
Journal of Siberian Federal University. Mathematics & Physics 2020, 13(5), 547–558

DOI: 10.17516/1997-1397-2020-13-5-547-558
УДК 517.9

On Initial Boundary Value Problem for Parabolic Differential
Operator with Non-coercive Boundary Conditions

Alexander N. Polkovnikov∗

Siberian Federal University
Krasnoyarsk, Russian Federation

Received 10.05.2020, received in revised form 02.06.2020, accepted 20.07.2020
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Initial boundary value problems for parabolic (by Petrovsky) differential operators with co-
ercive boundary conditions are well studied (see, for instance, [1–4]). However the problem with
non-coercive boubdary conditions are also appeared in both theory and applications, see, for
instance, pioneer work in this direction [5] and papers [6, 7] and [8] for such problems in the
Elasticity Theory. Recent results in Fredholm operator equations, induced by boundary value
problems for elliptic differential operators with non-coercive boundary conditions (see, for in-
stance, [9–12]) allows us to apply these one for studying the parabolic problem. Consideration of
such problems essentially extends variety of boundary operators, but there is a loss of regularity
of the solution (see [13] for elliptic case). Namely, let ΩT be a cylinder,

ΩT = Ω× (0, T ),

where Ω is a bounded domain in Rn.
Consider a second order differential operator

A(x, t, ∂) = −
n∑

i,j=1

∂i(ai,j(x)∂j ·) +
n∑

j=1

aj(x)∂l + a0(x) +
∂

∂t

of divergence form in the domain ΩT . The coefficients ai,j , aj are assumed to be complex-valued
functions of class L∞(Ω). We suppose that the matrix A(x) = (ai,j(x))i=1,...,n

j=1,...,n
is Hermitian and

satisfies
n∑

i,j=1

ai,j(x)wiwj > 0 for all (x,w) ∈ Ω× Cn, (1)

∗paskaattt@yandex.ru https://orcid.org/0000-0002-7066-3219.
c⃝ Siberian Federal University. All rights reserved

– 547 –



Alexander N. Polkovnikov On Initial Boundary Value Problem for Parabolic Differential Operator . . .

n∑
i,j=1

ai,j(x)ξiξj > m |ξ|2 for all (x, ξ) ∈ Ω× (Rn \ {0}), (2)

where m is a positive constant independent of x and ξ. Estimate (2) is nothing but the statement
that the operator A(x, t, ∂) is uniformly 2-parabolic.

We note that, since the coefficients of the operator and the functions under consideration are
complex-valued, inequalities (1) and (2) are weaker than

n∑
i,j=1

ai,j(x)wiwj > m |w|2 (3)

for all (x,w) ∈ Ω × (Cn \ {0}). Inequality (3) means that correspondent Hermitian form (see
form (4)) is coercive.

Consider boundary operator of Robin type:

B(x, ∂) = b1(x)

n∑
i,j=1

ai,j(x) νi∂j + b0(x),

where b0, b1 are bounded functions on ∂Ω and ν(x) = (ν1(x), . . . , νn(x)) is the unit outward
normal vector of ∂Ω at x ∈ ∂Ω. Let S be an open connected subset of ∂Ω with piecewise smooth
boundary ∂S. We allow the function b1(x) to vanish on S. In this case we assume that b0(x)
does not vanish for x ∈ S.

Consider now the following mixed initial-boundary problem in a bounded domain ΩT with
Lipschitz boundary ∂ΩT .

Problem 1. Find a distribution u(x, t), satisfying the problem A(x, t, ∂)u = f in ΩT ,
B(x, ∂)u = 0 on ∂Ω× (0, T ),
u(x, 0) = u0 on Ω

with given data f ∈ ΩT .

For solving the problem we have to define appropriate functional spaces. Denote by C1(Ω, S)

the subspace of C1(Ω) consisting of those functions whose restriction to the boundary vanishes
on S. Let H1(Ω, S) be the closure of C1(Ω, S) in H1(Ω). Since on S the boundary operator
reduces to B = b0(x) and b0(x) ̸= 0 for x ∈ S, then the functions u ∈ H1(Ω) satisfying Bu = 0

on ∂Ω belong to H1(Ω, S).
Split now both a0(x) and b0(x) into two parts

a0 = a0,0 + δa0,

b0 = b0,0 + δb0,

where a0,0 is a non-negative bounded function in Ω and b0,0 is a such function that b0,0/b1 is
non-negative bounded function on S. Then, under reasonable assumptions, the Hermitian form

(u, v)+ =

∫
Ω

n∑
i,j=1

ai,j∂ju∂iv dx+ (a0,0u, v)L2(Ω) + (b0,0/b1 u, v)L2(∂Ω\S) (4)

defines the scalar product on H1(Ω, S). Denote by H+(Ω) the completion of the space H1(Ω, S)

with respect to the corresponding norm ∥ · ∥+. From now on we assume that the space H+(Ω) is
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continuously embedded into the Lebesgue space L2(Ω), i.e. there is a constant c > 0, independent
of u, such that

∥u∥L2(Ω) 6 c∥u∥+ for all u ∈ H+(Ω).

It is true, if there exist a positive constant c1 such that

a0,0 > c1 in Ω.

Actually we can get more subtle embedding for the space H+(Ω).

Theorem 2. Let the coefficients ai,j be C∞ in a neighbourhood of the closure of Ω, inequalities
(1), (2) hold and

b0,0
b1

> c2 at ∂Ω \ S, (5)

with some constant c2 > 0. Then the space H+(Ω) is continuously embedded into H1/2−ε(Ω) for
any ε > 0 if there is a positive constant c1, such that

a0,0 > c1 in Ω (6)

or the operator A is strongly elliptic in a neighborhood X of Ω and∫
X

n∑
i,j=1

ai,j∂ju∂iu dx > m ∥u∥2L2(X) (7)

for all u ∈ C∞
comp(X), with m > 0 a constant independent of u.

Proof. See [12, Theorem 2.5].

Of course, under coercive estimate (3), the space H+(Ω) is continuously embedded into
H1(Ω). However, in general, the embedding, described in Theorem 2 is rather sharp (see [12,
Remark 5.1]).

The absence of coerciveness does not allows to consider arbitrary derivatives ∂ju for an
element u ∈ H+(Ω). To cope with this difficulty we note that the matrix A(x) = (ai,j(x))i=1,...,n

j=1,...,n

admits a factorisation, i.e. there is an (m × n) -matrix D(x) = (Di,j(x))i=1,...,m
j=1,...,n

of bounded

functions in Ω, such that
(D(x))∗D(x) = A(x) (8)

for almost all x ∈ D (see, for instance, [14]). For example, one could take the standard non-
negative self-adjoint square root D(x) =

√
A(x) of the matrix A(x). Then

n∑
i,j=1

ai,j∂ju∂iv = (D∇v)∗D∇u =

m∑
l=1

DlvDlu,

for all smooth functions u and v in Ω, where ∇u is thought of as n -column with entries

∂1u, . . . , ∂nu, and Dlu :=
n∑

s=1
Dl,s(x)∂su, l = 1, . . . ,m. From now on we may confine ourselves

with first order summand of the form
m∑
l=1

ãl(x)Dl, ãl(x) ∈ L∞(Ω),
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instead of
n∑

j=1

aj(x)∂j .

Since the coefficients δa0, ãl belong to L∞(Ω) for all l = 0, . . . ,m, it follows from Cauchy
inequality that ∣∣∣∣∣

(( m∑
l=1

ãl(x)Dl + δa0

)
u, v

)
L2(Ω)

∣∣∣∣∣ 6 c ∥u∥+ ∥v∥+. (9)

Let now H−(Ω) stand for the dual space for the space H+(Ω) with respect to the pairing
< ·, · > induced by the scalar product (·, ·)L2(Ω), see [2, 15] and elsewhere. It is a Banach space
with the norm

∥u∥− = sup
v∈H+(Ω)

v ̸=0

|(v, u)L2(Ω)|
∥v∥+

.

The space L2(Ω) is continuously embedded into H−(Ω), if the space H+(Ω) is continuously
embedded into L2(Ω) (see [9]). We denote by i′ : L2(Ω) → H−(Ω) and i : H+(Ω) → L2(Ω) the
operators of correspondent continuously embeddings. Thus we have a triple of the functional
spaces

H+(Ω)
i
↪→ L2(Ω)

i′

↪→ H−(Ω),

where each embeddings is compact under the hypothesis of Theorem 2.
Denote by L2(0, T ;H+(Ω)) the Bochner space of L2-functions

u(t) : [0, T ] → H+(Ω).

It is a Banach space with the norm

∥u∥2L2(0,T ;H+(Ω)) =

∫ T

0

∥u(t)∥2+dt.

Then an integration by parts in Ω leads to a weak formulation of Problem (1):

Problem 3. Given f ∈ L2(0, T ;H−(Ω)) and u0 ∈ L2(Ω), find u ∈ L2(0, T ;H+(Ω)), such that

(u, v)+ +
(( m∑

l=1

ãl(x)Dl + δa0
)
u, v
)
L2(Ω)

+
∂

∂t
(u, v)L2(Ω) =< f, v > (10)

for all v ∈ H+(Ω), and
u(0) = u0. (11)

In general case the condition (11) have no sense for functions u ∈ L2(0, T ;H+(Ω)). But we
will see below that function u(t) ∈ L2(0, T ;H+(Ω)), satisfying (10), is continuous and (11) have
a sense.

We want to apply the Faedo-Galerkin method for solving the Problem 3 (see, for instance,
[2, 4]). For this purpose we need some complete system of vectors in the space H+(Ω). As this
system we take the set of eigenvectors of an operator, induced by the weak statement of elliptic
selfadjoint problem, corresponding to the parabolic Problem 3. Namely, for given f ∈ H−(Ω),
find u ∈ H+(Ω), such that

(u, v)+ +

(( m∑
l=1

ãl(x)Dl + δa0

)
u, v

)
L2(Ω)

=< f, v > . (12)
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Equality (12) induces a bounded linear operator L : H+(Ω) → H−(Ω),

(u, v)+ +

(( m∑
l=1

ãl(x)Dl + δa0

)
u, v

)
L2(Ω)

=< Lu, v > . (13)

Denote by L0 the operator L in the case, when δa0 = al = 0 for all l = 1, . . . ,m,

(u, v)+ =< L0u, v > . (14)

The operator L0 : H+(Ω) → H−(Ω) is continuously invertible and ∥L0∥ = ∥L−1
0 ∥ = 1 (see [12,

Lemma 2.6]). According to [12, Lemma 3.1], there is a system {hj} of eigenvectors of the compact
positive selfadjoint operator L−1

0 i′i : H+(Ω) → H+(Ω), which is an orthonormal bases in H+(Ω)

and an orthogonal bases in L2(Ω) and H−(Ω).
Let now function u ∈ L2(0, T ;H+(Ω)) satisfies (10). We have from (13)(

∂u

∂t
, v

)
L2(Ω)

=<
∂u

∂t
, v >=< f − Lu, v > .

Since f ∈ L2(0, T ;H−(Ω)) and operator L : H+(Ω) → H−(Ω) is bounded, then
∂u

∂t
∈

L2(0, T ;H−(Ω)). It means, that
u ∈ C(0, T ;L2(Ω)) (15)

(see, for instance, [2] or [16]).
Using by the standard Faedo-Galerkin method (see, for instance, [1,2,4]) we get next Theorem.

Theorem 4. Under the hypothesis of Theorem 2, the Problem 3 has at least one solution u(t),
and, moreover, u(t) ∈ C(0, T ;L2(Ω)).

Proof. For each k we are looking for approximate solution of Problem 3 on the next form

uk(t) =

k∑
j=1

gjk(t)hj , (16)

and function uk satisfies

(uk, hi)+ +

(( m∑
l=1

ãl(x)Dl + δa0

)
uk, hi

)
L2(Ω)

+

(
∂uk
∂t

, hi

)
L2(Ω)

=< f, hi >, (17)

uk(0) =

k∑
j=1

(u0, hj)L2(Ω)

∥hj∥2L2(Ω)

hj , (18)

for each j = 1, . . . , k, where {hj} is the orthonormal bases in H+(Ω). It means that (17) takes
the form

gik(t) +

k∑
j=1

(( m∑
l=1

ãl(x)Dl + δa0

)
hj , hi

)
L2(Ω)

gjk(t) + g′ik(t)∥hi∥2L2(Ω) =< f, hi >, (19)

where i = 1, . . . , k. It is a system of linear differential equations of first order with initial
conditions

gik(0) =
(u0, hi)L2(Ω)

∥hi∥2L2(Ω)

, i = 1, . . . , k. (20)
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Since < f(t), hi > is measurable function for all i = 1, . . . , k, then there is unique function gik(t)
for each i = 1, . . . , k, satisfying (19) and (20) for all t ∈ [0, T ] (see, for instance, [17]). Note, as
the function u(t) is complex-valued, then the functions {gik(t)} may be complex-valued too and
the system (19) consists 2k real-valued equations in general case.

Now we have to get some priori estimates for function uk(t) independent of k. Multiplying
the equality (17) by the gik(t) and summing by i = 1, . . . , k we get

∥uk∥2+ +

(
∂uk
∂t

, uk

)
L2(Ω)

=< f, uk > −
(( m∑

l=1

ãl(x)Dl + δa0

)
uk, uk

)
L2(Ω)

. (21)

Hence, by the Cauchy inequality,

2

∣∣∣∣∣∥uk∥2+ +

(
∂uk
∂t

, uk

)
L2(Ω)

∣∣∣∣∣ =
=2
∣∣∣ < f, uk > −

( m∑
l=1

ãl(x)Dluk, uk

)
L2(Ω)

− (δa0uk, uk)L2(Ω)

∣∣∣ 6
6∥f∥2− + ∥uk∥2+ + 2c1∥uk∥+∥uk∥L2(Ω) + 2c2∥uk∥2L2(Ω) 6

6∥f∥2− +
3

2
∥uk∥2+ + (2c2 + 2c21)∥uk∥2L2(Ω)

(22)

for some positive constants c1 and c2. As the norm ∥uk∥2+ is a real-valued function, we have

2

∣∣∣∣∣∥uk∥2+ +

(
∂uk
∂t

, uk

)
L2(Ω)

∣∣∣∣∣ =
= 2

∣∣∣∣∣∥uk∥2+ +Re

((
∂uk
∂t

, uk

)
L2(Ω)

)
+ iIm

((
∂uk
∂t

, uk

)
L2(Ω)

)∣∣∣∣∣ >
> 2∥uk∥2+ + 2Re

((
∂uk
∂t

, uk

)
L2(Ω)

)
,

(23)

where Re(g) and Im(g) denote real and imaginary parts of function g respectively. On the other
hand,

d

dt
∥uk∥2L2(Ω) =

(
∂uk
∂t

, uk

)
L2(Ω)

+

(
uk,

∂uk
∂t

)
L2(Ω)

=

= 2Re

((
∂uk
∂t

, uk

)
L2(Ω)

)
.

(24)

It follows from (22), (23) and (24) that

1

2
∥uk(t)∥2+ +

d

dt
∥uk(t)∥2L2(Ω) 6 ∥f(t)∥2− + (2c2 + 2c21)∥uk∥2L2(Ω). (25)

Now, integrating (25) by t from 0 till some s ∈ (0, T ) we get

1

2

∫ s

0

∥uk(t)∥2+dt+ ∥uk(s)∥2L2(Ω) − ∥uk(0)∥2L2(Ω) 6

6
∫ s

0

∥f(t)∥2−dt+ (2c2 + 2c21)

∫ s

0

∥uk∥2L2(Ω)dt.
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Since the sequence {uk(0)} seeks to u0 with k → ∞ strongly in L2(Ω), it follows from Gronwall
type lemma (see [18] or [19]), that

∥uk(s)∥2L2(Ω) 6
(
∥u0∥2L2(Ω) +

∫ T

0

∥f(t)∥2−dt

)
e(2c2+2c21)s.

Hence

sup
s∈[0,T ]

∥uk(s)∥2L2(Ω) 6
(
∥u0∥2L2(Ω) +

∫ T

0

∥f(t)∥2−dt

)
e(2c2+2c21)T . (26)

The right side of (26) independent of k, therefore the sequence {uk(t)} is bounded in
L∞(0, T ;L2(Ω)). Then there is a subsequence {uk′(t)} of the sequence {uk(t)} and an ele-
ment u(t) ∈ L∞(0, T ;L2(Ω)) such that uk′(t) → u(t) in the weak-* topology of L∞(0, T ;L2(Ω)),
namely

lim
k′→∞

∫ T

0

(uk′(t)− u(t), v(t))L2(Ω)dt = 0 (27)

for all v ∈ L1(0, T ;L2(Ω)).
Integrating again (25) by t from 0 till T and applying Gronwall type lemma we have

1

2

∫ T

0

∥uk(t)∥2+dt+ ∥uk(T )∥2L2(Ω) 6

6
(
∥u0∥2L2(Ω) +

∫ T

0

∥f(t)∥2−dt

)
e(2c2+2c21)T .

(28)

It means that the sequence {uk(t)} is bounded in L2(0, T ;H+(Ω)). In particular, the sequence
{uk′(t)} is bounded in L2(0, T ;H+(Ω)) too. Hence there is a subsequence {uk′′(t)} of the se-
quence {uk′(t)} and an element ũ(t) ∈ L2(0, T ;H+(Ω)) such that uk′′(t) → u(t) in the weak
topology of L2(0, T ;H+(Ω)),

lim
k′′→∞

∫ T

0

(uk′′(t), v)+ dt =

∫ T

0

(u(t), v)+ dt (29)

for all v ∈ L2(0, T ;H+(Ω)) and

lim
k′′→∞

∫ T

0

< uk′′(t)− ũ(t), v(t) > dt = 0 (30)

for all v ∈ L2(0, T ;H−(Ω)). In particular

lim
k′′→∞

∫ T

0

(uk′′(t), v(t))L2(Ω)dt =

∫ T

0

(ũ(t), v(t))L2(Ω)dt (31)

for all v ∈ L2(0, T ;L2(Ω)).
From (27) and (31) we have∫ T

0

(u(t)− ũ(t), v(t))L2(Ω)dt = 0 (32)

for all v ∈ L2(0, T ;L2(Ω)). Hence

u(t) = ũ(t) ∈ L∞(0, T ;L2(Ω)) ∩ L2(0, T ;H+(Ω)). (33)
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From now on we denote by {uk(t)} the subsequence {uk′′(t)}.
Let now ψ(t) be a scalar differentiable function on [0, T ] such that ψ(T ) = 0. Multiplying

(17) by ψ(t) and integrating by t we get

∫ T

0

(uk(t), hj)+ψ(t) dt+

∫ T

0

(( m∑
l=1

ãl(x)Dl + δa0

)
uk(t), hi

)
L2(Ω)

ψ(t) dt+

+

∫ T

0

(
∂uk(t)

∂t
, hi

)
L2(Ω)

ψ(t) dt =

∫ T

0

< f(t), hj > ψ(t)dt. (34)

However∫ T

0

(
∂uk(t)

∂t
, hi

)
L2(Ω)

ψ(t) dt = −
∫ T

0

(uk(t), ψ
′(t)hj)L2(Ω) dt − (uk(0), hjψ(0))L2(Ω), (35)

and it follows that∫ T

0

(uk(t), hjψ(t))+ dt+

∫ T

0

(( m∑
l=1

ãl(x)Dl + δa0

)
uk(t), hi

)
L2(Ω)

ψ(t) dt−

−
∫ T

0

(uk(t), ψ
′(t)hj)L2(Ω) dt = (uk(0), hjψ(0))L2(Ω) +

∫ T

0

< f(t), hj > ψ(t)dt. (36)

Now we want to go to the limit in (36) with k → ∞. It follows from 9, that∫ T

0

(( m∑
l=1

ãl(x)Dl + δa0

)
uk(t), hi

)
L2(Ω)

ψ(t) dt

is continuous linear functional on L2(0, T ;H+(Ω)). Since uk(t) → u(t) with k → ∞ in the weak
topology of L2(0, T ;H+(Ω)), we have

lim
k→∞

∫ T

0

(( m∑
l=1

ãl(x)Dl + δa0

)
(uk(t)− u(t)), hi

)
L2(Ω)

ψ(t) dt = 0.

From (31), (29), (33) and the fact that uk(0) → u0 strongly in L2(Ω) with k → ∞ we get

∫ T

0

(u(t), hjψ(t))+ dt+

∫ T

0

(( m∑
l=1

ãl(x)Dl + δa0

)
u(t), hiψ(t)

)
L2(Ω)

dt−

−
∫ T

0

(u(t), ψ′(t)hj)L2(Ω) dt = (u0, hjψ(0))L2(Ω) +

∫ T

0

< f(t), hj > ψ(t)dt. (37)

As the system {hj}j=1,2,... is dense in H+(Ω) and L2(Ω), equality (37) holds by linearity and
continuity for all v ∈ H+(Ω),

∫ T

0

(u(t), v)+ψ(t) dt+

∫ T

0

(( m∑
l=1

ãl(x)Dl + δa0

)
u(t), v

)
L2(Ω)

ψ(t) dt−

−
∫ T

0

(u(t), v)L2(Ω) ψ
′(t) dt = (u0, v)L2(Ω)ψ(0) +

∫ T

0

< f(t), v > ψ(t)dt. (38)
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In particular, if we take by ψ(t) differentiable functions with compact support in (0, T ), we get

(u(t), v)+ +

(( m∑
l=1

ãl(x)Dl + δa0

)
u(t), v

)
L2(Ω)

+
d

dt
(u(t), v)L2(Ω) =< f(t), v > (39)

in the sense of distributions. Now we have to show that u(0) = u0. Indeed, multiplying (39) by
ψ(t) and integrating by parts we get

∫ T

0

(u(t), v)+ψ(t) dt+

∫ T

0

(( m∑
l=1

ãl(x)Dl + δa0

)
u(t), v

)
L2(Ω)

ψ(t) dt−

−
∫ T

0

(u(t), v)L2(Ω) ψ
′(t) dt = (u(0), v)L2(Ω)ψ(0) +

∫ T

0

< f(t), v > ψ(t)dt.

Comparing it with (38) we get

(u(0)− u0, v)L2(Ω)ψ(0) = 0

for all v ∈ H+(Ω). Taking ψ(0) ̸= 0 we receive u(0) = u0.
The continuity follows from (15).

Corollary 5. Under the hypothesis of Theorem 2, the Problem 3 has one and only one solution
u(t) ∈ C(0, T ;L2(Ω)), if

Re

((( m∑
l=1

ãl(x)Dl + δa0

)
v, v

)
L2(Ω)

)
> 0 (40)

for all v ∈ L2(0, T ;H+(Ω)).

Proof. The existence of the solution follows from the Theorem 4. Let us now show, that the
solution is unique, if the condition (40) and the hypothesis of Theorem 4 are fulfilled. Indeed,
let v ∈ L2(0, T ;H+(Ω)) is another solution of Problem 3. Denote by w = u− v. Then w satisfies
conditions of Problem 3 and

(w, v)+ +

(( m∑
l=1

ãl(x)Dl + δa0

)
w, v

)
L2(Ω)

+
d

dt
(w, v)L2(Ω) = 0

for all v ∈ H+(Ω), and w(0) = 0. It follows from (13), that

∂w

∂t
+ Lw = 0.

Multiplying scalar it by w we have

∥w∥2+ +

(( m∑
l=1

ãl(x)Dl + δa0

)
w,w

)
L2(Ω)

+

(
∂w

∂t
, w

)
L2(Ω)

= 0.

As the ∥w(t)∥2+ is a real-valued function, therefore

∥w∥2+ +Re

((
∂w

∂t
, w

)
L2(Ω)

)
+Re

((( m∑
l=1

ãl(x)Dl + δa0

)
w,w

)
L2(Ω)

)
= 0.
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On the other hand,

Re

((
∂w

∂t
, w

)
L2(Ω)

)
=

1

2

d

dt
∥w∥2L2(Ω).

It follows from (40), that

2Re

((
∂w

∂t
, w

)
L2(Ω)

)
=

d

dt
∥w∥2L2(Ω) 6 0

and
∥w(t)∥2L2(Ω) 6 ∥w(0)∥2L2(Ω) = 0,

hence w(t) = 0 for almost all t ∈ [0, T ], that completes the proof.

As we already mentioned, the embedding H+(Ω) into H1/2−ε(Ω) is rather sharp. Let us
show, that the space L2(0, T ;H+(Ω)) can not be continuously embedded into L2(0, T ;Hs(Ω))

for all s > 1/2.

Eexample 6. Let Ω be a unit sphere in C, matrix A(x) has a form

A(x) = (aij(x))i=1,2
j=1,2

=

(
1

√
−1

−
√
−1 1

)
,

S = ∅, al = 0 for l = 0, 1, . . . ,m, and b1 = b0 = 1. Then the series

uε(z, t) =

∞∑
k=0

zktk/2

T (k+1)/2(k + 1)ε/2
,

ε > 0, converges in L2(0, T ;H+(Ω)) and

∥uε∥2L2(0,T ;H+(Ω)) = ∥uε∥2L2(0,T ;L2(S)) = 2π

∞∑
k=0

1

(k + 1)1+ε
.

According to [20, Lemma 1.4]∥∥∥uε∥∥∥2
L2(0,T ;Hs(B))

> π

∞∑
k=0

k2s−1

(k + 1)1+ε
, 0 < s 6 1.

It means, that for each s ∈ (1/2, 1) there exist ε > 0 such that uε ̸∈ L2(0, T ;Hs(B)). Hence, the
space L2(0, T ;H+(B)) can not be continuously embedded into L2(0, T ;Hs(B)) for all s > 1/2.

The work was supported by the Foundation for the Advancement of Theoretical Physics and
Mathematics "BASIS".
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О начально-краевой задаче для параболического
дифференциального оператора с некоэрцитивными
граничными условиями

Александр Н. Полковников
Сибирский федеральный университет

Красноярск, Российская Федерация

Аннотация. Мы рассматриваем начально-краевую задачу для равномерно 2-параболического
дифференциального оператора второго порядка в цилиндрической области в Rn с некоэрцитив-
ными граничными условиями. В отличие от коэрцитивного случая в данной ситуации происходит
потеря гладкости решения в пространствах соболевского типа. Пользуясь методом Галеркина, мы
доказываем, что проблема имеет единственное решение в специальных пространствах Бохнера.

Ключевые слова: некоэрцитивная задача, параболическая задача, метод Галеркина.
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