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1. Introduction and preliminaries

An AG-groupoid S is in general a non-associative groupoid that satisfies the left invertive
law,

(ab)c = (cb)a ∀a, b, c ∈ S. (1.1)

It is called medial if satisfies the medial property, (ab)(cd) = (ac)(bd)∀a, b, c, d ∈ S. It is easy
to prove that every AG-groupoid is medial [1]. An AG-grouoid is called an AG-monoid if it
contains the left identity element. Every AG-monoid is paramedial [2], i.e., it satisfies the identity,
(ab)(cd) = (db)(ca). Recently many new classes of AG-groupoids have been introduced by various
researchers [3–9]. These new classes are studied in a variety of papers like for instance [10–15].
AG-groupoid is a vast field of algebra that can have almost all concepts of other algebraic
structures with different characteristics and properties. A rapid research in this area can be
seen on various aspects in a couple of years. AG-groupoids have a range of applications in
flocks theory [1], geometry [16], topology [17], matrices [18] and in finite mathematics [19]. The
structure of AG-groupoid has been strengthen by AG-rings [20, 21]. Recently many varieties of
ideals, Γ-ideals, bi-ideals prime ideals, semiprime ideals and quasiprime ideals have also been
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defined and investigated by various researchers [22–25]. Fuzzification of AG-groupoids [26, 27]
and other relevant concepts have also made the field interesting and valuable. All this have
attracted a considerable researchers to investigate and enhance the area.

A groupoid G is called left (resp. right) commutative groupoid if G satisfies the identity
(ab)c = (ba)c (resp. a(bc) = a(cb)) ∀ a, b, c ∈ G [28]. In this article, we extend the concept
of these groupoids to introduce new classes of AG-groupoids as left commutative AG-groupoid
or shortly an LC-AG-groupoid, a right commutative AG-groupoid or an RC-AG-groupoid, and
a Bi-commutative AG-groupoid or BC-AG-groupoid. In Section 2, we properly define these
notions and list some non-associative examples of these AG-groupoids to show their existence.
In Subsection 2.1 and 2.2 we provide a method to verify an arbitrary AG-groupoid for LC-AG-
groupoid and RC-AG-groupoid. We use the GAP software [29] and the relevant data of [29]
to enumerate these new classes of AG-groupoids up to order 6. We discuss the enumeration
of these AG-groupoids in Section 3. In Section 4, we define and characterize ideals of these
AG-groupoids, while in Section 5, we investigate some basic properties of these AG-groupoids
and establish their relations with some of the already known AG-groupoids. We list these known
subclasses of AG-groupoids with their defining identities in Tab. 1, that arise in various papers
like, [16, 18,19] and are used in the rest of this article.

Table 1. AG-groupoid with their defining identities

AG-groupoid satisfying identity
Left nuclear square AG-groupoid a2 · bc = a2b · c

Middle nuclear square AG-groupoid ab2 · c = a · b2c
Right nuclear square AG-groupoid ab · c2 = a · bc2

T1-AG-groupoid ab = cd ⇒ ba = dc
Medial AG-groupoid ab · cd = ac · bd

Paramedial AG-groupoid ab · cd = db · ca
Flexible -AG-groupoid ab · a = a · ba

AG-3-band a · aa = aa · a = a
Left alternative AG-groupoid aa · b = a · ab

Self-dual AG-groupoid a · bc = c · ba
AG∗-groupoid ab · c = b · ac
AG∗∗-groupoid a · bc = b · ac

2. Bi-commutative-AG-groupoids and Bi-commutative
AG-test

We extend the concept of bi-commutativity of groupoid [28] to AG-groupoid and introduce
the following subclasses of AG-groupoids.

Definition 1. An AG-groupoid S is called

1. – a left commutative AG-groupoid (LC-AG-groupoid) if ∀a, b, c ∈ S,

(ab)c = (ba)c (2.1)

2. – a right commutative AG-groupoid (RC-AG-groupoid) if ∀a, b, c ∈ S,

a(bc) = a(cb) (2.2)
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3. – a bi-commutative AG-groupoid (BC-AG-groupoid) if it is both LC-AG-groupoid and an
RC-AG-groupoid.

Example 1. Let S = {1, 2, 3, 4}. Then one can easily verify that:

(i) (S, ·) in table (i) is an LC-AG-groupoid of order 4 and satisfies Equation 2.1,

(ii) (S, ∗) in table (ii) is an RC-AG-groupoid of order 4 that satisfies Equation 2.2 and

(iii) (S, ◦) in table (iii) is BC-AG-groupoid of order 4 and satisfies both the properties of (2.1)
and (2.2).

· 1 2 3 4
1 1 1 3 3
2 1 1 4 3
3 3 3 1 1
4 3 3 1 1

∗ 1 2 3 4
1 1 1 1 1
2 1 1 1 3
3 1 1 1 1
4 2 2 2 1

◦ 1 2 3 4
1 1 2 2 2
2 2 1 1 1
3 2 1 1 1
4 3 1 1 1

The procedure of testing a groupoid for an AG-groupoid has been explained by P.V. Protic
and N. Stevanovic [24]. Here we also present a similar method to verify an arbitrary AG-groupoid
for LC and RC-AG-groupoids.

1. Left Commutative AG-groupoid Test
We describe a procedure to test whether an arbitrary AG-groupoid (G, ·) is an LC-AG-

groupoid or not. For this we define the following binary operations:

a ◦ b = (ab)x (2.3)
a ⋆ b = (ba)x (2.4)

Now (2.1) holds if

a ◦ b = a ⋆ b (2.5)

or

a ◦ b = b ◦ a (2.6)

To test whether an arbitrary AG-groupoid is an LC-AG-groupoid, it is necessary and suf-
ficient to check if the operation “ ◦ ” and “ ⋆ ” coincide ∀x ∈ G. To this end we check
the validity of Identity (2.1) or a ◦ b = a ⋆ b. In other words it is enough to check whether
the operation ◦ is commutative i.e. a ◦ b = b ◦ a. The tables of the operation “ ◦ ” for
any fixed x ∈ G is obtained by multiplying a fixed element x ∈ G by the elements of the
“ · ” table row-wise. It further gives the tables of the operation “ ⋆ ” if these are symmetric
along the main diagonal. Hence it could easily be checked whether an arbitrary AG-groupoid
is left commutative AG-groupoid or not. We illustrate this procedure with the following example.

Example 2. Check the following AG-groupoids (G1, ·) and (G2, ·) for an LC-AG-groupoid.

Table 2
· 1 2 3
1 1 1 1
2 1 1 1
3 2 2 2

Table 3
· 1 2 3
1 1 2 3
2 3 1 2
3 2 3 1
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We extend Tab. 2 in the way as described above. It is obvious that the tables constructed
for the operation “ ◦ ” on the right of the original table are symmetric about the main diagonal
and thus coincide with the “ ⋆ ” tables as required. Hence (G1, ·) is an LC-AG-groupoid. While
in extended table for Tab. 3 is not symmetric about the main diagonal and thus (G2, ·) is not an
LC-AG-groupoid.

(i)

· 1 2 3 1 2 3
1 1 1 1 1 1 1 1 1 1 1 1 1
2 1 1 1 1 1 1 1 1 1 1 1 1
3 2 2 2 1 1 1 1 1 1 1 1 1

Extended table for (G1, ·)

(ii)

· 1 2 3 1 2 3
1 1 2 3 1 3 2 2 1 3 3 2 1
2 3 1 2 2 1 3 3 2 1 1 3 2
3 2 3 1 3 2 1 1 3 2 2 1 3

Extended table for (G2, ·)

2. Right Commutative AG-groupoid Test

Now, we discuss a procedure to check an AG-groupoid (G, ·) for RC-AG-groupoid, for this
we define the following two binary operations:

a♡b = a(bx) (2.7)
a♢b = a(xb) (2.8)

Equation (2.2) holds if,

a♡b = a♢b (2.9)

For any fixed x ∈ G, re-writing x-row of the “ · ” table as an index row of the new table and
multiplying it by the elements of the index column to construct table of operation “♢”. These
extended tables are given to the right of the original table in the following example. Similarly
the table for the operation “♡” for any fixed x ∈ G is obtained by taking the elements of x-
column of the “ · ” table as an index row of the new table and multiplying it by the elements
of the index column of the original table to construct tables for the operation “♡”, which are
given downward in the extended table of the following example. If the tables for the operation
“♡” and “♢” coincides for all x ∈ G, then Equation (2.9) holds and the AG-groupoid is right
commutative-AG-groupoid in this case.

Example 3. Check the following AG-groupoid for RC-AG-groupoid.

· 1 2 3
1 1 1 1
2 1 1 1
3 2 2 2

Extend the above table in the way as described we get the extended form as follows:
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· 1 2 3 1 1 1 1 1 1 2 2 2
1 1 1 1 1 1 1 1 1 1 1 1 1
2 1 1 1 1 1 1 1 1 1 1 1 1
3 2 2 1 2 2 2 2 2 2 2 2 2

1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1
2 2 2 2 2 2 2 2 2

It is clear from the extended table that the tables for the operations“♡” and “♢” coincide
for every x ∈ G, so (G, ·) is an RC-AG-groupoid.

3. Enumeration of BC-AG-groupoids
Enumeration and classification of various mathematical entries is a well worked area of re-

search in finite and pure mathematics. In abstract algebra the classification of algebraic structure
is an important pre-requisite for their construction. The classification of finite simple groups
is considered as one of the major intellectual achievement of twentieth century. Enumeration
results can be obtained by a variety of means like; combinatorial or algebraic consideration.
Non-associative structures, quasigroup and loops have been enumerated up to size 11 using
combinatorial consideration and bespoke exhaustive generation software [30]. FINDER (Finite
domain enumeration) [31] has been used for enumeration of IP loops up to size 13 [32]. Associa-
tive structures, semigroups and monoids have been enumerated up to size 9 and 10 respectively
by constraint satisfaction techniques implemented in the Minion constraint solver with bespoke
symmetry breaking provided by the computer algebra system GAP [29]. The third author of
this article has implemented the same techniques under the guidance of A. Distler (the author
of [33–35]) to deal the enumeration of AG-groupoids using the constraint solving techniques
developed for semigroups and monoids.

Further, they provided a simple enumeration of the structures by the constraint solver and
obtained a further division of the domain into a subclass of AG-groupoids using the computer
algebra system GAP and were able to enumerate all AG-groupoids up to isomorphism up to
size 6. They also presented enumeration for various other subclasses of AG-groupoids.

It is worth mentioning that most of the data presented in [36] has been verified by one of the
reviewers of the said article with the help of Mace4 and Isofilter as has been mentioned in the
acknowledgement of the said article. All this validate the enumeration and classification results
for our bi-commutative AG-groupoids, as the same technique and relevant data of [36] has been
used for the purpose. Further, all the tables of size up to 3 have been verified manually for our
BC-AG-groupoids. In the following we describe the used algorithms with GAP commands for
enumeration of our subclasses of AG-groupoid.

Algorithm 1. GAP Function for Testing if S is an LC-AG-groupoid
InstallMethod (IsLCAGGroupoidTable, "for matrix,"
[IsMatrix]
function (ls),
local i, j, k;
if not IsAGGroupoidTable (ls) then
return false;
fi;
for i in [1..Length (ls)]do

for j in [1..Length (ls)] do
for k in [1..Length (ls)] do

if ls[ls[i][j]][k] <> ls[ls[j][i]][k] then return false;
fi;
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od;
od;

od;
return true;
end );

Algorithm 2. GAP Function for Testing if S is an RC-AG-groupoid
InstallMethod (IsRCAGGroupoidTable, "for matrix,"
[IsMatrix]
function (ls),
local i, j, k;
if not IsAGGroupoidTable (ls) then
return false;
fi;

for i in [1..Length(ls)] do
for j in [1..Length(ls)] do

for k in [1..Length(ls)] do
if ls[i][ls[j][k]] <> ls[i][ls[k][j]] then return false;
fi;
od;

od;
od;

return true;
end );

Tab. 4 presents the enumeration of BC-AG-groupoids of order 3 to 6.

Table 4. Enumeration of BC-AG-groupoids up to order 6

Order 3 4 5 6
Total AG-groupoids 8 269 31467 40097003
LC-AG-groupoids 6 194 22276 34845724
RC-AG-groupoids 2 52 1800 170977
BC-AG-groupoids 2 47 1558 150977

4. Ideals in LC-AG-groupoids and RC-AG-groupoids
In this section, we investigate ideals for LC and RC-AG-groupoids. We also characterize LC

and RC-AG-groupoids by the properties of their minimal ideals. We start with the following
definition and list some observations regarding ideals for LC and RC-AG-groupoids.

A subset A of the AG-groupoid S is a left (right) ideal of S if,

SA ⊆ A(AS ⊆ A), (4.1)

A is a two sided ideal or simply an ideal of S if it is both left and right ideal of S.

Remark 1 ([24]). If S is an AG-groupoid and a ∈ S, then by the Identity (1.1), it follows that:

(aS)S = ∪
x,y∈S

(ax)y = ∪
x,y∈S

(yx)a ⊆ Sa.

From this we conclude that (AS)S ⊆ SA.

Further we have the following remarks.
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Remark 2. If S is an AG-groupoid with left identity e and a ∈ S, then by the medial property
and Identity (2.2), it follows that:

S(aS) = ∪
x,y∈S

x(ay) = ∪
x,y∈S

(ex)(ay) = ∪
x,y∈S

(ea)(xy) ⊆ aS.

In general for any A ⊆ S we conclude that S(AS) ⊆ AS.

Remark 3. If S is an LC-AG-groupoid and a ∈ S, then by left invertive law and (2.1), it follows
that:

(Sa)S = ∪
x,y∈S

(xa)y = ∪
x,y∈S

(ax)y = ∪
x,y∈S

(yx)a ⊆ Sa.

Thus for any A ⊆ S we conclude that (SA)S ⊆ SA.

Remark 4. If S is an RC-AG-groupoid with left identity e and a ∈ S, then by left invertive law
and (2.2), it follows that:

S(Sa) = ∪
x,y∈S

x(ya) = ∪
x,y∈S

(ex)(ya) =

= ∪
x,y∈S

(ex)(ay) = ∪
x,y∈S

(ea)(xy) ⊆ aS.

Hence in general S(SA) ⊆ AS for A ⊆ S.

Remark 5. If S is an RC-AG-groupoid with left identity e and a ∈ S, then by medial law and
by Identity (2.1), it follows that:

(Sa)S = ∪
x,y∈S

(xa)y = ∪
x,y∈S

(xa)(ey) = ∪
x,y∈S

(xa)(ye) =

= ∪
x,y∈S

(xy)(ae) = ∪
x,y∈S

(xy)(ea) ⊆ Sa.

Thus (SA)S ⊆ SA for A ⊆ S.

Definition 2 ([24]). Let S be an AG-groupoid and A,B ⊆ S, than A and B are right (left)
connected sets if AS ⊆ B and BS ⊆ A (SA ⊆ B & SB ⊆ A).

Example 4. Let S = {1, 2, 3, 4} be an AG-groupoid given by the following table

· 1 2 3 4
1 1 1 1 1
2 1 1 1 1
3 2 1 1 1
4 2 1 2 1

Now and A = {1, 2, 3} and B = {1, 2, 4} be two subsets of S. Then clearly AS ⊆ B and BS ⊆ A
also SA ⊆ B and SB ⊆ A. Thus A and B are left and right connected and hence are connected.

Remark 6. If L is a left and R is a right ideal of an LC-AG-groupoid S, then by left invertive
law and Identity (4.1), we have

(LR)S = (SR)L = (RS)L ⊆ RL and (RL)S = (SL)R ⊆ LR.

It follows that LR and RL are right connected sets.

Proposition 1. Let S be an LC-AG-groupoid. Then for each a ∈ S the set a∪ aS and aS ∪ Sa
are right connected sets.
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Proof. If a ∈ S, then by Remarks (1) and (3), we have

(a ∪ Sa)S = aS ∪ (Sa)S ⊆ aS ∪ Sa,

also,

(aS ∪ Sa)S = (aS)S ∪ (Sa)S ⊆ Sa ∪ Sa ⊆ a ∪ Sa.

Hence the result follows.

Theorem 1. Let S be an LC-AG-groupoid. Then for each a ∈ S the set a ∪ aS ∪ Sa is right
ideal of S.

Proof. Let a ∈ S, then by Remarks 1–3, we have

(a ∪ aS ∪ Sa)S = aS ∪ (aS)S ∪ (Sa)S ⊆ aS ∪ Sa ∪ Sa

⊆ aS ∪ Sa ⊆ a ∪ aS ∪ Sa.

Hence (a ∪ aS ∪ Sa)S is right ideal of S.

Theorem 2. Let S be an RC-AG-groupoid with left identity e. Then for each a ∈ S the set
J(a) = a ∪ aS ∪ Sa is the minimal (two sided) ideal of S containing a.

Proof. By Remarks (2) and (4), we have

S (a ∪ aS ∪ Sa) = Sa ∪ S(aS) ∪ S(Sa) ⊆ Sa ∪ aS ∪ aS ⊆ Sa ∪ aS ⊆ a ∪ aS ∪ Sa.

Thus J(a) is a left ideal. Now again by Remarks (1) and (3), we have

(a ∪ aS ∪ Sa)S = aS ∪ (aS)S ∪ (Sa)S ⊆ aS ∪ Sa ∪ Sa ⊆ aS ∪ Sa ⊆ a ∪ aS ∪ Sa.

Thus J(a) is a right ideal, and hence it is a two sided ideal or simply an ideal of S. If J is an
ideal of S and a ∈ J , then

J(a) = a ∪ (aS ∪ Sa) ⊆ J ∪ (JS ∪ SJ) ⊆ J ∪ (J ∪ J) ⊆ J ⇒ J(a) ⊆ J.

Hence the result follows.

Theorem 3. If S is an RC-AG-groupoid with left identity e, then for a ∈ S the sets a(Sa) and
(aS)a are ideals of S. If a ∈ a(Sa) (resp. a ∈ (aS)a), then a(Sa) (resp. (aS)a) is a minimal
ideal generated by a. Further if a ∈ (a(Sa)∩ (aS)a), then (aS)a = a(Sa) and it is minimal ideal
generated by a.

Proof. If a ∈ S, then by the medial law, left invertive law and (2.2), we have

S (a(Sa)) = ∪
x,y∈S

x(a(ya)) = ∪
x,y∈S

(ex)(a(ya)) = ∪
x,y∈S

(ea)(x(ya)) =

= ∪
x,y∈S

a(x(ay)) = ∪
x,y∈S

a((ay)x) = ∪
x,y∈S

a((xy)a) ⊆ a(Sa).

Similarly, by paramedial, medial, left invertive laws and (2.2), we have

(a(Sa))S = ∪
x,y∈S

(a(xa))y = ∪
x,y∈S

(y(xa))a = ∪
x,y∈S

(y(ax))a =

= ∪
x,y∈S

(y(ax))(ea) = ∪
x,y∈S

(y(ax))(ae) = ∪
x,y∈S

(e(a)x)(ay) =

= ∪
x,y∈S

(ea)((ax)y) = ∪
x,y∈S

a((yx)a) ⊆ a(Sa).
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Hence, a(Sa) is an ideal of S. Now, again using the paramedial and left invertive laws and the
Identity (2.2), we have

S(((aS)a)) = ∪
x,y∈S

x((ay)a) = ∪
x,y∈S

x(a(ay)) = ∪
x,y∈S

(ex)(a(ay)) =

= ∪
x,y∈S

(ea)(x(ay)) = ∪
x,y∈S

(ea)((ay)x) = ∪
x,y∈S

(ea)((xy)a) =

= ∪
x,y∈S

(aa)((xy)e) = ∪
x,y∈S

(a(xy))(ae) = ∪
x,y∈S

(a(xy))(ea) =

= ∪
x,y∈S

(a(xy))a ⊆ (aS)a ⇒ S(((aS)a)) ⊆ (aS)a.

Similarly,

((aS)a)S = ∪
x,y∈S

((ax)a)y = ∪
x,y∈S

(ya)(ax) = ∪
x,y∈S

(ya)(xa) = ∪
x,y∈S

(yx)(aa) =

= ∪
x,y∈S

(e(yx))(aa) = ∪
x,y∈S

(a(yx))(ae) = ∪
x,y∈S

(a(yx))(ea)

⊆ (aS)a ⇒ ((aS)a)S ⊆ (aS)a.

Hence (aS)a and a(Sa) are ideals of S. If A is an ideal on S, then for every a ∈ A we have (aS)a ⊆
A and a(Sa) ⊆ A, clearly. If a ∈ A ∩ (aS)a (resp. a ∈ A ∩ a(Sa)), then (aS)a (resp. a(Sa)) is
a minimal ideal generated by a. If a ∈ A ∩ (aS)a ∩ a(Sa), then by minimality, it follows that
(aS)a = a(Sa). Clearly, for each a ∈ S it holds that (aS)a ⊆ Sa and a(Sa) ⊆ Sa.

5. Characterization of BC-AG-groupoids
In this section, we discuss the relations of BC-AG-groupoid with some already known sub-

classes of AG-groupoids. We start with the following results which proves that every AG∗-
groupoid is RC-AG-groupoid, but the converse is not always true as illustrated in Example 5.
The Example 6 also shows that every LC-AG-groupoid may not be an AG∗-groupoid.

Theorem 4. Every AG∗-groupoid is RC-AG-groupoid.

Proof. Let S be an AG∗-groupoid, and a, b, c ∈ S. Then

a(bc) = (ba)c = (ca)b = a(cb) ⇒ a(bc) = a(cb).

Hence S is RC-AG-groupoid.

Example 5. Let S = {1, 2, 3} be an RC-AG-groupoid with the following table. Then (S, ∗) is
not an AG∗-groupoid since (1 ∗ 1) ∗ 1 ̸= 1 ∗ (1 ∗ 1).

∗ 1 2 3
1 2 2 2
2 3 3 3
3 3 3 3

Example 6. Let S = {1, 2, 3, 4, 5, 6}. Then it is easy to verify that S is an AG∗-groupoid, but
not an LC-AG-groupoid as clearly, (1 ∗ 2) ∗ 1 ̸= (2 ∗ 1) ∗ 1.

∗ 1 2 3 4 5 6
1 3 4 5 5 5 5
2 3 4 6 6 5 5
3 5 5 5 5 5 5
4 6 6 5 5 5 5
5 5 5 5 5 5 5
6 5 5 5 5 5 5
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Now, we prove the following:

Theorem 5. Every LC-AG∗-groupoid is a semigroup.

Proof. Let S be an LC-AG∗-groupoid, then for every a, b, c ∈ S

ab · c = ba · c = a · bc ⇒ ab · c = a · bc.

Thus S is semigroup.

The converse of the above theorem is not true as shown in the following example.

Example 7. Let S = {1, 2, 3, 4, 5, 6}. Then (S, ∗) with the given table is a semigroup. Clearly S
is neither LC-AG-groupoid nor AG∗-groupoid as, (0∗1)∗0 ̸= 1∗ (0∗0) and (0∗1)∗0 ̸= (1∗0)∗0.

* 0 1 2 3 4 5
0 2 3 2 2 5 2
1 4 2 2 2 2 2
2 2 2 2 2 2 2
3 5 2 2 2 2 2
4 2 2 2 2 2 2
5 2 2 2 2 2 2

An element a of an AG-groupoid S is called left cancellative if ab = ac ⇒ b = c, right
cancellative and cancellative elements are defined analogously.

Theorem 6. Let S be an LC-AG-groupoid. Then S is a commutative semigroup if it has a right
cancellative element.

Proof. Let x be a a right cancellative element of an LC-AG-groupoid S, and a, b ∈ S. Then

(ab)x = (ba)x ⇒ ab = ba.

Thus S is commutative, but commutativity implies associativity in AG-groupoids. Hence S is a
commutative semigroup.

Theorem 7. Every LC-AG-groupoid is paramedial AG-groupoid.

Proof. Let S be a LC-AG-groupoid, and a, b, c, d ∈ S. Then

(ab)(cd) = (ba)(cd) = ((cd)a)b = ((dc)a)b = ((ac)d)b =

= ((ca)d)b = (bd)(ca) = (db)(ca)

⇒ (ab)(cd) = (db)(ca).

Hence S is a paramedial AG-groupoid.

Example 8. The following is an example of RC-AG-groupoid of order 4 that is not paramedial
AG-groupoid.

* 1 2 3 4
1 1 3 1 1
2 4 4 4 4
3 1 3 1 1
4 3 1 3 3

Theorem 8. Every LC-AG-groupoid is left nuclear square AG-groupoid.
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Proof. Let S be a LC-AG-groupoid, and a, b, c ∈ S. Then

a2(bc) = (aa)(bc) = ((bc)a)a = ((cb)a)a = ((ab)c)a =

= (c(ab))a = (a(ab))c = (ab)a)c = ((ba)a)c =

= ((aa)b)c = (a2b)c ⇒ a2(bc) = (a2b)c.

Hence S is left nuclear square AG-groupoid.

The following counterexample shows that neither AG∗∗-groupoid nor BC-AG-groupoid is
nuclear square AG-groupoid. However, both these properties jointly gives the desired relation as
given in the following theorem.

Example 9.

(i) AG∗∗-groupoid that is not a nuclear square AG-groupoid as (3 ∗ 3) ∗ 32 ̸= 3 ∗ (3 ∗ 32).

(ii) BC-AG-groupoid that is not nuclear square AG-groupoid as (3 ∗ 3) ∗ 32 ̸= 3 ∗ (3 ∗ 32).

* 1 2 3
1 1 1 1
2 1 1 1
3 1 2 2

(i)

* 1 2 3
1 1 1 1
2 1 1 1
3 2 2 1

(ii)

Theorem 9. Let S be a BC-AG∗∗-groupoid. Then the following assertions are equivalent.

(i) S is left nuclear square AG-groupoid;

(ii) S is middle nuclear square AG-groupoid;

(iii) S is right nuclear square AG-groupoid.

Proof. Let S be a BC-AG∗∗-groupoid. Then

(i) ⇒ (ii). Assume (i) holds, let a, b, c ∈ S. Then

a(b2c) = b2(ac) = b2(ca) = (b2c)a = (cb2)a = (ab2)c ⇒ a(b2c) = (ab2)c.

Thus S is middle nuclear square AG-groupoid.

(ii) ⇒ (iii). Assume (ii) holds, let a, b, c ∈ S. Then

a(bc2) = b(ac2) = b(c2a) = (bc2)a = (c2b)a = (ab)c2 ⇒ a(bc2) = (ab)c2.

Finally we show,

(iii) ⇒ (i). Assume (iii) holds, and a, b, c ∈ S. Then

a2(bc) = b(a2c) = b(ca2) = (bc)a2 = (cb)a2 = (a2b)c ⇒ a2(bc) = (a2b)c.

which proves (i). Hence the theorem is proved.

Now, we give an example of left alternative AG-groupoid and BC-AG-groupoid that are not
flexible AG-groupoid.

Example 10. (i) The AG-groupoid in Table (i) below, is left alternative but not flexible AG-
groupoid.

(ii) The AG-groupoid in Table (ii) is BC- AG-groupoid, but not flexible AG-groupoid.
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* 1 2 3 4
1 1 1 1 1
2 1 1 1 3
3 1 4 1 1
4 1 1 2 1

(i)

* 1 2 3 4
1 1 1 1 1
2 1 1 1 1
3 1 1 2 1
4 2 2 1 1

(ii)

However, we have the following:

Theorem 10. Every BC-AG-groupoid is left alternative AG-groupoid if and only if it is flexible
AG-groupoid.

Proof. Let S be a BC-AG-groupoid satisfying the left alternative AG-groupoid property, and let
a, b ∈ S. Then

(ab)a = (ba)a = (aa)b = a(ab) = a(ba) ⇒ (ab)a = a(ba).

Hence S is flexible AG-groupoid.
Conversely let S be a BC-AG-groupoid satisfying the flexible AG-groupoid property, then for

a, b ∈ S, we have

(aa)b = (ba)a = (ab)a = a(ba) = a(ab) ⇒ (aa)b = a(ab).

Hence S is left alternative AG-groupoid.

One can easily verify in the following tables that neither T 1-AG-groupoid nor BC-AG-
groupoid is self-dual AG-groupoid.

Example 11. 1. The AG-groupoid given in Table (i) is T 1-AG-groupoid but not self-dual
AG-groupoid, while the AG-groupoid in Table (ii) is BC- AG-groupoid but not self-dual
AG-groupoid.

* 1 2 3
1 1 1 1
2 1 1 3
3 1 2 1

(i)

* 1 2 3 4
1 1 1 1 1
2 1 1 1 1
3 1 1 1 2
4 1 1 1 4

(ii)

However, we prove the following:

Theorem 11. Every T1-AG-groupoid S is self-dual AG-groupoid, if any of the following holds.

(i) S is LC-AG-groupoid.

(ii) S is RC-AG-groupoid.

Proof. Let S be a T1-AG-groupoid, and let a, b, c ∈ S.

(i) If S is LC-AG-groupoid, then

(bc)a = (cb)a = (ab)c = (ba)c ⇒ a(bc) = c(ba).

(ii) Again, if S is RC-AG-groupoid, then

a(bc) = a(cb) ⇒ (bc)a = (cb)a = (ab)c ⇒ a(bc) = c(ab) = c(ba).
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Hence S is self- dual AG-groupoid in each case and the theorem is proved.

Theorem 12. Every BC-AG-3-band is commutative semigroup.

Proof. Let S be BC-AG-3-band, and let a, b ∈ S. Then

ab = (a(aa))(b(bb)) = (ab)((aa)(bb)) = (ba)((aa)(bb)) =

= (ba)((ab)(ab)) = (ba)((ba)(ab)) = (ba)((ba)(ba)) =

= (ba)((bb)(aa)) = (b(bb))(a(aa)) = ba ⇒ ab = ba.

Thus S is commutative and hence is associative. Equivalently S is commutative semigroup.

6. Congruences on LC-AG-groupoid
Congruence on various subclasses of AG-groupoids are defined in various papers [23, 37, 38].

In this section we discuss some congruence on LC-AG-groupoids. It is observed that if S is an
LC-AG-groupoid and ES ̸= ∅, where ES is the collection of all idempotents of S then by medial
law, definition of LC-AG-groupoid and repeated use of the left invertive law, E(S) is semilattice,
that is for any e, f ∈ ES ̸= ∅ :

ef = (ee)(ff) = (ef)(ef) = (fe)(ef) = ((ef)e)f =

= ((fe)e)f = ((ee)f)f = (ff)(ee) = fe ⇒ ef = fe.

This implies that ES is commutative. Moreover,∀a, b ∈ S and e ∈ ES , we have

e(ab) = (ea)(eb) = ((eb)a)e = ((be)a)e = ((ae)b)e = ((ea)b)e = (b(ea))e =

= (e(ea))b = ((ae)e)b = ((ee)a)b = (ea)b ⇒ e(ab) = (ea)b.

Thus ∀a, b ∈ S and e ∈ ES , as a consequences of the above we have the following.

Proposition 2. Let S be an LC-AG-groupoid . Then ES is a semilattice.

Example 12. LC-AG-band of order 4 that is a semilattice.

* 1 2 3 4
1 1 1 1 1
2 1 2 2 2
3 1 2 3 3
4 1 2 3 4

Furthermore, in Example 13, ES = {1, 3} ⊆ S is a semilattice.

Theorem 13. Let (S, ·) be an LC-AG-groupoid such that ES ̸= ϕ, and η be a relation defined
on S as

η = {(a, b) ∈ S, (xe)a = (ye)b for every e ∈ ES and x, y ∈ (S, ·)} .

Then η is a congruence on S.

Proof. Given that S is an LC-AG-groupoid and ES is the set of all idempotent elements in S. A
relation η is defined on S as,

η = {(a, b) ∈ S, (xe)a = (ye)b for every e ∈ ES} .
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First, we show that η is equivalence relation on S, for this we show that η is reflexive, symmetric
and transitive relation. Clearly η is reflexive as for any a, x ∈ S (xe)a = (xe)a ⇒ aηb. Let aηb,
then (xe)a = (ye)b ⇔ (ye)b = (xe)a ⇔ bηa. Hence η is symmetric. Now, for transitivity let aηb
and bηc. Then (xe)a = (ye)b and (ye)b = (ze)c for some x, y, z ∈ S ⇔ (xe)a = (ye)b = (ze)c ⇔
(xe)a = (ze)c ⇔ aηc. Hence η is transitive. Therefore η is an equivalence relation on S. Now,
we show that η is compatible. First we show that η is right compatible, for this let a, b, c and
x, y, z are elements of S, then using left invertive, medial laws, definition of LC-AG-groupoid
and Theorem (7), we get

aηb ⇒ (xe)a = (ye)b ⇒ ((xe)a)c = ((ye)b)c

⇒ (ca)(xe) = (cb)(ye) ⇒ (cx)(ae) = (cy)(be)

⇒ (ex)(ac) = (ey)(bc) ⇒ (xe)(ac) = (ye)(bc)

⇒ aηb ⇒ acηbc.

Therefore η is right compatible. Similarly, it is easy to show that η is left compatible. Hence η
is compatible and therefore η is a congruence on S.

Theorem 14. Let S be an LC-AG-groupoid and ES ̸= ∅. Let ρ be a relation on S defined as,
ρ = {(a, b) ∈ S, ea = eb for every e ∈ ES} . Then ρ is a congruence on S.

Proof. Let S be an LC-AG-groupoid and ES denotes the set of all idempotent elements in S.
Assume that ES ̸= ∅. A relation ρ is defined on S as,

ρ = {(a, b) ∈ S, ea = eb for every e ∈ ES} .

Now, we show that ρ is an equivalence relation on S. Obviously ρ is reflexive, as for any a ∈ S
and e ∈ ES we have ea = ea ⇒ aρb. Let aρb ⇔ ea = eb ⇔ eb = ea ⇔ bρa. Hence ρ is symmetric.
Now, let aρb and bρc⇔ ea = eb and eb = ec for some a, b ∈ S ⇔ ea = eb = ec ⇔ ea = ec ⇔ aρc.
Hence ρ is transitive. Therefore ρ is an equivalence relation on S. Next we show that ρ is
compatible.

ρ is right compatible:

aρb ⇔ ea = eb ⇔ (ea)c = (eb)c

⇔ (ca)e = (cb)e ⇔ (ca)(ee) = (cb)(ee)

⇔ (ac)(ee) = (bc)(ee) ⇔ (ae)(ce) = (be)(ce)

⇔ (ea)(ce) = (eb)(ce) ⇔ ((ce)a)e = ((ce)b)e

⇔ ((ec)a)e = ((ec)b)e ⇔ ((ac)e)e = ((bc)e)e

⇔ (ee)(ac) = (ee)(bc) ⇔ e(ac) = e(bc)

aρb ⇔ acρbc.

Hence ρ is right compatible. Similarly ρ is left compatible. Hence ρ is compatible and therefore
is a congruence on S.

Example 13. Let S = {1, 2, 3, 4}. Then (S, ·) with the following table is LC-AG-groupoid.

· 1 2 3 4
1 1 1 1 1
2 1 1 1 1
3 1 1 3 1
4 1 2 1 1

and ES = {1, 3} define a relation ρ as aρb ⇔ ea = eb, ∀a, b ∈ S and e ∈ ES , we have

ρ = {(1, 1) , (1, 2) , (1, 4) , (2, 1) , (2, 2) , (2, 4) , (3, 3) , (4, 1) , (4, 2) , (4, 4)} .
Clearly ρ is equivalence relation and also left and right compatible, hence is a congruence on S.
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Conclusion

In this article, we have introduced some new classes of AG-groupoids that are RC-AG-
groupoid, LC-AG-groupoid and BC-AG-groupoid. We have provided various examples generated
by GAP for the existence of these subclasses. Enumeration of these classes has also been done up
to order 6. We also introduced a procedure to verify an arbitrary AG-groupoid for these classes
and proved some basic results for these newly introduced classes like; every AG∗-groupoid is RC-
AGgroupoid, every LC-AG∗-groupoid is semigroup and in general LC-AG-groupoid is semigroup
only if, it has a right cancellative element or has a left identity element. We have investigated
that BC-AG∗-groupoid is nuclear square AG-groupoid and is left alternative if and only if it is
flexible. We also investigated ideals in these classes. Some congruences have also been defined
on these subclasses.

Acknowledgement. We are tankful to Professor Petar Markovic for improving this article.
The authors are extremely grateful to the editor and the referees for their valuable comments
and helpful suggestions which help to improve the presentation of this paper.

This research is financially supported by Government of Pakistan through HEC funded project
NRPU-3509.

References

[1] M.Naseeruddin, Some studies on almost semigroups and flocks, PhD thesis, The Aligarh
Muslim University, India, 1970.

[2] J.R.Cho, J.Jezek, T.Kepka, Paramedial Groupoids, Czechoslovak Mathematical Journal,
49(1996), no. 124, 277–290. DOI: 10.1023/A:1022448218116

[3] M.Khan, Faisal, V.Amjad, On some classes of Abel-Grassmann’s groupoids, J. Adv. Res.
Pure Math., 3(2011), no. 4, 109–119.

[4] M.Rashad, I.Ahmad, M.Shah, Amanullah, Stein AG-groupoids, Sindh University Research
Journal (Science Series), 48(2016), no. 3, 679–684.

[5] M.Shah, I.Ahmad, A.Ali, Discovery of new classes of AG-groupoids, Research Journal of
Recent Sciences, 1(2012), no. 11, 47–49.

[6] M.Shah, I.Ahmad, A.Ali, On introduction of new classes of AG-groupoids, Research Journal
of Recent Sciences, 2(2013), no. 1, 67–70.

[7] M.Iqbal, I.Ahmad, Ideals in CA-AG-groupoids, Indian J. Pure Appl. Math., 49(2018), no. 2,
265–284. DOI: 10.1007/s13226-018-0268-5

[8] I.Ahmad, Iftikhar Ahmad, M. Rashad, A study of anti-commutativity in AG-groupoids,
Punjab Univ. J. Math., 48(2016), no. 1, 99–109.

[9] M.Rashad, I.Ahmad, Amanullah, M. Shah, A study on Cheban Abel-Grassmann’s groupoids,
Punjab Univ. J. Math., 51(2019), no. 2, 79–90.

[10] I.Ahmad, M.Rashad, M.Shah, Some Properties of AG*-groupoid, Research Journal of Re-
cent Sciences, 2(2013), no. 4, 91–93.

[11] I.Ahmad, M.Rashad, M.Shah, Some new result on T1, T2 and T4-AG-groupoids, Research
Journal of Recent Sciences, 2(2013), no. 3, 64–66.

– 328 –



Muhammad Rashad, Imtiaz Ahmad. . . Enumeration of Bi-Commutative–AG-groupoids

[12] M.Rashad, I.Ahmad, Amanullah, M.Shah, On relations between right alternative and nu-
clear square AG-groupoids, Int. Math. Forum, 8(2013), no. 5-8, 237–243.
DOI: 10.12988/imf.2013.13024

[13] M.Rashad, I.Ahmad, M.Shah, Left transitive AG-groupoids, Sindh University Research
Journal (Science Series), 46(2014), no. 4, 547–552.

[14] M.Iqbal, I.Ahmad, Some Congruences on CA-AG-groupoids, Punjab University. J. Math.,
51(2019), no. 3, 71–87.

[15] M.Rashad, I.Ahmad, A note on unar LA-semigroup, Punjab Univ. J. Math., 50(2018), no. 3,
113–121.

[16] Muhammad Shah, A theoretical and computational investigation of AG-groups, PhD thesis,
Quaid-i-Azam University Islamabad, 2012.

[17] N.Bobeica, Liubomir Chiriac, On toplogical AG-groupoids and paramedial quasigroups with
multiple identities, ROMAI Journal, 6(2010), no. 1, 5–14.

[18] Amanullah, M.Rashad, I.Ahmad, Abel Grassmann’s Groupoids of Modulo Matrices, Mehran
University research Journal of Engineering and Technology, 35(2016), no. 1, 63–70.

[19] Amanullah, M.Rashad, I.Ahmad, M.Shah, On Modulo AG-groupoids, Journal of Advances
in Mathematics, 8(2014), no. 3, 1606–1613.

[20] T.Shah, Inayat Ur Rahman, On LA-rings of finitely nonzero function, Int. J. Contemp.
Math. Sciences, 5(2010), no. 5, 209–222.

[21] T.Shah, M.Raees, Gohar Ali, On LA-Modules, Int. J. Contemp. Math. Sciences, 6(2011),
no. 21, 999–1006.

[22] Q.Mushtaq, M.Khan, Ideals in AG-band and AG∗-groupoids, Quasigroups and Related sys-
tem, 14(2006), 207–215.

[23] P.V.Protic, Congruences on an inverse AG∗∗-groupoid via the natural partial order, Quasi-
groups and related system, 17(2009), no. 2, 283–290.

[24] P.V.Protic, N.Stevanovic, AG-test and some general properties of AG-groupoids, PU.M.A.
Pure Mathematics and Applications, 6(1995), no. 4, 371–383.

[25] T.Shah, Inayat Ur Rahman, On Γ-ideals and Γ-bi-ideals in Γ-AG-groupoids, International
journal of Algebra, 4(2010), no. 6, 267–276.

[26] A.Khan, M.Shabir, Young Bae Jun, Generalized fuzzy Abel Grassmann’s Groupoids, Inter-
national Journal of Fuzzy Systems, 12(2010), no. 4, 340–349.

[27] Asghar Khan, Young Bae Jun, Tahir Mahmmod, Generalized fuzzy interior ideals in Abel
Grassmann’s Groupoids, International journal of Mathematics and Mathematical Sciences,
2010, Article ID 838392. DOI: 10.1155/2010/838392

[28] V.Celakoska-Jordanova, Biljiana Janeva, Free left commutative Groupoids, www.arXiv.org.

[29] GAP: Groups Algorithm and Programming, Version 4.4.12, 2008.

[30] B.D.McKay, I.M.Wanless, On the number of Latin squares, Ann. Combin., 9(2005), 335–344.

[31] J.Slaney, FINDER, Notes and Guide, Center of Information Science and Research, Aus-
tralian National University, 1995.

– 329 –



Muhammad Rashad, Imtiaz Ahmad. . . Enumeration of Bi-Commutative–AG-groupoids

[32] A.Ali, J.Slaney, Counting loops with the inverse property image, Quasigroups and Related
System, 16(2008), no. 1, 13–16.

[33] A.Distler, T.Kelsey, The monoids of order eight and nine, In Proc. of AISC 2008, vol. 5144
of LNCS, Springer, 2008, 61–76.

[34] A.Distler, T.Kelsey, The monoids of order eight and nine and ten, Ann. Math. Artif. Intell.,
56(2009), no. 1, 3–21.

[35] A.Distler, Classification and Enumeration of Finite semigroups, PhD thesis, University of
St. Andrews, 2010.

[36] A.Distler, M.Shah, V.Sorge, Enumeration of AG-groupoids, CICM 2011: Lecture Notes in
Computer Science, vol. 6824, 1–14, 2011 DOI: 10.1007/978-3-642-22673-1_1

[37] Q.Mushtaq, M.Khan, Decomposition of AG∗-groupoids, Quasigroups and related system,
15(2007), 303–308.

[38] W.A.Dudek, R.S.Gigon, Congruences on completely inverse AG∗∗-groupoids, Quasigroups
and Related System, 20(2012), 203–209.

Перечень би-коммутативно–AG-группоидов
Мухаммед Рашад
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Аннотация. В этой статье мы вводим (слева, справа) бикоммутативные AG-группоиды и пред-
лагаем простой метод проверки, является ли произвольный AG-группоид бикоммутативным AG-
группоидом или нет. Мы также исследуем некоторые общие свойства этих AG-группоидов. Далее
вводим и изучаем некоторые свойства идеалов в этих AG-группоидах и разлагаем левые коммута-
тивные AG-группоиды, определяя некоторые конгруэнции на этих AG-группоидах.

Ключевые слова: AG-группоид, бикоммутативно-AG-группоиды, (слева, справа) коммутативные
AG-группоиды.
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