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Introduction

The Navier–Stokes equations describe the motion of fluid and gaseous media in the presence of
viscosity. These equations are widely used for solving practical problems in various fields. These
fields traditionally include hydraulic engineering, oceanology, shipbuilding, aircraft engineering,
tribology and cardiology.

The simplest version of the equations corresponds to the case of incompressible fluid mo-
tion. In this case the density and all other physical characteristics of the fluid are constant
and unknowns are the components of velocity vector u, v, w and pressure p [1, 2]. In this case
the Navier–Stokes equations in dimensionless variables and in the presence of the potential of
external forces can be represented as
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where ∆ is the 3D Laplace operator with respect to spatial coordinates: ∆ =
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Φ is the potential of external forces, Re is the Reynolds number.
The study of equations (1–4) is one of the directions of modern mathematical physics [3, 4].

However, at present many issues are not fully clarified and they require additional research. One
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of the main problems is the lack of a general constructive method of solution. How to construct
solutions of 3D Navier–Stokes equations with all non-linear terms? There is no answer to this
question yet but practice needs resolution of this issue.

An important step along this path is the construction of exact solutions. Some solutions
are known [5–8]. Now broad classes of solutions are of particular interest. Each class of exact
solutions introduces new understanding of general laws and to some extent creates a basis for
developing methods to construct exact solutions.

1. Integral of the Navier–Stokes equations

The procedure for constructing an integral of equations (1–4) was proposed by author [9, 10].
So, the integral is represented by nine relations. In the most simple notation they are
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Functions Ψj denote new unknowns that arise in the process of integration. In the case being
considered there are fifteen functions and they complete the system of unknowns. The term
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"stream pseudo-function" was introduced for them [9, 10]. Thus, a total of nineteen unknowns
are introduced, namely, four major unknowns and fifteen associated unknowns.

Relation (5) contains additional terms p0, U2

2 , d and dt. The first one is an additive pressure
constant. Another three terms represent combinations of unknowns defined in a special way.
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2
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Values d and dt are dissipative terms defined as
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Symbols ∆yz, ∆xz, ∆xy in (14) denote the incomplete Laplace operators with respect to
spatial coordinates
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Relations (5–13) include the major unknowns u, v, w, p, the associated unknowns Ψj , given
potential function of external forces Φ and the Reynolds number Re. The order of derivatives for
major unknowns is one. It is less than their order in original equations (1–4). Relations (5–13)
represent the first integral of the Navier – Stokes equations (1–4).

The integral of equations (1–4) in the form (5–13) allows us to construct exact solutions in a
new way.

2. Primary generator of solutions

The primary generator of solutions allows us to construct the set of solutions of original
equations (1–4). One such primary generator is presented below.

Let us briefly analyze relations (5–13) that represent the first integral of the Navier–Stokes
equations. Relations (5) and (11–13) give expressions for the major unknowns u, v, w, p in terms
of associated unknowns Ψj , where j = 1, 2, . . . , 15. It is fair to conclude that these four relations
determine general structure of solutions for equations (1–4).Let us note that unknowns u, v, w

defined by (11–13) satisfy continuity equation (4). Relation (5) is special because it contains the
unknown p. In the way of practical solution of equations this relation should be used at the last
stage when all other unknowns have been already found.

When considering relations (6–13) in general, the following features attract attention [11].
In the right-hand sides of (11–13) there are derivatives of only the first nine associated un-
knowns Ψk, k = 1, 2, . . . 9 but there are fifteen associated unknowns in total. Unknowns Ψk with
k = 10, 11, . . . , 15 do not appear in relations (11–13). These unknowns are present in relations
(6–10) in the form of linear combinations of second derivatives. It is possible to exclude these un-
knowns from (6–7) and to obtain general relations. The procedure for constructing such relations
is briefly described below.
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Let us denote the sums of all terms in (6–10) that are independent of unknowns Ψk,
k = 1, 2, . . . , 9, by fj (j = 2, 3, . . . 6). So we have
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As a result, five non-linear equations (6–10) are represented in the form
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Let us eliminate terms with unknowns Ψk for k = 10, 11, . . . , 15. To do this we take term
by term derivatives of (17–21) with respect to coordinates and then select the necessary linear
combinations to exclude terms with the specified unknown. As a result, terms with unknowns
Ψk at k = 10, 11, . . . , 15 are excluded from (17–18). Then we obtain two equations [11]
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Taking into account (16), it is clear that only nine unknowns are present in equations (22–23).
These unknowns are Ψk with k = 1, 2, . . . , 9. This fact is obvious since u, v, w are expressed in
terms of these unknowns, according to (11–13). So, system of two equations (22–23) can be
considered as primary generator of solutions of 3D Navier–Stokes equations (1–4). Any set of
functions Ψ1, Ψ2, . . . , Ψ9 that satisfy this system allows one to determine all other unknowns
including the major ones. Firstly u, v, w are found according to (11–13). Then using (16), fj are
defined for j = 2, 3, . . . , 6. Next, six unknowns Ψ10, Ψ11, . . . , Ψ15 are determined with the help
of (17–21). Finally, using relation (5) and taking into account (14–15), we determine unknown p.
As a result, all major unknowns are determined and the main problem is solved.
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3. Method implementation

As an example of the implementation of the described approach we construct a set of solutions
that correspond to a cascade of plane waves into deep water provided Φ = 0. Let us assume that
unknowns u, v, w are represented in complex variables as linear combinations of plane waves.
General structure for u, v, w is defined by relations (11–13). Let us assume that
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where i is the imaginary unit, nk,mk, lk, (k = 1, 2, 3) are some constants and A(t), B(t), C(t)

are some functions of time.

Taking into account (11–13), we obtain the following expressions
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So, u, v, w are defined by (25), where nk,mk, lk for k = 1, 2, 3 are still unknown wave numbers
and A(t), B(t), C(t) are indeterminate functions of time.

Let us consider primary generator of solutions (22–23) and find the restrictions imposed on
these equations.

Substituting (16) into (22–23) and taking into account (24) and (25), we obtain the following
results. Components of two kinds are present in (22–23). Components of the first kind are
linear combinations of quantities ei(n1x+m1y+l1z), ei(n2x+m2y+l2z), ei(n3x+m3y+l3z). Components
of the second kind are quadratic combinations of quantities ei(n1x+m1y+l1z), ei(n2x+m2y+l2z),
ei(n3x+m3y+l3z). Components of the first kind are mutually reduced if functions A(t), B(t), C(t)

satisfy the ordinary differential equations of the first order
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Components of the second kind are also mutually reduced and equations (22–23) are identi-
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cally satisfied if wave numbers nk, mk, lk satisfy the following system of six algebraic equations
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Solutions of equations (26) are easy to find. They are defined by expressions
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where A(0), B(0), C(0) are arbitrary constants.
Preliminary analysis of system (27) shows that it has many real and complex solutions .

Each set of numbers that satisfy (27) generates a solution of Navier–Stokes equations (1–4).
Some special cases are presented below. Each of them can be considered as an implementation
of the above approach.

4. Special cases

4.1. Solution 1. The simplest solution corresponds to the case when the wave vectors are
collinear. In this case n3,m3, l3 are arbitrary and not all equal to zero. In addition, the following
proportionality relations are fulfilled n1 = µn3, m1 = µm3, l1 = µl3, n2 = ξn3, m2 = ξm3,

l2 = ξl3, where µ and ξ have arbitrary but not equal to zero values. In this case all six equations
(27) are identically satisfied.

According to (25) and (28), expressions for velocities are
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According to (5), the unknown p is
p = p0. (30)
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4.2. Solution 2. Analysis of algebraic equations (27) leads to the conclusion that system

admits the following solution n1= n2= 0, n3=
√
3, m1= m2= m3=

1√
2
, l1= l2= −2, l3= 1.
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According to (5), the unknown p is defined as
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4.3. Solution 3. Equations (27) are also satisfied if n1 = n2 = 0,
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√
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For pressure we have the following expression
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Conclusion

As a result of the implementation of the proposed approach new complex solutions of 3D

Navier–Stokes equations (1–4) are obtained. They are defined by expressions (29–34).
Let us pay attention to the qualitative differences of the obtained solutions. Let us consider

coefficients at the time t in Solution 1 and Solution 2. The following inequalities are true for these

coefficients: −µ2(n2
3 +m2

3 + l23)

Re
< 0, −ξ2(n2

3 +m2
3 + l23)

Re
< 0 for Solution 1 and − 9

Re2
< 0 for

Solution 2. For Solution 3 we have
2

Re
> 0. Then Solution 1 and Solution 2 decay exponentially

with time. On the contrary, Solution 3increases exponentially with time. This pattern holds for
both pressure and the magnitude of velocity.

The following fact is also worth attention.The pressure increases in half the time by compar-
ison to the magnitude of velocity.

If we compare expressions for pressure (30), (32) for Solution 1 and Solution 2 then there is
also a qualitative difference. The pressure does not depend on coordinates for Solution 1 whereas
the pressure depends on x, y and z for Solution 2.

Let us pay attention to another interesting feature of the proposed method for constructing
solutions. The above relations allow us to construct purely real solutions of the Navier–Stokes
equations. To do this, let us consider relations (24–26) and assume that nk = −iNk, mk = −iMk,
lk = −iLk, where k = 1, 2, 3, i is the imaginary unit and Nk,Mk, Lk are real numbers. In this case
algebraic equations (27) retain their form but we should take Nk,Mk, Lk instead of nk,mk, lk.
Any set of real numbers (N1,M1, L1), (N2,M2, L2), (N3,M3, L3) that satisfies equations (27)
allows us to construct purely real solutions of Navier–Stokes equations (1–4).
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Точные решения 3D-уравнений Навье–Стокса
Александр В. Коптев

Государственный университет морского и речного флота имени адмирала С.О.Макарова
Санкт-Петербург, Российская Федерация

Аннотация. В работе предложена процедура построения точных решений 3D-уравнений Навье–
Стокса для несжимаемой жидкости. За основу принимаются соотношения, представляющие первый
интеграл уравнений Навье–Стокса, ранее полученные автором. Построен первичный генератор
частных решений, и с его помощью найдены новые классы точных решений.

Ключевые слова: несжимаемая жидкость, движение, уравнение, интеграл, первичный генератор
решений, точное решение.
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