DOI: 10.17516/1997-1397-2020-13-5-547-558

УДК 517.9

On Initial Boundary Value Problem for Parabolic Differential Operator with Non-coercive Boundary Conditions

Alexander N. Polkovnikov*

Siberian Federal University Krasnoyarsk, Russian Federation

Received 10.05.2020, received in revised form 02.06.2020, accepted 20.07.2020

Abstract. We consider initial boundary value problem for uniformly 2-parabolic differential operator of second order in cylinder domain in \mathbb{R}^n with non-coercive boundary conditions. In this case there is a loss of smoothness of the solution in Sobolev type spaces compared with the coercive situation. Using by Faedo-Galerkin method we prove that problem has unique solution in special Bochner space.

Keywords: non-coercive problem, parabolic problem, Faedo-Galerkin method.

Citation: A. N. Polkovnikov, On Initial Boundary Value Problem for Parabolic Differential Operator with Non-coercive Boundary Conditions, J. Sib. Fed. Univ. Math. Phys., 2020, 13(5), 547–558. DOI: 10.17516/1997-1397-2020-13-5-547-558.

Initial boundary value problems for parabolic (by Petrovsky) differential operators with coercive boundary conditions are well studied (see, for instance, [1–4]). However the problem with non-coercive boundary conditions are also appeared in both theory and applications, see, for instance, pioneer work in this direction [5] and papers [6, 7] and [8] for such problems in the Elasticity Theory. Recent results in Fredholm operator equations, induced by boundary value problems for elliptic differential operators with non-coercive boundary conditions (see, for instance, [9–12]) allows us to apply these one for studying the parabolic problem. Consideration of such problems essentially extends variety of boundary operators, but there is a loss of regularity of the solution (see [13] for elliptic case). Namely, let Ω_T be a cylinder,

$$\Omega_T = \Omega \times (0, T)$$
.

where Ω is a bounded domain in \mathbb{R}^n .

Consider a second order differential operator

$$A(x,t,\partial) = -\sum_{i,j=1}^{n} \partial_i (a_{i,j}(x)\partial_j \cdot) + \sum_{j=1}^{n} a_j(x)\partial_l + a_0(x) + \frac{\partial}{\partial t}$$

of divergence form in the domain Ω_T . The coefficients $a_{i,j}$, a_j are assumed to be complex-valued functions of class $L^{\infty}(\Omega)$. We suppose that the matrix $\mathfrak{A}(x) = (a_{i,j}(x))_{\substack{i=1,\ldots,n\\j=1,\ldots,n}}$ is Hermitian and satisfies

$$\sum_{i,j=1}^{n} a_{i,j}(x)\overline{w}_{i}w_{j} \geqslant 0 \text{ for all } (x,w) \in \overline{\Omega} \times \mathbb{C}^{n},$$

$$\tag{1}$$

^{*}paskaattt@yandex.ru https://orcid.org/0000-0002-7066-3219.

[©] Siberian Federal University. All rights reserved

$$\sum_{i,j=1}^{n} a_{i,j}(x)\xi_i\xi_j \geqslant m |\xi|^2 \text{ for all } (x,\xi) \in \overline{\Omega} \times (\mathbb{R}^n \setminus \{0\}),$$
 (2)

where m is a positive constant independent of x and ξ . Estimate (2) is nothing but the statement that the operator $A(x, t, \partial)$ is uniformly 2-parabolic.

We note that, since the coefficients of the operator and the functions under consideration are complex-valued, inequalities (1) and (2) are weaker than

$$\sum_{i,j=1}^{n} a_{i,j}(x) \, \overline{w}_i w_j \geqslant m \, |w|^2 \tag{3}$$

for all $(x, w) \in \overline{\Omega} \times (\mathbb{C}^n \setminus \{0\})$. Inequality (3) means that correspondent Hermitian form (see form (4)) is coercive.

Consider boundary operator of Robin type:

$$B(x,\partial) = b_1(x) \sum_{i,j=1}^{n} a_{i,j}(x) \nu_i \partial_j + b_0(x),$$

where b_0 , b_1 are bounded functions on $\partial\Omega$ and $\nu(x) = (\nu_1(x), \dots, \nu_n(x))$ is the unit outward normal vector of $\partial\Omega$ at $x \in \partial\Omega$. Let S be an open connected subset of $\partial\Omega$ with piecewise smooth boundary ∂S . We allow the function $b_1(x)$ to vanish on S. In this case we assume that $b_0(x)$ does not vanish for $x \in S$.

Consider now the following mixed initial-boundary problem in a bounded domain Ω_T with Lipschitz boundary $\partial\Omega_T$.

Problem 1. Find a distribution u(x,t), satisfying the problem

$$\begin{cases} A(x,t,\partial)u &= f & in & \Omega_T, \\ B(x,\partial)u &= 0 & on & \partial\Omega \times (0,T), \\ u(x,0) &= u_0 & on & \Omega \end{cases}$$

with given data $f \in \Omega_T$.

For solving the problem we have to define appropriate functional spaces. Denote by $C^1(\overline{\Omega}, S)$ the subspace of $C^1(\overline{\Omega})$ consisting of those functions whose restriction to the boundary vanishes on \overline{S} . Let $H^1(\Omega, S)$ be the closure of $C^1(\overline{\Omega}, S)$ in $H^1(\Omega)$. Since on S the boundary operator reduces to $B = b_0(x)$ and $b_0(x) \neq 0$ for $x \in S$, then the functions $u \in H^1(\Omega)$ satisfying Bu = 0 on $\partial\Omega$ belong to $H^1(\Omega, S)$.

Split now both $a_0(x)$ and $b_0(x)$ into two parts

$$a_0 = a_{0,0} + \delta a_0,$$

$$b_0 = b_{0,0} + \delta b_0,$$

where $a_{0,0}$ is a non-negative bounded function in Ω and $b_{0,0}$ is a such function that $b_{0,0}/b_1$ is non-negative bounded function on S. Then, under reasonable assumptions, the Hermitian form

$$(u,v)_{+} = \int_{\Omega} \sum_{i,j=1}^{n} a_{i,j} \partial_{j} u \overline{\partial_{i} v} \, dx + (a_{0,0}u,v)_{L^{2}(\Omega)} + (b_{0,0}/b_{1} u,v)_{L^{2}(\partial\Omega \setminus S)}$$
(4)

defines the scalar product on $H^1(\Omega, S)$. Denote by $H^+(\Omega)$ the completion of the space $H^1(\Omega, S)$ with respect to the corresponding norm $\|\cdot\|_+$. From now on we assume that the space $H^+(\Omega)$ is

continuously embedded into the Lebesgue space $L^2(\Omega)$, i.e. there is a constant c > 0, independent of u, such that

$$||u||_{L^2(\Omega)} \leqslant c||u||_+$$
 for all $u \in H^+(\Omega)$.

It is true, if there exist a positive constant c_1 such that

$$a_{0,0} \geqslant c_1$$
 in Ω .

Actually we can get more subtle embedding for the space $H^+(\Omega)$.

Theorem 2. Let the coefficients $a_{i,j}$ be C^{∞} in a neighbourhood of the closure of Ω , inequalities (1), (2) hold and

$$\frac{b_{0,0}}{b_1} \geqslant c_2 \ at \ \partial\Omega \setminus S,\tag{5}$$

with some constant $c_2 > 0$. Then the space $H^+(\Omega)$ is continuously embedded into $H^{1/2-\varepsilon}(\Omega)$ for any $\varepsilon > 0$ if there is a positive constant c_1 , such that

$$a_{0.0} \geqslant c_1 \text{ in } \Omega$$
 (6)

or the operator A is strongly elliptic in a neighborhood X of $\overline{\Omega}$ and

$$\int_{X} \sum_{i,j=1}^{n} a_{i,j} \partial_{j} u \overline{\partial_{i} u} \, dx \geqslant m \|u\|_{L^{2}(X)}^{2} \tag{7}$$

for all $u \in C^{\infty}_{\text{comp}}(X)$, with m > 0 a constant independent of u.

Proof. See [12, Theorem 2.5].
$$\Box$$

Of course, under coercive estimate (3), the space $H^+(\Omega)$ is continuously embedded into $H^1(\Omega)$. However, in general, the embedding, described in Theorem 2 is rather sharp (see [12, Remark 5.1]).

The absence of coerciveness does not allows to consider arbitrary derivatives $\partial_j u$ for an element $u \in H^+(\Omega)$. To cope with this difficulty we note that the matrix $\mathfrak{A}(x) = (a_{i,j}(x))_{\substack{i=1,\ldots,n\\j=1,\ldots,n}}$ admits a factorisation, i.e. there is an $(m \times n)$ -matrix $\mathfrak{D}(x) = (\mathfrak{D}_{i,j}(x))_{\substack{i=1,\ldots,m\\j=1,\ldots,n}}$ of bounded functions in Ω , such that

$$(\mathfrak{D}(x))^*\mathfrak{D}(x) = \mathfrak{A}(x) \tag{8}$$

for almost all $x \in D$ (see, for instance, [14]). For example, one could take the standard non-negative self-adjoint square root $\mathfrak{D}(x) = \sqrt{\mathfrak{A}(x)}$ of the matrix $\mathfrak{A}(x)$. Then

$$\sum_{i,i=1}^{n} a_{i,j} \partial_{j} u \overline{\partial_{i} v} = (\mathfrak{D} \nabla v)^{*} \mathfrak{D} \nabla u = \sum_{l=1}^{m} \overline{\mathfrak{D}_{l} v} \mathfrak{D}_{l} u,$$

for all smooth functions u and v in Ω , where ∇u is thought of as n-column with entries $\partial_1 u, \ldots, \partial_n u$, and $\mathfrak{D}_l u := \sum_{s=1}^n \mathfrak{D}_{l,s}(x) \partial_s u$, $l = 1, \ldots, m$. From now on we may confine ourselves with first order summand of the form

$$\sum_{l=1}^{m} \tilde{a}_l(x)\mathfrak{D}_l, \quad \tilde{a}_l(x) \in L^{\infty}(\Omega),$$

instead of

$$\sum_{j=1}^{n} a_j(x)\partial_j.$$

Since the coefficients δa_0 , \tilde{a}_l belong to $L^{\infty}(\Omega)$ for all $l=0,\ldots,m$, it follows from Cauchy inequality that

$$\left| \left(\left(\sum_{l=1}^{m} \tilde{a}_{l}(x) \mathfrak{D}_{l} + \delta a_{0} \right) u, v \right)_{L^{2}(\Omega)} \right| \leqslant c \|u\|_{+} \|v\|_{+}. \tag{9}$$

Let now $H^-(\Omega)$ stand for the dual space for the space $H^+(\Omega)$ with respect to the pairing $\langle \cdot, \cdot \rangle$ induced by the scalar product $(\cdot, \cdot)_{L^2(\Omega)}$, see [2, 15] and elsewhere. It is a Banach space with the norm

$$||u||_{-} = \sup_{\substack{v \in H^{+}(\Omega) \\ v \neq 0}} \frac{|(v, u)_{L^{2}(\Omega)}|}{||v||_{+}}.$$

The space $L^2(\Omega)$ is continuously embedded into $H^-(\Omega)$, if the space $H^+(\Omega)$ is continuously embedded into $L^2(\Omega)$ (see [9]). We denote by $i': L^2(\Omega) \to H^-(\Omega)$ and $i: H^+(\Omega) \to L^2(\Omega)$ the operators of correspondent continuously embeddings. Thus we have a triple of the functional spaces

$$H^+(\Omega) \stackrel{i}{\hookrightarrow} L^2(\Omega) \stackrel{i'}{\hookrightarrow} H^-(\Omega),$$

where each embeddings is compact under the hypothesis of Theorem 2.

Denote by $L^2(0,T;H^+(\Omega))$ the Bochner space of L^2 -functions

$$u(t): [0,T] \to H^+(\Omega).$$

It is a Banach space with the norm

$$||u||_{L^2(0,T;H^+(\Omega))}^2 = \int_0^T ||u(t)||_+^2 dt.$$

Then an integration by parts in Ω leads to a weak formulation of Problem (1):

Problem 3. Given $f \in L^2(0,T;H^-(\Omega))$ and $u_0 \in L^2(\Omega)$, find $u \in L^2(0,T;H^+(\Omega))$, such that

$$(u,v)_{+} + \left(\left(\sum_{l=1}^{m} \tilde{a}_{l}(x)\mathfrak{D}_{l} + \delta a_{0} \right) u, v \right)_{L^{2}(\Omega)} + \frac{\partial}{\partial t} \left(u, v \right)_{L^{2}(\Omega)} = \langle f, v \rangle$$

$$\tag{10}$$

for all $v \in H^+(\Omega)$, and

$$u(0) = u_0. (11)$$

In general case the condition (11) have no sense for functions $u \in L^2(0,T;H^+(\Omega))$. But we will see below that function $u(t) \in L^2(0,T;H^+(\Omega))$, satisfying (10), is continuous and (11) have a sense.

We want to apply the Faedo-Galerkin method for solving the Problem 3 (see, for instance, [2,4]). For this purpose we need some complete system of vectors in the space $H^+(\Omega)$. As this system we take the set of eigenvectors of an operator, induced by the weak statement of elliptic selfadjoint problem, corresponding to the parabolic Problem 3. Namely, for given $f \in H^-(\Omega)$, find $u \in H^+(\Omega)$, such that

$$(u,v)_{+} + \left(\left(\sum_{l=1}^{m} \tilde{a}_{l}(x)\mathfrak{D}_{l} + \delta a_{0} \right) u, v \right)_{L^{2}(\Omega)} = \langle f, v \rangle.$$
 (12)

Equality (12) induces a bounded linear operator $L: H^+(\Omega) \to H^-(\Omega)$,

$$(u,v)_{+} + \left(\left(\sum_{l=1}^{m} \tilde{a}_{l}(x)\mathfrak{D}_{l} + \delta a_{0} \right) u, v \right)_{L^{2}(\Omega)} = \langle Lu, v \rangle.$$

$$(13)$$

Denote by L_0 the operator L in the case, when $\delta a_0 = a_l = 0$ for all l = 1, ..., m,

$$(u,v)_{+} = \langle L_{0}u, v \rangle. \tag{14}$$

The operator $L_0: H^+(\Omega) \to H^-(\Omega)$ is continuously invertible and $||L_0|| = ||L_0^{-1}|| = 1$ (see [12, Lemma 2.6]). According to [12, Lemma 3.1], there is a system $\{h_j\}$ of eigenvectors of the compact positive selfadjoint operator $L_0^{-1}i'i: H^+(\Omega) \to H^+(\Omega)$, which is an orthonormal bases in $H^+(\Omega)$ and an orthogonal bases in $L^2(\Omega)$ and $H^-(\Omega)$.

Let now function $u \in L^2(0,T;H^+(\Omega))$ satisfies (10). We have from (13)

$$\left(\frac{\partial u}{\partial t},v\right)_{L^2(\Omega)}=<\frac{\partial u}{\partial t},v>=.$$

Since $f \in L^2(0,T;H^-(\Omega))$ and operator $L:H^+(\Omega) \to H^-(\Omega)$ is bounded, then $\frac{\partial u}{\partial t} \in L^2(0,T;H^-(\Omega))$. It means, that

$$u \in C(0, T; L^2(\Omega)) \tag{15}$$

(see, for instance, [2] or [16]).

Using by the standard Faedo-Galerkin method (see, for instance, [1,2,4]) we get next Theorem.

Theorem 4. Under the hypothesis of Theorem 2, the Problem 3 has at least one solution u(t), and, moreover, $u(t) \in C(0,T;L^2(\Omega))$.

Proof. For each k we are looking for approximate solution of Problem 3 on the next form

$$u_k(t) = \sum_{j=1}^{k} g_{jk}(t)h_j,$$
(16)

and function u_k satisfies

$$(u_k, h_i)_+ + \left(\left(\sum_{l=1}^m \tilde{a}_l(x) \mathfrak{D}_l + \delta a_0 \right) u_k, h_i \right)_{L^2(\Omega)} + \left(\frac{\partial u_k}{\partial t}, h_i \right)_{L^2(\Omega)} = \langle f, h_i \rangle, \tag{17}$$

$$u_k(0) = \sum_{j=1}^k \frac{(u_0, h_j)_{L^2(\Omega)}}{\|h_j\|_{L^2(\Omega)}^2} h_j, \tag{18}$$

for each j = 1, ..., k, where $\{h_j\}$ is the orthonormal bases in $H^+(\Omega)$. It means that (17) takes the form

$$g_{ik}(t) + \sum_{j=1}^{k} \left(\left(\sum_{l=1}^{m} \tilde{a}_{l}(x) \mathfrak{D}_{l} + \delta a_{0} \right) h_{j}, h_{i} \right)_{L^{2}(\Omega)} g_{jk}(t) + g'_{ik}(t) \|h_{i}\|_{L^{2}(\Omega)}^{2} = \langle f, h_{i} \rangle, \tag{19}$$

where i = 1, ..., k. It is a system of linear differential equations of first order with initial conditions

$$g_{ik}(0) = \frac{(u_0, h_i)_{L^2(\Omega)}}{\|h_i\|_{L^2(\Omega)}^2}, \quad i = 1, \dots, k.$$
(20)

Since $\langle f(t), h_i \rangle$ is measurable function for all i = 1, ..., k, then there is unique function $g_{ik}(t)$ for each i = 1, ..., k, satisfying (19) and (20) for all $t \in [0, T]$ (see, for instance, [17]). Note, as the function u(t) is complex-valued, then the functions $\{g_{ik}(t)\}$ may be complex-valued too and the system (19) consists 2k real-valued equations in general case.

Now we have to get <u>some</u> priori estimates for function $u_k(t)$ independent of k. Multiplying the equality (17) by the $g_{ik}(t)$ and summing by i = 1, ..., k we get

$$||u_k||_+^2 + \left(\frac{\partial u_k}{\partial t}, u_k\right)_{L^2(\Omega)} = \langle f, u_k \rangle - \left(\left(\sum_{l=1}^m \tilde{a}_l(x)\mathfrak{D}_l + \delta a_0\right)u_k, u_k\right)_{L^2(\Omega)}.$$
 (21)

Hence, by the Cauchy inequality,

$$2\left|\|u_{k}\|_{+}^{2} + \left(\frac{\partial u_{k}}{\partial t}, u_{k}\right)_{L^{2}(\Omega)}\right| =$$

$$=2\left| \langle f, u_{k} \rangle - \left(\sum_{l=1}^{m} \tilde{a}_{l}(x)\mathfrak{D}_{l}u_{k}, u_{k}\right)_{L^{2}(\Omega)} - (\delta a_{0}u_{k}, u_{k})_{L^{2}(\Omega)}\right| \leq$$

$$\leq \|f\|_{-}^{2} + \|u_{k}\|_{+}^{2} + 2c_{1}\|u_{k}\|_{+}\|u_{k}\|_{L^{2}(\Omega)} + 2c_{2}\|u_{k}\|_{L^{2}(\Omega)}^{2} \leq$$

$$\leq \|f\|_{-}^{2} + \frac{3}{2}\|u_{k}\|_{+}^{2} + (2c_{2} + 2c_{1}^{2})\|u_{k}\|_{L^{2}(\Omega)}^{2}$$

$$(22)$$

for some positive constants c_1 and c_2 . As the norm $||u_k||_+^2$ is a real-valued function, we have

$$2\left|\|u_{k}\|_{+}^{2}+\left(\frac{\partial u_{k}}{\partial t},u_{k}\right)_{L^{2}(\Omega)}\right|=$$

$$=2\left|\|u_{k}\|_{+}^{2}+\operatorname{\mathfrak{Re}}\left(\left(\frac{\partial u_{k}}{\partial t},u_{k}\right)_{L^{2}(\Omega)}\right)+i\operatorname{\mathfrak{Im}}\left(\left(\frac{\partial u_{k}}{\partial t},u_{k}\right)_{L^{2}(\Omega)}\right)\right|\geqslant$$

$$\geqslant2\|u_{k}\|_{+}^{2}+2\operatorname{\mathfrak{Re}}\left(\left(\frac{\partial u_{k}}{\partial t},u_{k}\right)_{L^{2}(\Omega)}\right),$$

$$(23)$$

where $\mathfrak{Re}(g)$ and $\mathfrak{Im}(g)$ denote real and imaginary parts of function g respectively. On the other hand,

$$\begin{split} \frac{d}{dt}\|u_k\|_{L^2(\Omega)}^2 &= \left(\frac{\partial u_k}{\partial t}, u_k\right)_{L^2(\Omega)} + \left(u_k, \frac{\partial u_k}{\partial t}\right)_{L^2(\Omega)} = \\ &= 2\Re \mathfrak{e}\left(\left(\frac{\partial u_k}{\partial t}, u_k\right)_{L^2(\Omega)}\right). \end{split} \tag{24}$$

It follows from (22), (23) and (24) that

$$\frac{1}{2}\|u_k(t)\|_+^2 + \frac{d}{dt}\|u_k(t)\|_{L^2(\Omega)}^2 \le \|f(t)\|_-^2 + (2c_2 + 2c_1^2)\|u_k\|_{L^2(\Omega)}^2.$$
(25)

Now, integrating (25) by t from 0 till some $s \in (0,T)$ we get

$$\frac{1}{2} \int_0^s \|u_k(t)\|_+^2 dt + \|u_k(s)\|_{L^2(\Omega)}^2 - \|u_k(0)\|_{L^2(\Omega)}^2 \le$$

$$\le \int_0^s \|f(t)\|_-^2 dt + (2c_2 + 2c_1^2) \int_0^s \|u_k\|_{L^2(\Omega)}^2 dt.$$

Since the sequence $\{u_k(0)\}$ seeks to u_0 with $k \to \infty$ strongly in $L^2(\Omega)$, it follows from Gronwall type lemma (see [18] or [19]), that

$$||u_k(s)||_{L^2(\Omega)}^2 \le \left(||u_0||_{L^2(\Omega)}^2 + \int_0^T ||f(t)||_-^2 dt\right) e^{(2c_2 + 2c_1^2)s}.$$

Hence

$$\sup_{s \in [0,T]} \|u_k(s)\|_{L^2(\Omega)}^2 \le \left(\|u_0\|_{L^2(\Omega)}^2 + \int_0^T \|f(t)\|_-^2 dt \right) e^{(2c_2 + 2c_1^2)T}. \tag{26}$$

The right side of (26) independent of k, therefore the sequence $\{u_k(t)\}$ is bounded in $L^{\infty}(0,T;L^2(\Omega))$. Then there is a subsequence $\{u_{k'}(t)\}$ of the sequence $\{u_k(t)\}$ and an element $u(t) \in L^{\infty}(0,T;L^2(\Omega))$ such that $u_{k'}(t) \to u(t)$ in the weak-* topology of $L^{\infty}(0,T;L^2(\Omega))$, namely

$$\lim_{k' \to \infty} \int_0^T (u_{k'}(t) - u(t), v(t))_{L^2(\Omega)} dt = 0$$
(27)

for all $v \in L^1(0,T;L^2(\Omega))$.

Integrating again (25) by t from 0 till T and applying Gronwall type lemma we have

$$\frac{1}{2} \int_{0}^{T} \|u_{k}(t)\|_{+}^{2} dt + \|u_{k}(T)\|_{L^{2}(\Omega)}^{2} \leqslant \left(\|u_{0}\|_{L^{2}(\Omega)}^{2} + \int_{0}^{T} \|f(t)\|_{-}^{2} dt \right) e^{(2c_{2} + 2c_{1}^{2})T}.$$
(28)

It means that the sequence $\{u_k(t)\}$ is bounded in $L^2(0,T;H^+(\Omega))$. In particular, the sequence $\{u_{k'}(t)\}$ is bounded in $L^2(0,T;H^+(\Omega))$ too. Hence there is a subsequence $\{u_{k''}(t)\}$ of the sequence $\{u_{k'}(t)\}$ and an element $\tilde{u}(t) \in L^2(0,T;H^+(\Omega))$ such that $u_{k''}(t) \to u(t)$ in the weak topology of $L^2(0,T;H^+(\Omega))$,

$$\lim_{k'' \to \infty} \int_0^T (u_{k''}(t), v)_+ dt = \int_0^T (u(t), v)_+ dt$$
 (29)

for all $v \in L^2(0,T;H^+(\Omega))$ and

$$\lim_{k'' \to \infty} \int_0^T \langle u_{k''}(t) - \widetilde{u}(t), v(t) \rangle dt = 0$$
(30)

for all $v \in L^2(0,T;H^-(\Omega))$. In particular

$$\lim_{k'' \to \infty} \int_0^T (u_{k''}(t), v(t))_{L^2(\Omega)} dt = \int_0^T (\widetilde{u}(t), v(t))_{L^2(\Omega)} dt$$
 (31)

for all $v \in L^2(0,T;L^2(\Omega))$.

From (27) and (31) we have

$$\int_0^T (u(t) - \widetilde{u}(t), v(t))_{L^2(\Omega)} dt = 0$$
(32)

for all $v \in L^2(0,T;L^2(\Omega))$. Hence

$$u(t) = \widetilde{u}(t) \in L^{\infty}(0, T; L^{2}(\Omega)) \cap L^{2}(0, T; H^{+}(\Omega)).$$
 (33)

From now on we denote by $\{u_k(t)\}\$ the subsequence $\{u_{k''}(t)\}\$.

Let now $\psi(t)$ be a scalar differentiable function on [0,T] such that $\psi(T)=0$. Multiplying (17) by $\psi(t)$ and integrating by t we get

$$\int_{0}^{T} (u_{k}(t), h_{j})_{+} \psi(t) dt + \int_{0}^{T} \left(\left(\sum_{l=1}^{m} \tilde{a}_{l}(x) \mathfrak{D}_{l} + \delta a_{0} \right) u_{k}(t), h_{i} \right)_{L^{2}(\Omega)} \psi(t) dt + \\
+ \int_{0}^{T} \left(\frac{\partial u_{k}(t)}{\partial t}, h_{i} \right)_{L^{2}(\Omega)} \psi(t) dt = \int_{0}^{T} \langle f(t), h_{j} \rangle \psi(t) dt. \tag{34}$$

However

$$\int_{0}^{T} \left(\frac{\partial u_{k}(t)}{\partial t}, h_{i} \right)_{L^{2}(\Omega)} \psi(t) dt = -\int_{0}^{T} \left(u_{k}(t), \psi'(t) h_{j} \right)_{L^{2}(\Omega)} dt - \left(u_{k}(0), h_{j} \psi(0) \right)_{L^{2}(\Omega)}, \quad (35)$$

and it follows that

$$\int_{0}^{T} (u_{k}(t), h_{j}\psi(t))_{+} dt + \int_{0}^{T} \left(\left(\sum_{l=1}^{m} \tilde{a}_{l}(x)\mathfrak{D}_{l} + \delta a_{0} \right) u_{k}(t), h_{i} \right)_{L^{2}(\Omega)} \psi(t) dt - \\
- \int_{0}^{T} (u_{k}(t), \psi'(t)h_{j})_{L^{2}(\Omega)} dt = (u_{k}(0), h_{j}\psi(0))_{L^{2}(\Omega)} + \int_{0}^{T} \langle f(t), h_{j} \rangle \psi(t) dt.$$
(36)

Now we want to go to the limit in (36) with $k \to \infty$. It follows from 9, that

$$\int_0^T \left(\left(\sum_{l=1}^m \tilde{a}_l(x) \mathfrak{D}_l + \delta a_0 \right) u_k(t), h_i \right)_{L^2(\Omega)} \psi(t) dt$$

is continuous linear functional on $L^2(0,T;H^+(\Omega))$. Since $u_k(t) \to u(t)$ with $k \to \infty$ in the weak topology of $L^2(0,T;H^+(\Omega))$, we have

$$\lim_{k \to \infty} \int_0^T \left(\left(\sum_{l=1}^m \tilde{a}_l(x) \mathfrak{D}_l + \delta a_0 \right) (u_k(t) - u(t)), h_i \right)_{L^2(\Omega)} \psi(t) dt = 0.$$

From (31), (29), (33) and the fact that $u_k(0) \to u_0$ strongly in $L^2(\Omega)$ with $k \to \infty$ we get

$$\int_{0}^{T} (u(t), h_{j}\psi(t))_{+} dt + \int_{0}^{T} \left(\left(\sum_{l=1}^{m} \tilde{a}_{l}(x)\mathfrak{D}_{l} + \delta a_{0} \right) u(t), h_{i}\psi(t) \right)_{L^{2}(\Omega)} dt - \\
- \int_{0}^{T} (u(t), \psi'(t)h_{j})_{L^{2}(\Omega)} dt = (u_{0}, h_{j}\psi(0))_{L^{2}(\Omega)} + \int_{0}^{T} \langle f(t), h_{j} \rangle \psi(t) dt.$$
(37)

As the system $\{h_j\}_{j=1,2,...}$ is dense in $H^+(\Omega)$ and $L^2(\Omega)$, equality (37) holds by linearity and continuity for all $v \in H^+(\Omega)$,

$$\int_{0}^{T} (u(t), v)_{+} \psi(t) dt + \int_{0}^{T} \left(\left(\sum_{l=1}^{m} \tilde{a}_{l}(x) \mathfrak{D}_{l} + \delta a_{0} \right) u(t), v \right)_{L^{2}(\Omega)} \psi(t) dt - \\
- \int_{0}^{T} (u(t), v)_{L^{2}(\Omega)} \psi'(t) dt = (u_{0}, v)_{L^{2}(\Omega)} \psi(0) + \int_{0}^{T} \langle f(t), v \rangle \psi(t) dt. \tag{38}$$

In particular, if we take by $\psi(t)$ differentiable functions with compact support in (0,T), we get

$$(u(t), v)_{+} + \left(\left(\sum_{l=1}^{m} \tilde{a}_{l}(x) \mathfrak{D}_{l} + \delta a_{0} \right) u(t), v \right)_{L^{2}(\Omega)} + \frac{d}{dt} \left(u(t), v \right)_{L^{2}(\Omega)} = \langle f(t), v \rangle$$
(39)

in the sense of distributions. Now we have to show that $u(0) = u_0$. Indeed, multiplying (39) by $\psi(t)$ and integrating by parts we get

$$\begin{split} \int_0^T (u(t),v)_+ \psi(t) \, dt + \int_0^T \bigg(\Big(\sum_{l=1}^m \tilde{a}_l(x) \mathfrak{D}_l + \delta a_0 \Big) u(t),v \bigg)_{L^2(\Omega)} \psi(t) \, dt - \\ - \int_0^T \left(u(t),v \right)_{L^2(\Omega)} \psi'(t) \, dt = (u(0),v)_{L^2(\Omega)} \psi(0) + \int_0^T \langle f(t),v \rangle \psi(t) dt. \end{split}$$

Comparing it with (38) we get

$$(u(0) - u_0, v)_{L^2(\Omega)} \psi(0) = 0$$

for all $v \in H^+(\Omega)$. Taking $\psi(0) \neq 0$ we receive $u(0) = u_0$. The continuity follows from (15).

Corollary 5. Under the hypothesis of Theorem 2, the Problem 3 has one and only one solution $u(t) \in C(0,T;L^2(\Omega))$, if

$$\Re \left(\left(\left(\sum_{l=1}^{m} \tilde{a}_{l}(x) \mathfrak{D}_{l} + \delta a_{0} \right) v, v \right)_{L^{2}(\Omega)} \right) \geqslant 0$$

$$\tag{40}$$

for all $v \in L^2(0,T; H^+(\Omega))$.

Proof. The existence of the solution follows from the Theorem 4. Let us now show, that the solution is unique, if the condition (40) and the hypothesis of Theorem 4 are fulfilled. Indeed, let $v \in L^2(0,T;H^+(\Omega))$ is another solution of Problem 3. Denote by w=u-v. Then w satisfies conditions of Problem 3 and

$$(w,v)_{+} + \left(\left(\sum_{l=1}^{m} \tilde{a}_{l}(x)\mathfrak{D}_{l} + \delta a_{0}\right)w,v\right)_{L^{2}(\Omega)} + \frac{d}{dt}\left(w,v\right)_{L^{2}(\Omega)} = 0$$

for all $v \in H^+(\Omega)$, and w(0) = 0. It follows from (13), that

$$\frac{\partial w}{\partial t} + Lw = 0.$$

Multiplying scalar it by w we have

$$||w||_+^2 + \left(\left(\sum_{l=1}^m \tilde{a}_l(x) \mathfrak{D}_l + \delta a_0 \right) w, w \right)_{L^2(\Omega)} + \left(\frac{\partial w}{\partial t}, w \right)_{L^2(\Omega)} = 0.$$

As the $||w(t)||_{+}^{2}$ is a real-valued function, therefore

$$\|w\|_+^2 + \mathfrak{Re}\left(\left(\frac{\partial w}{\partial t},w\right)_{L^2(\Omega)}\right) + \mathfrak{Re}\left(\left(\left(\sum_{l=1}^m \tilde{a}_l(x)\mathfrak{D}_l + \delta a_0\right)w,w\right)_{L^2(\Omega)}\right) = 0.$$

On the other hand,

$$\mathfrak{Re}\left(\left(\frac{\partial w}{\partial t},w\right)_{L^2(\Omega)}\right) = \frac{1}{2}\frac{d}{dt}\|w\|_{L^2(\Omega)}^2.$$

It follows from (40), that

$$2\mathfrak{Re}\left(\left(\frac{\partial w}{\partial t}, w\right)_{L^2(\Omega)}\right) = \frac{d}{dt} \|w\|_{L^2(\Omega)}^2 \leqslant 0$$

and

$$\|w(t)\|_{L^2(\Omega)}^2 \leqslant \|w(0)\|_{L^2(\Omega)}^2 = 0,$$

hence w(t) = 0 for almost all $t \in [0, T]$, that completes the proof

As we already mentioned, the embedding $H^+(\Omega)$ into $H^{1/2-\varepsilon}(\Omega)$ is rather sharp. Let us show, that the space $L^2(0,T;H^+(\Omega))$ can not be continuously embedded into $L^2(0,T;H^s(\Omega))$ for all s>1/2.

Eexample 6. Let Ω be a unit sphere in \mathbb{C} , matrix $\mathfrak{A}(x)$ has a form

$$\mathfrak{A}(x) = (a_{ij}(x))_{\substack{i=1,2\\j=1,2}} = \begin{pmatrix} 1 & \sqrt{-1} \\ -\sqrt{-1} & 1 \end{pmatrix},$$

 $S = \emptyset$, $a_l = 0$ for $l = 0, 1, \dots, m$, and $b_1 = b_0 = 1$. Then the series

$$u_{\varepsilon}(z,t) = \sum_{k=0}^{\infty} \frac{z^k t^{k/2}}{T^{(k+1)/2}(k+1)^{\varepsilon/2}},$$

 $\varepsilon > 0$, converges in $L^2(0,T;H^+(\Omega))$ and

$$||u_{\varepsilon}||_{L^{2}(0,T;H^{+}(\Omega))}^{2} = ||u_{\varepsilon}||_{L^{2}(0,T;L^{2}(\mathbb{S}))}^{2} = 2\pi \sum_{k=0}^{\infty} \frac{1}{(k+1)^{1+\varepsilon}}.$$

According to [20, Lemma 1.4]

$$\|u_{\varepsilon}\|_{L^{2}(0,T;H^{s}(\mathbb{B}))}^{2} \geqslant \pi \sum_{k=0}^{\infty} \frac{k^{2s-1}}{(k+1)^{1+\varepsilon}}, 0 < s \leqslant 1.$$

It means, that for each $s \in (1/2, 1)$ there exist $\varepsilon > 0$ such that $u_{\varepsilon} \notin L^2(0, T; H^s(\mathbb{B}))$. Hence, the space $L^2(0, T; H^+(\mathbb{B}))$ can not be continuously embedded into $L^2(0, T; H^s(\mathbb{B}))$ for all s > 1/2.

The work was supported by the Foundation for the Advancement of Theoretical Physics and Mathematics "BASIS".

References

- [1] O.A.Ladyzhenskaya, V.A.Solonnikov, N.N.Ural'tseva, Linear and Quasilinear Equations of Parabolic Type, Amer. Math. Soc., Providence, R.I., 1968
- [2] J.L.Lions, E.Magenes, Non-Homogeneous Boundary Value Problems and Applications, Springer-Verlag, Berlin et al., 1972.

- [3] V.P.Mikhailov, Partial Differential Equations, Moscow, Mir, 1978.
- [4] R.Temam, Navier-Stokes equations: Theory and Numerical Analysis, Studies in Math. and its Appl. 2, 1979.
- [5] S.Agmon, A.Douglis, L.Nirenberg, Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions, Part 1. Comm. Pure Appl. Math., 12(1959), 623–727.
- [6] S.Campanato, Sui problemi al contorno per sistemi di equazioni differenziale lineari del tipo dell'elasticit\(\text{a}\), Ann. della Scuola Norm. Superiore, Cl. di Sci, Ser. III, 13(1959), no. 2, 223–258.
- [7] S.Campanato, Proprietá di taluni spazi di distribuzioni e loro applicazione, Ann. della Scuola Norm. Superiore, Cl. di Sci, Ser. III, 14(1960), no. 4, 363–376.
- [8] A.S.Peicheva, A.A.Shlapunov, On the completeness of root functions of Sturm-Liouville problems for the Lame system in weighted spaces. Z. Angew. Math. Mech., 95(2015), no. 11, 1202–1214.
- [9] A.N.Polkovnikov, A.A.Shlapunov, On spectral properties of a non-coercive mixed problem associated with the θ-operator, Journal of Siberian Federal University. Math. and Phys., 6(2013), no. 2, 247–261.
- [10] A.Polkovnikov, A.Shapunov, On non-coercive mixed problems for parameter-dependent elliptic operators, *Math. Commun.*, **15**(2015), 1–20,
- [11] A.Polkovnikov, A.A.Shlapunov, Sib. Math. J., $\mathbf{58}(2017)$, no. 4, 676–686. DOI: 10.1134/S0037446617040140
- [12] A.Shlapunov, N. Tarkhanov, On completeness of root functions of Sturm-Liouville problems with discontinuous boundary operators, *J. of Differential Equations*, **10**(2013), 3305–3337.
- [13] J.J.Kohn, Subellipticity of the $\overline{\partial}$ -Neumann problem on pseudoconvex domains: sufficient conditions, $Acta\ Math.$, $\mathbf{142}(1979)$, no. 1-2, 79–12.
- [14] A.Shlapunov, N.Tarkhanov, Sib. Adv. Math., 26(2016), no. 1, 30–76.
 DOI: 10.3103/S105513441601003X
- [15] M.Schechter, Negative norms and boundary problems, $Ann.\ Math.,\ 72(1960),\ no.\ 3,\ 581-593.$ DOI: 10.1090/S0002-9904-1960-10516-2
- [16] H.Gaevsky, K.Greger, K.Zaharias, Nonlinear Operator Equations and Operator Differential Equations, Mir, Moscow, 1978.
- [17] A.F.Filippov, Differential equations with discontinuous right-hand side, Nauka, Moscow, 1985 (in Russian).
- [18] T.H.Gronwall, Note on the derivatives with respect to a parameter of the solutions of a system of differential equations, *Ann. of Math.*, **20**(1919), no. 2, 292–296.
- [19] D.S.Mitrinović, J.E.Pečarić, A.M.Fink, Inequalities Involving Functions and Their Integrals and Derivatives, Mathematics and its Applications (East European Series), Vol. 53, Kluwer Ac. Publ., Dordrecht, 1991.

[20] A.A.Shlapunov, Spectral decomposition of Green's integrals and existence of $W^{s,2}$ -solutions of matrix factorizations of the Laplace operator in a ball, *Rend. Sem. Mat. Univ. Padova*, 96(1996), 237-256.

О начально-краевой задаче для параболического дифференциального оператора с некоэрцитивными граничными условиями

Александр Н. Полковников

Сибирский федеральный университет Красноярск, Российская Федерация

Аннотация. Мы рассматриваем начально-краевую задачу для равномерно 2-параболического дифференциального оператора второго порядка в цилиндрической области в \mathbb{R}^n с некоэрцитивными граничными условиями. В отличие от коэрцитивного случая в данной ситуации происходит потеря гладкости решения в пространствах соболевского типа. Пользуясь методом Галеркина, мы доказываем, что проблема имеет единственное решение в специальных пространствах Бохнера.

Ключевые слова: некоэрцитивная задача, параболическая задача, метод Галеркина.