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Introduction
Let C be the complex plane, D be the unit disk on C, H(D) be the set of all functions,

holomorphic in D. For all 0 < q < +∞ we define the Privalov class of function Πq as follows
(see [11]):

Πq =

{
f ∈ H(D) : sup

06r<1

1

2π

∫ π

−π

(
ln+ |f(reiθ)|

)q
dθ < +∞

}
.

ln+ |a| = max(ln |a|, 0), ∀a ∈ C.
The classes Πq were first considered by I. I. Privalov in [11]. If q = 1 the Privalov class

coincides with the Nevanlinna class N of analytic functions in D with bounded characteristic

T (r, f) =
1

2π

π∫
−π

ln+ |f(reiθ)|dθ, 0 6 r < 1. This is well-known in scientific literature (see [9]).

Using Hölder’s inequality, it is easy to prove the inclusion chain:

Πq (q > 1) ⊂ N ⊂ Πq (0 < q < 1).

Since for all 0 < q < q′

(ln+ |f |)q < (ln+ |f |+ 1)q < (ln+ |f |+ 1)q
′
< 2q

′
·
(
(ln+ |f |)q

′
+ 1

)
,

we have
Πq′ ⊂ Πq.

In the case of 1 6 q < +∞ the Privalov spaces were studied by M. Stoll, V. I. Gavrilov,
A.V. Subbotin, D. A.Efimov, R. Mestrovic, Z. Pavicevic, etc. The monograph [6] contains a
brief overview of their results. Certain results were extended to the case 0 < q < 1 by the first
author of this paper (see [13]). Notice that the case 0 < q < 1 was little studied. The questions
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of interpolation in the Privalov classes, as well as properties of root sets of analytic functions
from these classes were investigated in recent works by the authors (see [14–16,20]).

In this paper we study a question of the invariance of the classes Πq with respect to the
differentiation operator. In other words, we verify the validity of the Bloch-Nevanlinna conjecture
in the Privalov spaces.

The assumption, known as the Bloch-Nevanlinna conjecture, was clearly formulated by Nevan-
linna in 1929 (see [9]) as follows: a derivative of any analytic function in the unit disk with
bounded characteristic is a function of bounded characteristic.

The famous result refuting this hypothesis belongs to O. Frostman (see [5]). He proved that
there is a Blaschke product whose derivative is not a function with a bounded characteristic.

Subsequently, many counterexamples that refute the Bloch-Nevanlinna conjecture were con-
structed in the works of others such as H. Fried (1946), W. Rudin (1955), W. Hayman (1964),
P.Duren (1969), J. Anderson (1971), L.-Sh. Khan (1972), et. al. D. Campbell and G. Weeks [1]
provide a brief overview of these results, as well as a general approach to the construction of
such examples.

The invariance with respect to the integro-differential operators of other classes of ana-
lytic functions have been studied by many mathematicians. A brief overview of their results
is contained in the work of S.V. Shvedenko [22]. In particular, a closure of the classes of ana-
lytic functions in a disk with the restrictions on Nevanlinna’s characteristic function regarding
the operations of differentiation and integration was studied by F. A. Shamoyan, I. S. Kursina,
V.A. Bednazh (see [19]).

We state the Bloch-Nevanlinna conjecture in the Privalov spaces: for whatever q > 0, the
derivative of a function from the class Πq belongs to the class Πq.

The paper is organized as follows. In the first part of the article we refute the Bloch-
Nevanlinna conjecture in the Privalov spaces for all 0 < q < +∞. In the second part of the
article we indicate the class to which the derivative of any function from the Privalov space
belongs.

1. The Bloch-Nevanlinna conjecture
for the Privalov spaces

The following statement is true.

Theorem 1.1. The Bloch-Nevanlinna conjecture fails in the spaces Πq, 0 < q < +∞.

In other words, the Privalov spaces Πq are not invariant under the differentiation operator
for all 0 < q < +∞, not only for q = 1.

In the sequel, unless otherwise noted, we denote by c, c1, . . . , cn(α, β, . . . ) some arbitrary
positive constants depending on α, β, . . . , whose specific values are immaterial.

Proof of this statement reproduces the arguments from [21], the method goes back to the
work of Hayman [8].

Let λ be a sufficiently large positive integer, 0 < α < 1, H∞ be the class of bounded analytic
functions in D. We define a function fλ as follows:

fλ =

+∞∑
k=0

λ−k(1−α)zλ
k

.

It is obvious that fλ ∈ H(D), and |fλ| 6
+∞∑
k=0

λ−k(1−α) =
λ1−α

λ1−α − 1
, that is fλ ∈ H∞. Since

H∞ ⊂ Πq, we have fλ ∈ Πq for all 0 < q < +∞.
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In the same time we have

f ′
λ =

+∞∑
k=0

λαkzλ
k−1. (1)

Show that f ′
λ /∈ Πq. We fix n ∈ N and denote rn = exp(−α/λn), rn → 1 − 0, n → +∞. Let

un(z) be the n-th term of the series (1):

un(z) = λαnzλ
n−1.

By Sn(z) we denote the n-th partial sum of the series (1):

Sn(z) =

n−1∑
k=0

λαkzλ
k−1,

and by Rn(z) we denote the n-th remainder of the series (1):

Rn(z) =

+∞∑
k=n+1

λαkzλ
k−1.

We estimate these sums on the circle |z| = rn.

|Sn(z)| 6
n−1∑
k=0

λαkrλ
k−1

n =

n−1∑
k=0

λαk exp
(
− α

λn
· (λk − 1)

)
= exp

( α

λn

) n−1∑
k=0

λαk exp
(
−α · λ−(n−k)

)
6

6 exp
( α

λn

) n−1∑
k=0

λαk = exp
( α

λn

)
· λ

nα − 1

λα − 1
= λnα exp(−α− 1) ·A(λ, α),

where A(λ, α) = exp

[
α(1 +

1

λn
) · (1− λ−nα · e)

λα − 1

]
<

1

4
for λ > λ0.

Therefore we have |Sn(z)| 6
1

4
|un(z)|.

Now we estimate Rn(z) on the circle |z| = rn.

|Rn(z)| 6
+∞∑

k=n+1

exp
( α

λn

)
λαk

+∞∑
m=1

λαm

exp (αλm)
.

Since exp (αλm) > exp(mαλ) for m > 1 and sufficient large λ,
+∞∑
m=1

λαm

exp (αλm)
6 λα

eαλ − λα
,

so we have
|Rn(z)| 6 exp(2α+ 1)|un(z)|

λαm

exp (αλm)
6 λα

eαλ − λα
6 1

4
|un(z)|

for λ > λ1.
As a result, we obtain:

|f ′
λ(z)| >

1

2
|u(z)|, |z| = rn,

for λ > max(λ0, λ1).
But

ln |un(z)| > cα ln
1

1− rn
, n = 1, 2, . . .

Thus, we have ∫ π

−π

(
ln+ |f ′

λ(rne
iθ)|

)q
dθ > cqα lnq

1

1− rn
,

this means that f ′
λ /∈ Πq. Theorem 1.1 is proved. 2
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2. On the differentiation in the Privalov spaces
An important place in the theory of analytic functions belongs to the Nevanlinna N -class of

analytic functions in D with bounded characteristic T (r, f). It was introduced by A.Ostrovsky
and brothers R.Nevanlinna and F. Nevanlinna (see [10]). As noted above, N = Π1. Unlike the
class N , the area Nevanlinna class is defined as follows (see ibid.):

N =

f ∈ H(D) :

∫∫
D

ln+ |f(z)|dxdy < +∞

 , z = x+ iy,

or equivalent to this

N =

f ∈ H(D) :

1∫
0

π∫
−π

ln+ |f(reiθ)|dθdr < +∞

 .

The area Nevanlinna classes are a natural generalization of the classes N . As it was established
in the works [2, 17], these classes are close with respect to the properties of root sets and the
factorization of functions. The class N is included in the scale of the Nevanlinna-Djrbashian
classes Nα (see ibid.):

Nα =

{
f ∈ H(D) :

∫ 1

0

(1− r)αT (r, f)dr < +∞
}
, α > −1,

and in the scale of Sq
α-classes of F.A. Shamoyan (see [18]):

Sq
α =

{
f ∈ H(D) :

∫ 1

0

(1− r)αT q(r, f)dr < +∞
}
, α > −1, 0 < q < +∞.

Similar to the definition of the area Nevanlinna class, for all 0 < q < +∞ we introduce the
area Privalov class:

Π̃q =

f ∈ H(D) :

1∫
0

π∫
−π

(
ln+ |f(reiθ)|

)q
dθdr < +∞

 .

It is clear that Π̃1 = N. Using Hölder’s inequality, it is easy to prove that Π̃q ⊂ Sq
0 for q > 1

and Π̃q ⊃ Sq
0 for 0 < q < 1.

The main result of the second part of this paper is the following theorem.

Theorem 2.1. If f ∈ Πq (0 < q < +∞) and function f has no zeros, then f ′ ∈ Π̃q.

To prove this statement, we need auxiliary statements.

Theorem 2.2 (see [13]). If f ∈ Πq, (0 < q < 1), then

ln+ M(r, f) = o((1− r)−1/q), r → 1− 0, (2)

where M(r, f) = max
|z|=r

|f(z)|, and the estimate is exact.

Lemma 2.3 (The Minkowski inequality, see [7], p. 178). Let {fk}+∞
k=1 be the sequence of non-

negative functions. For all 0 < p < 1 the following inequality is valid:[∫ {∑
k

fk(x)

}p

dx

]1/p

>
∑
k

{∫
fp
k (x)dx

}1/p

.
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Lemma 2.4 (see [6], p. 144). Let P (r, θ) denote the Poisson kernel in D, i.e.

P (r, θ) =
1− r2

1 + r2 − 2r cos θ
.

For each real number q there exist finite positive constants cq, dq, such that

cqϕq(r) 6
1

2π

∫ π

−π

P q(r, θ)dθ 6 dqϕq(r),

where

ϕq(r) =


(1− r)q, q <

1

2
,

√
1− r ln

(
1 +

1

1− r

)
, q =

1

2
,

(1− r)1−q, q >
1

2
.

Proof of Theorem 2.1. Let z = reiθ, t = Reiφ, 0 < r < R < 1. Since f ∈ H(D) and function f
has no zeros, we have, by the Schwarz formula, that:

ln f(z) =
1

2π

∫ 2π

0

ln |f(t)| · t+ z

t− z
dφ+ iC, (3)

where the main branch of the logarithm is chosen.
Differentiate (3) by z:

f ′(z)

f(z)
=

1

π

∫ 2π

0

ln |f(t)| · t

(t− z)2
dφ,

f ′(z) =
f(z)

π

∫ 2π

0

ln |f(Reiφ)| · Reiφ

(Reiφ − reiθ)2
dφ,

whence

|f ′(z)| 6 |f(z)|
π

∫ 2π

0

ln+ |f(Reiφ)| · R

R2 − 2Rr cos(φ− θ) + r2
dφ,

|f ′(z)| 6 |f(z)|
πR

∫ 2π

0

ln+ |f(Reiφ)| · 1

1− 2 r
R cos(φ− θ) + r2

R2

dφ. (4)

Let us consider 3 cases.

Case 1. We assume that 0 < q < 1.
Rewrite the last inequality in the form:

|f ′(z)| 6 |f(z)|
πR

∫ 2π

0

(ln+ |f(Reiφ)|)q
2

· (ln+ |f(Reiφ)|)1−q2 · 1

1− 2 r
R cos(φ− θ) + r2

R2

dφ.

Applying Hölder’s inequality with exponents
1

q
and

1

1− q
, we have:

|f ′(z)| 6 |f(z)|
πR

[∫ 2π

0

(ln+ |f(Reiφ)|)q
]q

·

∫ 2π

0

(ln+ |f(Reiφ)|)1+q(
1− 2 r

R cos(φ− θ) + r2

R2

)1/(1−q)
dφ

1−q

.
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Since the function f belongs to the class Πq, we have by Theorem 2.2:

|f ′(z)| 6 |f(z)|
πR

· cqεq

(1−R)(1−q2)/q
(
1− r2

R2

) [∫ 2π

0

(
P
( r

R
, φ− θ

))1/(1−q)

dφ

]1−q

,

where P
(
r
R , φ− θ

)
is the Poisson kernel. We use the Poisson kernel estimate for

1

1− q
>

1

2
from

Lemma 2.4:
|f ′(z)| 6 |f(z)|

πR
· cq
(1−R)(1−q2)/q

· εq(
1− r2

R2

) · Dq(
1− r

R

)q .
Suppose R =

1 + r

2
. After elementary transformations we obtain:

|f ′(reiθ)| 6 Aq · |f(reiθ)| ·
1

(1− r)(1+q)/q
.

We proceed with the logarithm of the last inequality and take into account that ln+ |ab| 6
ln+ |a|+ ln+ |b|, a > 0, b > 0:

ln+ |f ′(reiθ)| 6 ln+ |f(reiθ)|+ ln

(
Aq

(1− r)(1+q)/q

)
.

Next, raise both sides to the power q, and take into account (a + b)q 6 aq + bq for all a > 0,
b > 0, 0 < q < 1, after integration over θ ∈ [−π, π] we have:∫ π

−π

(
ln+ |f ′(reiθ)|

)q
dθ 6

∫ π

−π

(
ln+ |f(reiθ)|

)q
dθ +Bq +

(
ln

1

(1− r)(1+q)/q

)q

.

Since f ∈ Πq we have:∫ π

−π

(
ln+ |f ′(reiθ)|

)q
dθ 6 B̃q + 2π

(
ln

1

(1− r)(1+q)/q

)q

.

Integrate over r ∈ [0, 1]. In view of the convergence of the integrals on the right-hand side of the
inequality, we conclude that f ′ ∈ Π̃q.

Case 2. Now we suppose that q > 1.

Applying Hölder’s inequality with exponents q and 1 +
1

q − 1
in (4), we obtain

|f ′(z)| 6 |f(z)|
πR

(
1− r2

R2

) [∫ 2π

0

(ln+ |f(Reiφ)|)qdφ
]1/q

·
[∫ 2π

0

P
( r

R
, φ− θ

)1+ 1
q−1

dφ

]1−1/q

.

Since the function f belongs to the class Πq, we have

|f ′(z)| 6 |f(z)|
πR

(
1− r2

R2

)cq · [∫ 2π

0

P
( r

R
, φ− θ

)1+ 1
q−1

dφ

]1−1/q

.

We use the Poisson kernel estimate for 1 +
1

q − 1
>

1

2
from Lemma 2.4:

|f ′(z)| 6 c̃q
|f(z)|

πR
(
1− r2

R2

) · 1(
1− r

R

)1/q .
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Suppose that R =
1 + r

2
, then we have:

|f ′(z)| 6 Cq
|f(z)|

(1− r)
q

q−1

.

We proceed with the logarithm of the last inequality and take into account that ln+ |ab| 6
ln+ |a|+ ln+ |b|, a > 0, b > 0:

ln+ |f ′(z)| 6 ln+ |f(z)|+ ln
Cq

(1− r)
q

q−1

.

Further, raise both sides to the power q, and take into account (a+ b)q 6 aq + bq for all a > 0,
b > 0, 0 < q < 1. After integration in θ ∈ [−π, π] we obtain:∫ π

−π

(
ln+ |f ′(reiθ)|

)q
dθ 6

∫ π

−π

(
ln+ |f(reiθ)|

)q
dθ + ln

C̃q

(1− r)
q

q−1

.

Since f ∈ Πq, we see that:∫ π

−π

(
ln+ |f ′(reiθ)|

)q
dθ 6 aq + ln

C̃q

(1− r)
q

q−1

.

Integrate over r ∈ [0, 1]. In view of the convergence of the integrals on the right-hand side of the
inequality, we conclude that f ′ ∈ Π̃q.

Case 3. We assume q = 1. Using the estimate of S. N. Mergelyan for a function of the
Nevanlinna class (see [12, с. 84]), we get from (4):

|f ′(z)| 6 C
|f(z)|

πR(1−R)
(
1− r2

R2

) ∫ 2π

0

P
( r

R
, φ− θ

)
dφ,

whence by the property of the Poisson integral

|f ′(z)| 6 C
|f(z)|

πR(1−R)
(
1− r2

R2

) .
Further, the proof repeats the argument for Case 2. Theorem 2.1 is completely proved. 2

Remark 2.1. Note that W. Hayman indicates the invariance of the class Πq, (1 < q < +∞)
with respect to the integration operator [8].
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Аннотация. В статье исследуется инвариантность классов И.И. Привалова относительно опера-
тора дифференцирования.
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