non-abelian free
groups are elementary equivalent. To answer this question, it was necessary to investigate systems
of equations over groups. Makanin and Razborov proved that the existence of solutions for
systems of equations over free groups is a decidable problem and an algorithm to solve such
systems of equation is discovered (Makanin-Razborov diagrams, see [10] and [14]). The work of
Makanin and Razborov as well as many other mathematicians was the beginning of algebraic
geometry over groups. Since then, this new area of algebra was the subject of important studies in
group theory. The work of Baumslag, Myasnikov and Remeslennikov provides a complete account
of this new subject, [1]. Positive solution to the problem of Tarski is discovered by Kharlampovich,
Myasnikov and Sela at the the beginning of the recent century (see [7–9] and [15]). After that,
many mathematicians investigated the algebraic geometry over general algebraic systems and
this new area of algebra is now known as universal algebraic geometry. The reader can see the
works of Daniyarova, Myasnikov, and Remeslennikov as well as the lecture notes of Plotkin as
introduction to this branch, [3–6], and [13].

One of the very important notions in the algebraic geometry of groups (as well as other
algebraic structures) is the property of being equationally Noetherian. Note that if S is a system
of equations over a group A, then we say that the system S implies an equation w ≈ 1, if every
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solution of S in A is also a solution of w ≈ 1. This gives us an equational logic over the group
A which is not in general similar to the first order logic. For example, the compactness theorem
may fails in this equational logic. There are examples of groups such that the compactness for
the systems of equations fails (see [1] and [5] for some examples). In some groups, every system
of equations is equivalent to a finite subsystem, such groups are called equationally Noetherian.
Free groups, Abelian groups, linear groups over Noetherian rings and torsion-free hyperbolic
groups are equationally Noetherian. To see interesting properties of this types of groups, the
reader can consult [11] and [16]. This kind of groups have very important roles in algebraic
geometry of groups. There are many equivalent conditions for the property of being equationally
Noetherian, for example, it is known that a group A has this property, if and only if, for any
natural number n, every descending chain of algebraic sets in An is finite. According to this
equivalent condition, in [11] and [12], the dual property of being equationally Artinian is defined.
A group A is equationally Artinian, if and only if, for any natural number n, every ascending
chain of algebraic sets in An is finite. In [12], many equivalent conditions to this property is
given.

In 1997, Baumslag, Myasnikov, and Romankov proved two important theorems about equa-
tionally Noetherian groups: first, they showed that a virtually equationally Noetherian group is
equationally Noetherian. They also showed that quotient of an equationally Noetherian group
by a normal subgroup which is a finite union of algebraic sets, is again equationally Noetherian
(see [2]). In this Article we prove similar results for the case of equationally Artinian groups.
These results will provide a large class of examples for equationally Artinian groups. Also,
we study irreducible closed subsets of the radical topology in the case of equationally Artinian
groups and we obtain a necessary and sufficient condition for an Abelian group to be equationally
Artinian.

1. Preliminaries

Let G be an arbitrary group and suppose that X = {x1, . . . , xn} is a finite set of variables.
Consider the free product G[X] = G∗F [X], where F [X] is the free group over X. Every element
w ∈ G[X] corresponds to an equation w ≈ 1, which is called a group equation with coefficients
from G. If w = w(x1, . . . , xn, g1, . . . , gm) ∈ G[X], then the expression w ≈ 1 is a G-equation with
coefficients g1, . . . , gm ∈ G. Suppose H is a group which contains G as a distinguished subgroup.
Then we say that H is a G-group. A tuple h = (h1, . . . , hn) ∈ Hn is called a root of the equation
w ≈ 1, if

w(h1, . . . , hn, g1, . . . , gm) = 1.

An arbitrary set of G-equations is called a system of equation with coefficients from G. The set
of all common roots of the elements of S in H is called the corresponding algebraic set of S and
denoted by VH(S). Clearly, the intersection of a non-empty family of algebraic sets is again an
algebraic set but the same is not true for unions of algebraic sets. If we define a closed subset of
Hn to be an arbitrary intersection of finite unions of algebraic sets, then we get a topology on
Hn, which is known as Zariski topology.

For a subset E ⊆ Hn, we define the corresponding radical Rad(E) to be the set of all elements
w ∈ G[X] such that every element of E is a solution of w ≈ 1. This is a normal subgroup of G[X]
which is called the radical of E and the quotient group Γ(E) = G[X]/Rad(E) is called the coor-
dinate group of E. Similarly, for a system S, we define its radical to be RadH(S) = Rad(VH(S)).
This is the largest system of G-equations equivalent to S over H. The corresponding coordinate
group is ΓH(S) = G[X]/RadH(S). It is proved that the study of coordinate groups is equivalent
to the study of Zariski topology, i.e. algebraic geometry of H reduces to the study coordinate
groups, [1].
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A G-group H is called G-equationally Noetherian, if for every system S, there exists a finite
subsystem S0, such that VH(S) = VH(S0). Such G-groups have important role in the study of
algebraic geometry over G-groups. There are two extremal cases: if G = 1, we say that H is
1-equationally Noetherian or equationally Noetherian without coefficients, and if G = H, then
we say that H is equationally Noetherian (or equationally Noetherian in Diophantine sense).
It is proved that a 1-equationally Noetherian finitely generated group is equationally Noethe-
rian as well, [1]. The class of equationally Noetherian groups is very large, containing all Free
groups, Abelian groups, linear groups over Noetherian rings and torsion-free hyperbolic groups
are equationally Noetherian. It is not hard to see that the following statements are equivalent
for a G-group H:

i- H is G-equationally Noetherian.
ii- the Zariski topology on Hn is Noetherian for all n.
iii- every chain of coordinate groups and proper epimorphisms

Γ(E1) → Γ(E2) → Γ(E3) → · · ·

is finite.

The authors of [2] proved two important theorems about equationally Noetherian groups.
The first theorem shows that a finite extension of an equationally Noetherian group is again
equationally Noetherian. The second theorem says that if G is equationally Noetherian and N
is a normal subgroup which is a finite union of algebraic sets (in Diophantine case), then G/N is
also equationally Noetherian. In this article, we are dealing with the dual notion, the property
of being equationally Artinian and we prove the similar statements for this type of groups.

2. Equationally Artinian groups

Equationally Artinian algebras are introduced in [11] and [12]. In this section, we review this
notion for the case of G-groups. We say that a G-group H is G-equationally Artinian, if for
any n, every ascending chain of algebraic sets in Hn terminates. This is not equivalent to the
property of being Artinian for the Zariski topology, instead we define a new topological space
which becomes Noetherian if H is equationally Artinian. Suppose

T = {uRad(E) : E ⊆ Hn, u ∈ G[X]}.

Note that for arbitrary cosets uRad(E) and vRad(F ), if their intersection is non-empty,
then for an arbitrary element w ∈ uRad(E) ∩ vRad(F ), we have wRad(E) = uRad(E) and
wRad(F )=vRad(F ). Hence uRad(E)∩ vRad(F ) = w(Rad(E)∩Rad(F )) = wRad(E ∪F ). This
shows that the intersection of two cosets of radicals, is again a coset of a radical subgroup (or it
is empty). The set T is a subbasis of closed sets of a topology on the set G[X] which is called the
radical topology on G[X] corresponding to H (this topology is finer than the previous one defined
in [12], in fact the subbasis introduced in [12] is a fundamental system of closed sets containing
the identity of G[X]). Every closed set in G[X] is an arbitrary intersection of finite unions of
cosets of the form uRad(E), with E ⊆ Hn and u ∈ G[X]. In [12], it is proved that the following
statements are equivalent for a G-group H:

i- H is G-equationally Artinian.
ii- for any n and any subset E ⊆ Hn, there exists a finite subset E0 ⊆ E, such that

Rad(E) = Rad(E0).
iii- the corresponding radical topology over G[X] is Noetherian.
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Remark 1. The proof is essentially the same as in [12], but since we used here our enhanced
definition of finer radical topology, so we show that why the proof remains unchanged. We only
need to show that for a G-group H, being G-equationally Artinian is equivalent to the property
of being Noetherian for the corresponding radical topology on G[X]. So, let H be G-equationally
Artinian and

T = {uRad(E) : E ⊆ Hn, u ∈ G[X]}.

We first prove that T satisfies the descending chain condition. Suppose

u1Rad(E1) ⊇ u2Rad(E2) ⊇ u3Rad(E3) ⊇ · · ·

is a descending chain of elements of T . Then we have also the following chain

Rad(E1) ⊇ Rad(E2) ⊇ Rad(E3) ⊇ · · · .

Therefore,
VH(Rad(E1)) ⊆ VH(Rad(E2)) ⊆ VH(Rad(E3)) ⊆ · · · ,

and this later chain terminates, as H is G-equationally Artinian. So, for some k, we have

VH(Rad(Ek)) = VH(Rad(Ek+1)) = VH(Rad(Ek+2)) = · · · .

Taking one more radical, we get

Rad(Ek) = Rad(Ek+1) = Rad(Ek+2) = · · · .

This shows that

ukRad(Ek) = uk+1Rad(Ek+1) = uk+2Rad(Ek+2) = · · · ,

and hence T satisfies the descending chain condition. Now, let T1 be the set of all finite unions
of elements of T and T2 be the set of all arbitrary intersection of elements of T1. Note that T2 is
the set of all closed subsets of G[X] with respect to the radical topology. We show that T1 also
satisfies the descending chain condition. Suppose that

M1 = u1Rad(E1) ∪ . . . ∪ umRad(Em), M2 = v1Rad(F1) ∪ . . . ∪ vkRad(Fk)

are sets in T1 and M2 ⊂ M1. For every i 6 m and j 6 k, we have uiRad(Ei) ∩ vjRad(Fj) ⊆
uiRad(Ei). Hence we can gain a tree with root vertex uiRad(Ei) and with a unique edge from
the root to every proper subset uiRad(Ei) ∩ vjRad(Fj) ⊂ uiRad(Ei). Suppose there exists a
strictly descending chain of subsets in T1:

M1 ⊃M2 ⊃M3 ⊃ · · · .

As we mentioned, we obtain a tree for any inclusion Mi ⊃Mi+1, such that each vertex is a finite
intersection of sets in T , hence each vertex is in T itself, since as we saw above, the non-empty
intersections of a finite number of elements from T are again belong to T . Since each vertex is
connected to only finite number of other vertices, so each vertex has finite degree. So, every path
corresponds to a strictly descending chain of radicals and since H is G-equationally Artinian, so
the path is finite. By the well-known König’s lemma of graph theory, this implies that the graph
is finite. Therefore the above chain is also finite. So T1 satisfies the descending chain condition
and is closed under finite intersection.

Now, we prove that T2 satisfies the descending chain condition too. Suppose
∩∞

i=1Ri is an
infinite intersection of elements of T1. Then we have the following chain:

R1 ⊇ R1 ∩R2 ⊇ R1 ∩R2 ∩R3 ⊇ · · · .
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Since T1 satisfies descending chain condition and is closed under finite intersection, so the chain
terminates. Therefore

∃k : R1 ∩R2 ∩ . . . ∩Rk =

∞∩
i=1

Ri.

Hence, every infinite intersection of subsets of T1 is in fact a finite intersection in T1 and so
it belongs to T1. Consequently, we have T2 = T1 and hence it satisfies the descending chain
condition. This shows that the radical topology on G[X] is Noetherian. The proof of the
converse statement is trivial.

By (EA)G, we denote the class of all G-equationally Artinian G-groups, by (EA)1, the class
of 1-equationally Artinian groups and EA will be used for the class of Equationally Artinian
groups (Diophantine case where G = H). In this article, we first prove the following theorem.

Theorem 1. Let G ∈ EA be torsion-free and E ⊆ Gn be an algebraic set. Then the set Rad(E)
is irreducible and all irreducible closed subset of G[X] is a coset of some radical.

Our main tool to prove this result is a well-known theorem of B. Neumann which says that
if a group covered by a finite set of cosets of subgroups, then at least one of those subgroups has
finite index. This result of Neumann also will be used to prove the following result.

Theorem 2. Let G ∈ EA be torsion-free and E ⊆ Gn be a non-empty algebraic set with
Rad(E) 6= G[X]. Then the interior of Rad(E) is empty.

Note that every Noetherian topological space has finite number of irreducible components. In
the case of a torsion-free equationally Artinian group G, the space G[X] has a unique irreducible
component, say G[X] itself. Theorem 2, also shows that if G ∈ EA is torsion-free, then G[X] is
connected. We will prove the converse for coefficient-free case.

Theorem 3. Let G ∈ (EA)1. Then G is torsion-free if and only if, F [X] is connected.

Note that there are many equationally Noetherian groups which are not equationally Artinian,
for example, the additive group Q/Z, the multiplicative group of complex numbers, the quasi-
cyclic groups Zp∞ (see also Theorem 8). Many other groups like non-Abelian free groups and
torsion-free hyperbolic groups are failed to be equationally Artinian (as they are domains and
every equationally Artinian domain is finite). It must be said that, at the time of writing
this paper, we don’t know if there is equationally Artinian group which is not equationally
Noetherian. But, both classes are included in a larger class of groups which we call equationally
semi-Noetherian. A group G has this property, if for every system of equations S ⊆ G[X], almost
every finite subset T ⊆ S can be omitted solving the system over G, i.e. there exists a finite
subset S0 ⊆ S such that for all other finite subset T ⊆ S \ S0, we have VG(S) = VG(S \ T ).
Clearly, every equationally Noetherian group has this property. We will prove,

Theorem 4. If G ∈ EA, then G is equationally semi-Noetherian.

Our next theorem concerns about an important relation between the classes (EA)1 and
(EA)G. We prove,

Theorem 5. Let G be a finitely generated group and let H be a G-group. If H ∈ (EA)1, then
H ∈ (EA)G, and as a result, any finitely generated element of (EA)1 is equationally Artinian.

In our sixth theorem, we deal with finite extensions of equationally Artinian groups. We
prove,

Theorem 6. Let a group A contains a finite index subgroup H which is equationally Artinian.
Then A is also equationally Artinian.
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This theorem enables us to conclude that any virtually finitely generated Abelian group is
equationally Artinian as well as any finite extension of the additive group of any field. This gives
us a large class of examples of such groups. This theorem is EA-version of the similar theorem
in [2].

Note that the quotient of an equationally Artinian group is not necessarily equationally
Artinian (for example the group Q/Z), but, there exists an important situation, the quotient
in which, has this property. Our nest result concerns with these situations. Note that in this
theorem, we use the group G[t] = G ∗ 〈t〉.

Theorem 7. Let G be an arbitrary group such that G[t] is equationally Artinian. Let R be
a normal subgroup of G[t] which is closed in the radical topology of G[t]. Then G[t]/R is also
equationally Artinian.

Finally, we will show that an Abelian group G is equationally Artinian, if and only if, it has
finite number of periods: let p(G) be the set of orders of torsion elements of G. We will prove,

Theorem 8. An Abelian group G is equationally Artinian, if and only if, p(G) is finite.

3. The proofs

Proof. (Theorem 1 and 2) Suppose G is equationally Artinian. Let Y be an irreducible closed
subset of G[X]. Since Y is a finite union of cosets of the form uRad(E), so W = uRad(E), for
some algebraic set E ⊆ Gn and u ∈ G[X]. Now, for an algebraic set E, we show that Rad(E) is
irreducible. Note that every closed subset of Rad(E) has the form v1Rad(L1)∪ . . .∪ vpRad(Lp),
where vi ∈ G[X] and E ⊆ Li. Now, if Rad(E) can be written as a union of two closed subsets,
then we have

Rad(E) =

m∪
i=1

uiRad(Ki),

for some elements ui ∈ G[X] and algebraic sets Ki with E ⊆ Ki. It is a well-known theorem
of B. Neumann which says that if a group is covered by a finite number of cosets of subgroups,
then at least one of those subgroups has finite index. So, we have for example [Rad(E) :
Rad(K1)] <∞. Suppose now that G is torsion-free and Rad(K1) 6= Rad(E). Choose an element
w ∈ Rad(E), such that for some a ∈ K1, we have w(a) 6= 1. Then, for all non-zero integers k
we have also wk(a) 6= 1 and hence all cosets wjRad(K1), (1 6 j), are distinct. This shows that
Rad(E) = Rad(K1) and so Rad(E) is irreducible. Note that in any Noetherian space, there is
a finite number of maximal irreducible sets (irreducible components) and in the case of G[X],
Rad(∅) = G[X] is the only irreducible component.

Now, we show that the interior of Rad(E) is empty for any E 6= ∅. Let an open set
G[X] \

∪m
j=1 wjRad(Ej) be contained in Rad(E). Then we have

G[X] = Rad(E) ∪
m∪
j=1

wjRad(Ej),

and again using the theorem of Neumann, some of these subgroups has finite index, which is
shows that G[X] \

∪m
j=1 wjRad(Ej) = ∅. Hence Rad(E) has empty interior.

Proof. (Theorem 3) In this proof, we denote the coefficient-free radical of a subset E ∈ Gn by
Rad0(E), i.e.

Rad0(E) = {w ∈ F [X] : ∀a ∈ E w(a) = 1}.
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Suppose first that F [X] is not connected. Then we have

F [X] =

m∪
i=1

uiRad
0(Ei),

for some elements ui ∈ F [X] and subsets Ei ⊆ Gn, where m > 2 is minimal. Again by the
theorem of Neumann, there is an index i such that [F [X] : Rad0(Ei)] is finite and is not equal
to 1 by the minimality of m. This shows that the coefficient-free coordinate group Γ(Ei) is finite
and non-trivial. But, we know that this coordinate group embeds inside a direct power of G. So,
G is not torsion-free, a contradiction.

Conversely, assume that G is not torsion-free. Let a ∈ G be a non-trivial element of finite
order m and put a = (a, 1, . . . , 1) ∈ Gn. Let w = x1. Then clearly, wm ∈ Rad0(a). Consider
the subgroup 〈w〉Rad0(a). This subgroup contains all elements x1, . . . , xn, and so we have
F [X] = 〈w〉Rad0(a). Now, we have

F [X] =

m−1∪
i=0

wiRad0(a),

and hence, F [X] is not connected.

We now prove Theorem 4. Note that the proof can be applied for arbitrary algebraic structures
as well.

Proof. (Theorem 4) Suppose G is equationally Artinian and S ⊆ G[X] is an infinite system.
For simplicity, assume S = {v1, v2, v3, . . .}. We have the ascending chain

VG(S) = VG(v1, v2, v3, . . .) ⊆ VG(v2, v3, v4, . . .) ⊆ VG(v3, v4, v5, . . .) ⊆ · · · .

This chain terminates as G is equationally Artinian, so there exists k such that

VG(vk, vk+1, vk+2, . . .) = VG(vk+1, vk+2, vk+3, . . .) = VG(vk+2, vk+3, vk+4, . . .) · · · .

This shows that ∩
j>k

VG(vj) =
∩

j>k+1

VG(vj) =
∩

j>k+2

VG(vj) = · · · ,

and hence

VG(S) = VG(v1, . . . , vk−1) ∩
∩
j>k

VG(vj)

= VG(v1, . . . , vk−1) ∩
∩

j>k+1

VG(vj)

= VG(v1, . . . , vk−1) ∩
∩

j>k+2

VG(vj).

In other words, this argument shows that the algebraic sets VG(vj) can be drop in the intersection
for j > k. Let S0 = {v1, . . . , vk−1}. Then by this argument, for any finite subset T ⊆ S \ S0, we
have VG(S) = VG(S \ T ).

Proof. (Theorem 5) Let a1, . . . , ak be a finite set of generators for the group G. Suppose
E ⊆ Hn. We prove that there exists a finite subset E0 ⊆ E, such that RadG(E) = RadG(E0)
(note that, here RadG denotes the radical with coefficient in G). Let S = RadG(E) ⊆ G[X].
Every element of S has the form

w = w(x1, . . . , xn, a1, . . . , ak).
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We replace every coefficient ai by a new variable yi, and then a coefficient-free system of equations
S(x, y) appears. Let T = E×{(a1, . . . , ak)} ⊆ Hn+k. Now, since H ∈ (EA)1, so there is a finite
subset T0 ⊆ T , such that Rad1(T ) = Rad1(T0). Clearly, we have T0 = E0 × {(a1, . . . , ak)}, for
some finite subset E0 ⊆ E. Obviously, S(x, y) ⊆ Rad1(T ). Let u(x, y) ∈ Rad1(T ). Then for all
e ∈ E, we have u(e, a) = 1, so u(x, a) ∈ RadG(E), and therefore u ∈ S(x, y). This proves that
S(x, y) = Rad1(T ), and hence S(x, y) = Rad1(T0).

Now, we show that S(x, a) = RadG(E0). Suppose w(x, a) ∈ S(x, a). For any e ∈ E0,
we have w(e, a) = 1, so w(x, a) ∈ RadG(E0). Conversely, if w(x, a) ∈ RadG(E0), then for
w(x, y) ∈ Rad1(T0) = Rad1(T ), and this shows that w(x, a) ∈ RadG(E) = S(x, a). This proves
that RadG(E) = RadG(E0) and hence H ∈ (EA)G.

Theorem 5, enables us to prove that every finitely generated Abelian group belongs to the
class EA (we also can deduce this from Theorem 8). Here we give an elementary proof which
shows the infinite cyclic group is equationally Artinian.

Lemma 1. Let H = 〈a〉 be infinite cyclic group. Then H is equationally Artinian.

Proof. We first show that H ∈ (EA)1. Let E ⊆ Hn. Every element of E has the form e =
= (aj1 , . . . , ajn) for some integers j1, . . . , jn. Let w = xα1

1 xα2
2 . . . xαn

n ∈ Rad1(E). Then w(e) = 1
and hence aj1α1+···+jnαn = 1. This shows that

Rad1(E) =
∩

j1,...,jn

{xα1
1 xα2

2 . . . xαn
n : (aj1 , . . . , ajn) ∈ E, j1α1 + · · ·+ jnαn = 0}.

Suppose
E = {(aj

(1)
1 , . . . , aj

(1)
n ), (aj

(2)
1 , . . . , aj

(2)
n ), (aj

(3)
1 , . . . , aj

(3)
n ), . . .}.

Suppose S is the following set of equations

j
(t)
1 α1 + · · ·+ j(t)n αn = 0, (t = 1, 2, 3, . . .).

Since the additive group Z is equationally Noetherian, so there exists a finite subset S0 ⊆ S,
such that VZ(S) = VZ(S0). Suppose S0 consists of the equations

j
(t)
1 α1 + · · ·+ j(t)n αn = 0 (t = 1, 2, . . . ,m).

Let E0 = {(aj
(1)
1 , . . . , aj

(1)
n ), (aj

(2)
1 , . . . , aj

(2)
n ), . . . , (aj

(m)
1 , . . . , aj

(m)
n )}. Then we have obviously,

Rad1(E) = Rad1(E0). This shows that H is 1-equationally Artinian and hence by Theorem 2,
it belongs to EA.

Now, we show that any direct product of finitely many element of (EA)1 is again in (EA)1.
This will prove that every finitely generated Abelian group belongs to (EA)1 and hence to EA.

Lemma 2. Suppose A and B are equationally Artinian (1-equationally Artinian). Then so is
A×B.

Proof. For a number n and a subset E ⊆ (A×B)n, suppose that

E = {ci = (ui1, u
i
2, . . . , u

i
n) : i ∈ I},

where I is an index set. We have uji = (aji , b
j
i ), for some aji ∈ A and bji ∈ B. Now, let

T = {ti = (ai1, a
i
2, . . . , a

i
n) : i ∈ I},

and
S = {si = (bi1, b

i
2, . . . , b

i
n) : i ∈ I}.
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Since A and B are equationally Artinian, so there are two finite subsets T0 ⊆ T and S0 ⊆ S,
such that

RadA(T ) = RadA(T0), RadB(S) = RadB(S0).

Suppose for example T0 = {t1, . . . , tl} and S0 = {s1, . . . , sk} and k > l. Suppose ti = (ai1, . . . , a
i
n)

and si = (bi1, . . . , b
i
n). Using these elements, we can define a finite subset

E0 = {ci = ((ai1, b
i
1), . . . , (a

i
n, b

i
n) : 1 6 i 6 l},

such that Rad(E) = Rad(E0). This shows that A×B is equationally Artinian.

Summarizing, we have

Corollary 1. Every finitely generated Abelian group is equationally Artinian.

There are also infinitely generated Abelian groups which are equationally Artinian: let K be
a field and consider its additive group H = (K,+). Every equation with coefficient in K has
the form a1x1 + · · · + anxn = b for some elements a1, . . . , an ∈ Z, b ∈ K, so the corresponding
algebraic set is an affine subspace of Kn. This shows that every ascending chain of algebraic
sets terminates and hence H is equationally Artinian. However, some Abelian groups are not
equationally Artinian. For example, consider the additive group H = Q/Z. Let

E =

{
1

p
+ Z : p = prime

}
⊆ H1.

If w(x) = mx +
(a
b
+ Z

)
∈ Rad(E), then for any prime p, we have w

(
1

p
+ Z

)
= Z, and this

means that for any prime p,
m

p
+
a

b
∈ Z, which is not true. Another example is the quasi-cyclic

groups G = Zp∞ , for prime numbers p. This is because, the ascending chain of algebraic sets
VG(x

pn ≈ 1), (n > 1) does not terminate (this fact will be used in the proof of Theorem 8).

Before proving Theorem 6, we introduce some notations from [2]. Let a group A be
the semidirect product of a finite subgroup T and a normal subgroup H. Assume that
T = {t1 = 1, t2, . . . , tk}. Let w(x1, . . . , xn, g1, . . . , gm) be a group word with coefficients in A
and v ∈ An. We can express v uniquely in the form v = (s1h1, . . . , snhn) with si ∈ T and
hi ∈ H. We also have gi = ribi for unique elements ri ∈ T and bi ∈ H. Define the map
λ : An → Tn by λ(v) = (s1, . . . , sn) and

w(x1, . . . , xn) = w(x1, . . . , xn, r1, . . . , rm).

Note that w is an element of T [X] which depends only on w. For any 1 6 i 6 n and 1 6 j 6 k,
define hij = t−1

j hitj ∈ H. Denote the tuple

(h11, . . . , h1k, . . . , hn1, . . . , hnk)

by v′. Consider the new variables yij for 1 6 i 6 n and 1 6 j 6 k. In [2], it is proved that there
exists a unique element

w′
v ∈ H[y11 . . . , y1k, . . . , yn1, . . . , ynk],

such that w(v) = w(λ(v))w′
v(v

′), and w′
v depends only on the value of λ(v). As a result, it is

shown that v ∈ An is a root of w ≈ 1, if and only if, λ(v) is a root of w ≈ 1 and v′ is a root of
w′

v ≈ 1. We are now ready to prove Theorem 6.
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Proof. (Theorem 6) Replacing H by its core, we can suppose that H is a normal subgroup of
A with finite index. Let T = A/H. Then A embeds into the wreath product H o T . Recall that
this wreath product is the semidirect product of T and H |T |. We know that (Lemma 2), H |T | is
equationally Artinian and any subgroup of an equationally Artinian group is again equationally
Artinian. So, it is enough to prove our theorem using the further assumption A = TH, with T
finite, H normal and T ∩H = 1. We will use all the above notations.

Suppose E ⊆ An is an algebraic set and S = RadA(E). We must show that there exists a
finite subset E0 ⊆ E, such that RadA(E0) = S. Let S = {w : w ∈ S} (see the above discussion).
Suppose

VT (S) = {v1, . . . , vd} ⊆ Tn.

For any 1 6 i 6 d, put Li = VH(S′
vi) ⊆ Hnk. Here S′

vi
denotes the set of all w′

vi , such that
w ∈ S. Define also

Ki = {h ∈ Hn : (h)′ ∈ Li} ⊆ Hn.

We have (Ki)
′ ⊆ Hnk and since H is equationally Artinian, there exists a finite subset K0

i ⊆ Ki,
such that

RadH((K0
i )

′) = RadH((Ki)
′).

Assume that E0 = ∪d
i=1viK

0
i ⊆ An. We show that E0 ⊆ E. Let vih ∈ E0. Then h ∈ Ki and

hence
S(λ(vih)) = S(vi) = 1,

and
S′
vi((vih)

′) ∈ S′
vi(Li) = 1.

This means that vih ∈ VA(S) = E. Therefore E0 ⊆ E.
Now, we claim that RadA(viK

0
i ) = RadA(viKi). To prove this claim, assume that w be-

longs to the left hand side. Then w(viK
0
i ) = 1 and hence w′((viK

0
i )

′) = 1. This shows that
w′

vi ∈ RadH((viK
0
i )

′). Recall that, by the definition of the map v 7→ v′, we have (viK0
i )

′) = (K0
i )

′

and hence w′
vi ∈ RadH((K0

i )
′) = RadH((Ki)

′) = RadH((viKi)
′). Therefore, for any h ∈ Ki, we

have w′
vi((vih)

′) = 1, and since in the same time w(λ(vih)) = 1, we have w(viKi) = 1. This
proves the claim.

We now, prove that RadA(E0) = RadA(E). Let w be an element of the left hand side and
v ∈ E. We have S(v) = 1 and

w ∈
d∩

i=1

RadA(viK
0
i ).

Note that v = λ(v)h, for some h ∈ Hn. We have S(λ(v)) = 1, so there is an index i such that
λ(v) = vi. Therefore, v = vih. On the other side, since S′

v(V
′) = 1, so

1 = S′
v(v

′) = S′
vi((vih)

′).

Hence, (vih)′ ∈ Li, and therefore h ∈ Ki. Now, by the above claim, we have

w ∈ RadA(viK
0
i ) = RadA(viKi),

and hence w(v) = 1. This shows that w ∈ RadA(E).

Theorem 6 shows that any virtually finitely generated Abelian group is equationally Artinian
as well as any finite extension of the additive group of any field. This gives us a large class of
examples of such groups. We now come to Theorem 7. Note that the similar theorem ([2]) for
the equationally Noetherian case deals with the Zarizki topology of G1 and its closed normal
subgroups. The dual case here deals with the radical topology of G[t] and its closed normal
subgroups.
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Proof. Assume that

R =

m∪
i=1

RadG(Ki),

where Ki ⊆ G. Note that G is equationally Artinian as G[t] is so. Hence every Ki can be chosen
finite. Let H = G[t]/R be not equationally Artinian. Hence there exists a number n and a subset
E ∈ Hn such that RadH(E) 6= RadH(E0), for any finite subset E0 ⊆ E. Assume that e0 ∈ E
is an arbitrary element. As RadH(E) 6= RadH({e0}), there exist elements f1 ∈ RadH({e0}) and
e1 ∈ E, such that f1(e1) 6= 1. Similarly, we have RadH(E) 6= RadH({e0, e1}), so there exist
elements f2 ∈ RadH({e0, e1}) and e2 ∈ E, such that f2(e2) 6= 1. Repeating this argument, we
obtain two infinite sequences

f1, f2, f3, . . . ∈ H[X],

e0, e1, e2, . . . ∈ E,

such that for any i, fi(e0) = fi(e1) = · · · = fi(ei−1) = 1, but fi(ei) 6= 1. Note that, here
X = {x1, . . . , xn} and so every element of H[X] is a word in t and elements of X with coefficients
in G. Suppose q : G[t,X] → H[X] is the canonical map sending elements of G to their cosets,
and fixing elements of X and the element t. Suppose also that ψ : (G[t])n → Hn is the map

ψ(u1, . . . , un) = (u1R, . . . , unR).

Choose a pre-image f i for fi under q and a pre-image ei for ei under ψ. Hence, we have
f i ∈ G[t,X] and ei ∈ (G[t])n. For any i, we have fi(e0) = 1, so f i(e0) ∈ R. This shows that,
there exists an infinite sequence of numbers

i1(0) < i2(0) < i3(0) < · · · ,

and a number 1 6 p0 6 m, such that

f i1(0)(e0), f i2(0)(e0), f i3(0)(e0), . . . ∈ RadG(Kp0
).

Equivalently, this shows that for all s, we have

f is(0) ∈ RadG[t](e0(Kp0
)).

By a similar argument, we obtain an infinite subsequence of {is(0)} of the form

i1(1) < i2(1) < i3(1) < · · · ,

and a number 1 6 p1 6 m, such that for all s, we have

f is(1) ∈ RadG[t](e1(Kp1
)).

We continue this process to find an infinite subsequence

i1(k) < i2(k) < i3(k) < · · · ,

of the previous sequence, and a number 1 6 pk 6 m, such that

f is(k) ∈ RadG[t](ek(Kpk
)),

for all s. Note that all sets ei(Kpi
) are finite as Ki’s are finite. Let

K =

∞∪
i=0

ei(Kpi
) ⊆ (G[t])n.
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By assumption, G[t] is equationally Artinian, so there exists an index l, such that

RadG[t](K) = RadG[t](

l∪
i=0

ei(Kpi)).

Assume that j > l. Then for any s, we have

f is(j) ∈
l∩

i=1

RadG[t]ei(Kpi
) = RadG[t](K).

Suppose k = i1(j). Then fk ∈ RadG[t](ek(Kpk
)), and hence fk(ek) ∈ RadG(Kpk

) ⊆ R. This
shows that fk(ek) = 1, a contradiction. Hence H is equationally Artinian.

Finally, we give a proof for Theorem 8.

Proof. (Theorem 8) We first, show that a divisible Abelian group G is equationally Artinian,
if and only if, it is torsion-free. Recall that a divisible Abelian group has the form G = QI ⊕∑

p∈J Zp∞ , for an index set I and a set J of prime numbers. If G is torsion-free then G = QI ,
and since the additive group of rationales is equationally Artinian, so is G. Now, suppose that
G is equationally Artinian but is not torsion-free. Then for some prime p, we have Zp∞ 6 G,
and this implies that Zp∞ is equationally Artinian, a contradiction.

Now, suppose that G is an arbitrary Abelian group. Assume that p(G) is finite. We know
that G = Tor(G) ⊕ G1, where Tor(G) is the torsion part of G and G1 is a torsion-free sub-
group. We know that G1 can be embedded in some divisible Abelian group and hence it is
equationally Artinian. The torsion part has finite exponent and hence can be written in the
form Tor(G) =

⊕
m∈p(G) ZIm

m , where for all m ∈ p(G), an index set Im is associated. Clearly, ev-
ery component ZIm

m is equationally Artinian and since p(G) is finite, so the direct sum is also so.
This shows that G ∈ EA.

Finally, suppose that in a group G, the set p(G) is infinite. Let m1 < m2 < m3 < · · · be
elements of p(G) such that for all i the integer m1m2 . . .mi−1 is not divisible by mi. For any i,
assume that ai is an element of order mi. Consider the ascending chain

VG(x
m1 ≈ 1) ⊆ VG(x

m1m2 ≈ 1) ⊆ VG(x
m1m2m3 ≈ 1) ⊆ · · · .

This chain does not terminate, because for any i, we have

a1, . . . , ai ∈ VG(x
m1...mi ≈ 1),

but ai+1 does not belong to it. Therefore G is not equationally Artinian.

References

[1] G.Baumslag, A.Myasnikov, V.Remeslennikov, Algebraic geometry over groups, I. Algebraic
sets and ideal theory, J. Algebra, 2191999, 16–79.

[2] G.Baumslag, A.Myasnikov, V.Romankov, Two theorems about equationally Noetherian
groups, J. Algebra, 1997, 194, 654–64.

[3] E.Daniyarova, A.Myasnikov, V.Remeslennikov, Algebra and Discrete Mathamatics, 1(2008),
80–112. DOI: 10.1142/9789812793416_0007

[4] E.Daniyarova, A.Myasnikov, V.Remeslennikov, Algebraic geometry over algebraic struc-
tures, II: Fundations, J. Math. Sci., 185(2012), no. 3, 389–416.

– 594 –



Mohammad Shahryari, Javad Tayyebi On the Equationally Artinian Groups

[5] E.Daniyarova, A.Myasnikov, V.Remeslennikov, Algebraic geometry over algebraic struc-
tures, III: Equationally noetherian property and compactness, South. Asian Bull. Math.,
35(2011), no. 1, 35–68.

[6] E.Daniyarova, A.Myasnikov, V.Remeslennikov, Algebraic geometry over algebraic struc-
tures, IV: Equatinal domains and co-domains, Algebra and Logic, 49(2011), no. 6, 483–508.

[7] O.Kharlampovich, A.Myasnikov, Tarski’s problem about the elementary theory of free
groups has a psitive solution, E.R.A. of AMS, 4(1998), 101–108.

[8] O.Kharlampovich, A.Myasnikov, Irreducible affine varieties over a free group. I: irreducibility
of quadratic equations and Nullstellensatz, J. Algebra, 200(1998), no. 2, 472–516.

[9] O.Kharlampovich, A.Myasnikov, The elemntary theory of free non-abelian groups, J. Alge-
bra, 302(2006), 451–552.

[10] G.Makanin, Equations in free groups, Math. USSR-Izv., 21(1982), no. 3, 483–546.

[11] P.Modabberi, M.Shahryari, Compactness conditions in universal algebraic geometry, Algebra
and Logic, 55(2016), no. 2, 146–172.

[12] P.Modabberi, M.Shahryari, On the equational Artinian algebras, Siberian Electronic Math-
ematical Reports, 13(2016), 875–881.

[13] B.Plotkin, Seven lectures in universal algebraic geometry, preprints, Arxiv.

[14] A.Razborov, On systems of equations in free groups, Math. USSR-Izv., 1982, 25, no. 1,
115–162.

[15] Z.Sela, Diophantine geometry over groups: I-X, preprints, Arxiv.

[16] M.Shahryari, A.Shevliyakov, Direct products, varieties, and compacness conditions, Groups
Complex, Cryptol, 9(2017), no. 2, 159–166.

Об эквивалентно артиновых группах
Мохаммед Шахриари
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Джавад Тайеби

Кафедра чистой математики, Факультет математических наук
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Тебриз, Иран

Аннотация. В этой статье мы изучаем свойство быть артиновым в группах. Определяем ра-
дикальную топологию, соответствующую таким группам, и исследуем структуру неприводимых
замкнутых множеств этих топологий. Докажем, что конечное расширение уравновешенно арти-
новой группы снова уравновешенно артиново. Мы также показываем, что частное от артиново-
уравновешенной группы вида G[t] по нормальной подгруппе, являющейся конечным объединением
радикалов, опять-таки уравновешенно артново. В качестве последнего результата будет дано необ-
ходимое и достаточное условие, чтобы абелева группа была эквивалентно артиновой. Это обеспечит
большой класс примеров уравновешенно артиновых групп.

Ключевые слова: алгебраическая геометрия над группами, системы групповых уравнений, ра-
дикалы, топология Зариского, радикальная топология, нетеровы группы, эквационально артиновы
группы.
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