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Abstract. Estimate for Fourier transform of surface-carried measures supported on non-convex surfaces
of three-dimensional Euclidean space is considered in this paper.The exact convergence exponent was
found wherein the Fourier transform of measures is integrable in tree-dimensional space. This result
gives an answer to the question posed by Erdésh and Salmhofer.
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1. Introduction and preliminaries

Let S C R3 be a smooth surface and ¢ € C§°(S) be a smooth function with compact
support on S. Consider the measure du = 1»do, where do is the surface-carried measure. Fourier
transform of the measure is defined by:

A(e) = /S D) gy,

It is well-know that /i is an analytic function.

In this paper the following problem is considered: find v := inf{p : 4 € LP(R®)}. This
problem has a long history [1,2]. Recently L. Erdés and M. Salmhofer [2] considered the problem
for partial class of non-convex surfaces in R3. The main class of such surfaces was level set of
dispersion relation of discrete Schrédinger operator on the lattice Z3. It should be noted that
the phase function of the corresponding oscillatory integrals has singularities of type Ay, As, As
or Dy. In particular, except the case D, one of the principal curvatures does not vanish at every
point. The case Dy type singularities was excluded in [2]. A more general class of hypersurfaces
for which the Gaussian curvature has only simple roots was considered [3]. However, it was
assumed that only one of the principal curvatures can vanish. The case when both principal
curvatures vanish at a point of the surface in R? is still one of the open problems.

We consider the problem for hypersurfaces in R3. More precisely it is assumed that the phase
function (7, w)|s (where w € S? is the unite sphere centred at the origin) is small perturbation of
the so-called D, type singularity (see [4] for definitions and basic properties of such singularities).
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It is shown that in this case v = 3. It can be shown that for any hypersurface S C R3,
i ¢ LP(R3) for p < 3, whenever Supp(u) # 0.

The main result is the following.
Theorem 1.1. Let S be an analytic hypersurface in R3. If S has Dy type singularities at the
origin then there exists a neighborhood U of the origin such that for any ¢ € C3°(U) the inclusion
f € LP(R3) holds for any p > 3.

Moreover, if S is any smooth surface in R? and (0, 0) # 0 then i ¢ L3(R3).

The paper is organized as follows. In Section 2 the problem for the model case is considered.
In this case the result is obtained with the use of simple methods. The Section 3 is devoted to
special function with D, type singularity at the origin.

In Section 4 the general case is considered. Main theorem is proved in Section 5.

2. Model case D,

Let us consider a measure supported on hypersurface x3 = x123. The singularity of that
function is called to be D, type singularity at (0,0). The Fourier transform of the measure can
be written as

fle) = [ etemiemendy, s,
R

where 91 (21, 12) = (21, 22, 1123)/ /1 + 25 + da3x2.

Following B. Randol [3], we define the following maximal function:

M(w) = supr|f(rw),

r>0

where r = |¢| and w € S?, 2 is the unite sphere centred at the origin.

Let us note that (&) = O(|¢|™V) (as |¢] — oo) provided |¢3] < max{[&],[&2|} and 7 is a
smooth function concentrated in a sufficiently small neighbourhood of the origin [5]. It is also
assumed that |€5| > max{|&1], |€2|}. Let us consider the associated oscillatory integral

J@@z/émWWMwm
R2

where ®(z, s) = 2123 + $171 + S22, A = &3, 85 = g, ji=12.

One can define the Randol type maximal function [3| associated with the oscillatory integral
J(A\, s) as
M(s) = sup |A|[J(A, 9)|.
A#£0

Now, the following statement is proved.
Theorem 2.1. The inclusion M € L} °(R?) holds true.

Taking into account that v has a compact support and using integration by parts, the integral

Jl()‘aslaxQ):/ei)\wl(wg—‘r(gl)w(ml?mQ)dxl
R

can be estimated by

C”d’”ﬁ

J1(A, s1,22)| < .
R VI EE
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Consider the following integral

Jl()\,Sl) :/ de
R

1+ [M2|23 + s1]2°

First, we prove the auxiliary statement.

Lemma 2.1. The following estimate holds true:

Cc

[T sl <
[Al]s1]2

Proof. First consider the case Alsi| < 1. If s; = 0 then there is nothing to prove. Let us assume
that s; # 0. In this case we use change of variables x5 = |s1|2y and obtain

1 dyo
JY\, 51) = |s %/ .
Aos) =11l | TR P2 1 senGP

For the sake of definiteness we assume that sgn(s;) = —1, e.g. s; < 0. Actually the case
sgn(s1) = 1 or equivalently s; > 0 is much more easy to prove. Thus, we have
1 dy>
J(A, s1) = |s1|2 / .
Ao =l T R 1P

It is easy to see that the following estimate

dy2 1
_W2 sy}
/ -1 < Pl

[As1]ly3—1]>1

dya dys
2 - 2 2 -
lys — 1 y; —1

holds. Indeed

‘y%_1|>>\i1 Y2 > 1+Mé1\
[ Ga-am)m-nis]
= —_ y2 = =
y2—1 y2+1 Y2+ 1 o
e

1
T+ o+l 1 1
=ln|—— | =In (| Xs1]{ 2+ — + 241+ — ] | =
1_,_\)\1 -1 ‘)\81| |)\$1|

=1In (1+2As1] 4+ 2v/|As12 4 [As1]) < 2[As1] + 2¢/[As1]? + [As1| =
= VPV P+ 2V/TF Porl) < Vst +2v3) = ey/Phsi]

for [As1| < 1. An analogical estimate holds true for [As1| < 2.

Also p{ys : |As1]ly3 — 1] < 1} < (M% Hence the inequality
S11)2

c

[J(A, 51)] < ;
Als1]?

holds true provided A|s;| < 2.
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Now, we consider the case |As1| > 2. In this case, we have

/ dyo _c
[As1[?lys — 117 |Asef*

ly3—1|>1

It is easy to see that the following estimate

dya
2 2
‘?Jz - 1|
1>[y3—1|>[As1|?

< | As]

holds. Indeed, using symmetry of arguments, the last integral can be estimated as

dyQ dy2
————— <2 <
/ lys =112 / ly2 — 1[2[y2 + 1|2
12[y5—1|>[As1| 72 ly2—1|>|As1| 1
dy dy
<2 1P _21|2 <4 ﬁ = 4Asq].
ly2—1[>[Xs1| 71 ly2a—1|>|As1|—1

On the other hand the inequality u{ya : [y3 — 1| < [As1]7'} < ¢|As1|7! holds true for the
measure of the set {y : |[y3 — 1| < |As1|~!}. Hence we obtain

PACHOIIES -
Alsi]2

Lemma is proved. O
Tt is easy to see that the oscillatory integral J(A, s) can be estimated as follows:

N

IO 9) </ O\, 5, )| da,
N

where the number N is
N = max{|za| : there exist x1, such that (z1,22) € Suppe}. (1)

Hence
[T(A,8)| < cll@lle2| TN, ).

Consequently, it follows from the Lemma that

0y s)) < Ml
Al

because 9 has a compact support. If |s| > m, where m is a big positive number depending on
the support of ¢, then the phase function has no critical point. Hence we can use integration by
parts and obtain

c
A 8) < —.
J( ’S) )\|8|
Therefore we have
c o0
X{Js|>m}(8)M(s) < W © L®(R*\B(0,m)), (2)
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where B(0,m) is the ball of radius m centred at the origin, and X{|s|>m} 18 the indicator function
of the set {|s| > m}. Let us denote the indicator function of the set A by x4, e.g., xa(z) =1
for z € A otherwise xa(x) = 0.

The relation (2) suggests that it is sufficiently to consider the oscillatory integral and the
associated maximal function on the set {|s| < m}. Let us assume that x = 2° € Supp (¥) is a
critical point, and s = s® € B(0,m) is a fixed point. If x¢ is not a critical point of the phase
function ®(x, s") then one can use integration by parts and obtain better estimate than needed.
Equations for critical points are

(29)* + 50 =0, 22929 + s =0.

Let us assume that s3 # 0. Then 2929 # 0. Hence z{ # 0 and also 29 # 0, s # 0. Let us
consider the integral

POs) = [N p(a)y(a)da,
RQ

where y is a smooth cut-off function defined in a sufficiently small neighbourhood of z° and s is
close to s°. One can use stationary phase method in two variables because

Hess®(2?,5%) = —4(2§)% # 0.

Therefore for |s — s°| < e we have the estimate

X8l < 5

A
provided x is a smooth function defined in a sufficiently small neighbourhood of 0. If 20 is
not a critical point then one can use integration by parts and obtain the same type of estimate
(even better estimate than needed). Hence M(s) is a bounded function in V(s°), where V (s°)
is a sufficiently small neighbourhood of s° # 0. Let us consider the case when s° = 0, e.g., when
s belongs to a sufficiently small neighbourhood of the origin. This case will be considered in the
next section.

3. Case {|51|% > [so]}

Then trivial estimate for J(\, s) is

c c
(A, 8)] < <
sl [Ml]sa]3 [so|3
1
and the estimate is obtained because W € L379(V), where V is a bounded neighbourhood
S1|3|s2|3

of the origin.
Let us assume that |sa| > |s1]2.
Let us consider the one-dimensional integral

JQ()\,S2,$1):/eM(wlwgﬂzm)lD(xl,$2)d$2~
R

If |Az1| < 1 then we have the trivial estimate

|J2(A, 52,I1)|d£€1 g C|/\‘71.

(0,A71]
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Hence we may assume |[Az1| > 1. If [Az1] > 1 and |z1]| < |s2| then the phase function has no

critical point on the support of ¥ provided N < ok where N is defined by relation (1). Then one

can use double integration by parts and obtain

cl[y|lca
Jo (A < .
| 2( ,32,$1)| |>\$1|2
Therefore
[ Ja(N, sz, 21)|dzy < C”rﬁ'f@.

[0,]s2]]
Finally, let us suppose that |z1]| > |s2|. Then we use stationary phase method in x5 and obtain

2
%2 89
Jo (N, 82, = Toq ( ,7—> R(\ x1, s2).
2(A, 52, 21) \)\xl\%e Y@ 52, + R(\, 1, 52)
For the remainder term R(A,x1,s) we have |R(A z1,82)] < % Then
1+|)\.’IJ1|§

J IR\, @1)|dzy < ﬁ Thus, it is sufficiently to consider the integral

) 2
1/\32(—4;1 +§7;x1)

e S9
JNs)= | —m8 —— ——= )dz;.
14 9) /R \x1|% 1/}(3317 2:171) 1

If |As3] < 1 then we have |J;| < Hence we assume |As3| > 1. Let us estimate the

c
R
integral

ixs2(— -1 ystoyp(wy, — 22
Jf()\7s) :/ el 32( 4wy s%ajl)Mdml.
Ry

xT

o=

Using the change of variables z1 = y?, we obtain

iAs2(— L5 +o1y?
J1+()‘v‘9) = 2/ € 2 4y%+ lyl)w(yi_ﬁ)dylu

R, 2y3

S
where o1 := —;
55
The phase function has no critical points provided 1 is a smooth function defined in a suffi-
ciently small neighbourhood of the origin so one can use integration by parts.
Thus, we obtain

| J1(A, 8)] <
Let us show that

X{‘Sl‘gsg} c L370(V)
S9 '

/1 ds2 /S2ds —/1 ds < 400
452 L= _ @52 )
o Is2/” Jo o |s2[P2

Combining the obtained estimates for the Rendol maximal function for oscillatory integral,

Indeed for p < 3 we have

we obtain

X{js1/>s3}(8) N X{sézsu}(s))
|81|% |82 '

M(S) < c(

Since M € L}, °(R?) our consideration is completed.
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4. The general case

The following proposition holds true.
Proposition. Let us assume that ®(x1,z2) has D, type singularity at the origin
O(x1,12) = z122 + R(z1, 22),
where R(z1,72) = O(|z|?).
Then there exist analytic functions ¢, and b such that function ¢ can be written as
O(a1,22) = b(wr, w2) (21 — p(2)) (w2 — (1)),
where (0) = ¢'(0) = 0, $(0) = ¥/(0) = 0, b(0,0) # 1 (see [2] and [6]).
Let us assume that 1(z1) = 27 (z1), ¥(0) # 0 and o(z2) = 252@(22), $(0) # 0. Then
®(x,5) = b(x1,x2) (21 — p(x2)) (w2 — P(21))? + 5121 + 590,
Using the change of variables
z1 —p(x2) — 21, T2 —Y(T1) — T2,

we obtain
O(z,s) = b(wr, z2)w12 + s1(x1 + (22)) + s2(w2 + Y(21)).
Let D be the annulus D = {1 < |z < 2} and Supp x C D with x € C*°(D) satisfying

oo

Z x(252) =1 for x #0, |z] << 1.

K=K

Then we have

) :/a(th)ez‘/\%(m,s)dx: Z /a(xhSEQ)X(Q%x)ei’\‘pl(f”’s)dm.

K=K0o
Let
J = /a(xl,x2)x(2%x)ei/\%(“"’s)dx.

Let us use scaling 25z — x and obtain
J,=2"7% a(2752)x(x)e? V@) gy
U(z,s) =b2 5x)w x2 + 2%31@1 + a2 5= D 5978 1))+

+ 2%32(332 + x’f12_%(m1_1)1ﬁ(2_%x1)).

Note that 2 € D. If [2% s,| >> 1 or |25 s5| >> 1 then using integration by parts, we obtain

‘JKI <c 25 prs :
[A277[([27 s1] + 2% |s2])

/ 25Pds
(2% 51|+ 2% |sal)?’
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After the change variable 2% s = o we have

/ om—4 40 _ xp-a) / o _550-4),
o] |of? :
|o|>1 |o|>1

K 2K
. - 23X|273 5]
Thus, if p < 4 then the series > — o
K=K0 |2T51| + 2% |52|
Now, we use compactness arguments.
Let us assume that 0 = 0® # 0 and (29, 29) is a critical point of the phase function.

Then @, (x,0) can be considered as a small perturbation of the function

converges in LP. Let 2% s = o and lo| < 1.

® = b(0,0)z122 + 0%z, + 0o,
where (z1,22) € D. If (69,09) # (0,0) then 23 # 0. Hence

0 229

2 (0272
209 2x0 V(0,0 = —48)*(0,0) £ 0.

Hess® = ’

Then we can use stationary phase method in two variables and obtain

C

EAIES
A

in a neighbourhood of ¢°.

Finally, let us consider the case when (09, 0f) = (0,0). Since (z1,72) € D, then 3 = 0 and
29 #0. Thus 29 ~ 1.

K

b(28 x)z 22 4 oy (251278 (M2 D275 10)) 4 ooy,
2y =—-—g(27 53,27 50m Vo)

Using stationary phase method in x9, we obtain oscillatory integral with phase g(0,0) # 0.

2 -~ s
O, (0,21) 1= 40—26*(2*%:01, 2*%(’”271)01) + o1y 4 o927 5 M2V (278 1))
T
x1 ~ 1, 03 ~ 027 5m2m 125 M=)y 1,
Let us consider the following one-dimensional oscillatory integral

Je(A o) = —z/ei’\zfﬁ‘b"(”’“)a(xl)dxl
2

2
A
R
where [A277| > 1.
We prove the following Lemma.

Lemma 4.1. Let 2§ # 0 be a fized point. Then there exist a cut-off function x supported in a
neighborhood of 9, kg, co, ¢ such that for any k > ko the following estimate holds true:

17X] < 230( 1 Xlall<ca§(01’o2)l>.
1

A2z

0|5 02|35 |oa|Z|o1 — cood
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Proof of the Lemma follows from the results presented in [7]. It is easy to see that for any
p<3 Vg€ Ll (R?), where

loc

! 201,02
\110(0—130—2) = X|01|<caz( )

oldoalt  foallor — cooB|i
Corollary. There exists kg such that for any x > kg the following estimate holds true:

U(oy, 02)2%

Je(A\,0)| <
1) < H

)

where ¥ € L3°(R). The following theorem holds true.

loc

Theorem 4.1. Let s be an analytic hypersurface such that it has Do type of singularity at the
origin. Then there exists a neighbourhood U C R3 such that for any ¥ € C§°(U), M € L37°(S5?).

5. Summation of the Fourier transform of measures
Let S be an analytic hypersurface and
dp = P(x)dS.
We prove the following Theorem.

Theorem 5.1. Let S be an analytic hypersurface. If S has Dy type of singularity at the origin
then there exists a neighbourhood U of the origin such that for any ¥ € C§°(U) the inclusion
it € LP(R3) holds for any p > 3.

Proof. Tt is well known that there exists a neighbourhood U of the origin such that for any
U € C5°(U) the following estimate holds true (see [8])

c
(1+1¢D)?
According to Theorem 4.1, there exists a function ¥(w) € L379(s?) such that

u(6)] < (3)

Y(w)
L+7) @)
r)
Let p > 3 be a fixed number. Let us take ¢ < 3. We interpolate estimates (3) and (4) and
obtain

la(rw)| < (

ldp(rw)| < —— =W (w)?.

(1+7r)z+h
If p > 3 one can choose a and 3 such that p(% + 5) > 3 and pf < 3.
For instance, we take a sufficiently small positive number § > 0 and set 5 = =9 and
a= ]%;’_5 Then it is easy to see that
[wtere<e [T Tl [ @ < o
R? 0o (1+2)EH0P Jg
Theorem 5.1 is proved. O
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LP-ontenku mmpeodbpazoBanus Pypbe MOBEPXHOCTHBIX Mep,
COCP€/IOTOYEHHBIX HA TMIIEPIOBEPXHOCTIAX C OCOOEHHOCTBHIO
tuna D,

Huruna A. CojeeBa
CaMapKaHICKUH rOCYIapCTBEHHBII yHUBEPCUTET
Camapkanj, Y3bekucran

Amwnnorarnusi. B a70it ctaThe paccMaTpuBaoTCs OleHKH TpeobpasoBanus Pypbe Mep, COCPEIOTOUEHHBIX
Ha HEBBIIYKJIBIX IOBEPXHOCTIX TPEXMEPHOI'O €BKJIMIOBA TPOCTPAHCTBA. M bl HAIEM TOYHBIHM TOKO3aTE b,
J71sl KOToporo npeobpasoBanne Oypbe Mep ¢ ITON CTENEHbI0 NHTEMPUPYEMO TI0 TPEXMEPHOMY MIPOCTPAaH-
CTBY. DTOT Pe3y/bTaT JAeT OTBET HA BOIIPOC, MOCTaBIEeHHBIN DpmomeM u Cammxodepom.

KuaroueBrnle cioBa: npeobpazoBanne Pypbe, OCIUIISTOPHBIN HHTErpaJs, IOBEPXHOCTHAS MepPa.
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