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Abstract. Procedure for constructing exact solutions of 3D Navier—Stokes equations for an incompress-

ible fluid flow is proposed. It is based on the relations representing the previously obtained first integral
of the Navier—Stokes equations. A primary generator of particular solutions is proposed. It is used to
obtain new classes of exact solutions.

Keywords: incompressible fluid, motion, equation, integral, primary generator of solutions, exact solu-
tion.

Citation: A.V.Koptev, Exact Solution of 3D Navier—Stokes Equations, J. Sib. Fed. Univ. Math. Phys.,
2020, 13(3), 306-313. DOI: 10.17516,/1997-1397-2020-13-3-306-313.

Introduction

The Navier—Stokes equations describe the motion of fluid and gaseous media in the presence of
viscosity. These equations are widely used for solving practical problems in various fields. These
fields traditionally include hydraulic engineering, oceanology, shipbuilding, aircraft engineering,
tribology and cardiology.

The simplest version of the equations corresponds to the case of incompressible fluid mo-
tion. In this case the density and all other physical characteristics of the fluid are constant
and unknowns are the components of velocity vector u, v, w and pressure p [1,2]. In this case
the Navier—Stokes equations in dimensionless variables and in the presence of the potential of
external forces can be represented as

?Z—Fungrng—kng:—Wﬁ-];Au? (1)
?;—I-uggjﬁ—vg;;—l—wgz:—(w+;eﬁv, (2)
%:+u?;+v§;+wgf=—w+};ﬁw, (3)
5t 3 =0, ()

0? 0? 0?

where A is the 3D Laplace operator with respect to spatial coordinates: A = — + — + —
x z

® is the potential of external forces, Re is the Reynolds number.
The study of equations (1-4) is one of the directions of modern mathematical physics [3,4].
However, at present many issues are not fully clarified and they require additional research. One
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of the main problems is the lack of a general constructive method of solution. How to construct
solutions of 3D Navier—Stokes equations with all non-linear terms? There is no answer to this
question yet but practice needs resolution of this issue.

An important step along this path is the construction of exact solutions. Some solutions
are known [5-8]. Now broad classes of solutions are of particular interest. Each class of exact
solutions introduces new understanding of general laws and to some extent creates a basis for
developing methods to construct exact solutions.

1. Integral of the Navier—Stokes equations

The procedure for constructing an integral of equations (1-4) was proposed by author [9, 10].
So, the integral is represented by nine relations. In the most simple notation they are
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Functions ¥; denote new unknowns that arise in the process of integration. In the case being
considered there are fifteen functions and they complete the system of unknowns. The term
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"stream pseudo-function" was introduced for them [9,10]. Thus, a total of nineteen unknowns
are introduced, namely, four major unknowns and fifteen associated unknowns.

Relation (5) contains additional terms py, %2,
constant. Another three terms represent combinations of unknowns defined in a special way.

d and d;. The first one is an additive pressure

2 . . . .
Value % is dimensionless velocity

U? w2 40®+uw?
2 2 ’

Values d and d; are dissipative terms defined as
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Symbols A,
spatial coordinates

Az, Ayy in (14) denote the incomplete Laplace operators with respect to
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Relations (5-13) include the major unknowns u, v, w, p, the associated unknowns ¥;, given
potential function of external forces ® and the Reynolds number Re. The order of derivatives for
major unknowns is one. It is less than their order in original equations (1-4). Relations (5-13)
represent the first integral of the Navier — Stokes equations (1-4).

The integral of equations (1-4) in the form (5-13) allows us to construct exact solutions in a
new way.

2. Primary generator of solutions

The primary generator of solutions allows us to construct the set of solutions of original
equations (1-4). One such primary generator is presented below.

Let us briefly analyze relations (5-13) that represent the first integral of the Navier—Stokes
equations. Relations (5) and (11-13) give expressions for the major unknowns u, v, w, p in terms
of associated unknowns ¥;, where j = 1,2,...,15. It is fair to conclude that these four relations
determine general structure of solutions for equations (1-4).Let us note that unknowns u, v, w
defined by (11-13) satisfy continuity equation (4). Relation (5) is special because it contains the
unknown p. In the way of practical solution of equations this relation should be used at the last
stage when all other unknowns have been already found.

When considering relations (6-13) in general, the following features attract attention [11].
In the right-hand sides of (11-13) there are derivatives of only the first nine associated un-
knowns ¥, k = 1,2,...9 but there are fifteen associated unknowns in total. Unknowns ¥ with
k =10,11,...,15 do not appear in relations (11-13). These unknowns are present in relations
(6-10) in the form of linear combinations of second derivatives. It is possible to exclude these un-
knowns from (6-7) and to obtain general relations. The procedure for constructing such relations
is briefly described below.
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Let us denote the sums of all terms in (6-10) that are independent of unknowns Wy,
E=1,2,...,9, by f; (j =2,3,...6). So we have
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As a result, five non-linear equations (6-10) are represented in the form
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Let us eliminate terms with unknowns Wy for & = 10,11,...,15. To do this we take term
by term derivatives of (17-21) with respect to coordinates and then select the necessary linear
combinations to exclude terms with the specified unknown. As a result, terms with unknowns
U at k =10,11,...,15 are excluded from (17-18). Then we obtain two equations [11]
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Taking into account (16), it is clear that only nine unknowns are present in equations (22-23).
These unknowns are ¥y with £ = 1,2,...,9. This fact is obvious since u, v, w are expressed in
terms of these unknowns, according to (11-13). So, system of two equations (22-23) can be
considered as primary generator of solutions of 3D Navier-Stokes equations (1-4). Any set of
functions Wy, Wo,..., Wy that satisfy this system allows one to determine all other unknowns

(22)

~0. (23)

including the major ones. Firstly u, v, w are found according to (11-13). Then using (16), f; are
defined for j = 2,3,...,6. Next, six unknowns ¥qg, Y11, ..., U5 are determined with the help
of (17-21). Finally, using relation (5) and taking into account (14-15), we determine unknown p.
As a result, all major unknowns are determined and the main problem is solved.
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3. Method implementation

As an example of the implementation of the described approach we construct a set of solutions
that correspond to a cascade of plane waves into deep water provided ® = 0. Let us assume that
unknowns wu,v,w are represented in complex variables as linear combinations of plane waves.
General structure for u, v, w is defined by relations (11-13). Let us assume that
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where ¢ is the imaginary unit, ng, mg,l, (k= 1,2,3) are some constants and A(t), B(t), C(t)
are some functions of time.

Taking into account (11-13), we obtain the following expressions
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So, u, v, w are defined by (25), where ny, mg, I for k = 1,2, 3 are still unknown wave numbers
and A(t), B(t), C(t) are indeterminate functions of time.

Let us consider primary generator of solutions (22—-23) and find the restrictions imposed on
these equations.

Substituting (16) into (22-23) and taking into account (24) and (25), we obtain the following
results. Components of two kinds are present in (22-23). Components of the first kind are
linear combinations of quantities e!("1@+miy+hiz) pilnaztmaytlaz) ei(nse+msy+lsz) - Components
of the second kind are quadratic combinations of quantities e!(m@t+miythz) = ei(naztmay+isz)
elnsztmsy+lsz) - Components of the first kind are mutually reduced if functions A(t), B(t), C(t)
satisfy the ordinary differential equations of the first order

dA A

o= ——Re(nf—i—m%—i—l%),

dB B

i~ Rt (26)
dC C

Components of the second kind are also mutually reduced and equations (22-23) are identi-
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cally satisfied if wave numbers ng, my, i satisfy the following system of six algebraic equations

2nyl3(ny 4+ n3)(my +mg) — mals(ng + n3)2 + mylz(my + m3)2—

— mlmg(ml =+ mg)(ll —+ 13) — nlmg(nl —+ ng)(ll —+ lg) = 0,
— mglg(m2+ mg)(lg—l— 13) + n213(n2+ ng)(lz + lg) - lglg(nz-f— 7’L3)2+ lzlg(mg-f— m3)2 =0,

2myla(ny + ng)(my + ma) + nila(ng +n2)? — nyla(my +ma)*—

— myna(mi +ma)(li + l2) — nina(ni +ne)(lh +12) =0,

— nllg(nl + ng)(ll + lg) + mlng(m + nZ)(ml + m2)_ (27)

— ning(my +me)? +nina(ly +12)* =0,

— 2n2m3(m2 + mg)(lg + lg) + n213(m2 + m3)2 — n2l3(12 + 13)2+
+ lals(ne 4+ n3)(le + 13) + mala(ng + ng)(me + m3) =0,

— 2n1l3(m1 + mg)(h + lg) + mllg(nl + ’/7,3)(11 + lg) + mlmg(nl + ng)(ml + mg)—

— nlmg(ml + m3)2 + n1m3(l1 + l3)2 =0.
Solutions of equations (26) are easy to find. They are defined by expressions

A1) = AQ)e~"FF By = p(oje- SRR
(28)
(n3+m3+13)t
Ct)=C(0)e 7,
where A(0), B(0), C(0) are arbitrary constants.

Preliminary analysis of system (27) shows that it has many real and complex solutions .
Each set of numbers that satisfy (27) generates a solution of Navier-Stokes equations (1-4).
Some special cases are presented below. Each of them can be considered as an implementation
of the above approach.

4. Special cases

4.1. Solution 1. The simplest solution corresponds to the case when the wave vectors are
collinear. In this case n3, ms, l3 are arbitrary and not all equal to zero. In addition, the following
proportionality relations are fulfilled ny = uns, m; = ums, Iy = pls, no = &ng, me = Emg,
lo = &l3, where o and € have arbitrary but not equal to zero values. In this case all six equations
(27) are identically satisfied.

According to (25) and (28), expressions for velocities are

7 p2(n3+m3+13)

. e2m3+mi3Hd) .
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2
According to (5), the unknown p is
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4.2. Solution 2. Analysis of algebraic equations (27) leads to the conclusion that system
admits the following solution n; = ny= 0, ng :\/§7 mi= Mo = M3z = \—/i, li=1ly=-2,I3=1.

In this case unknowns u, v, w are defined as

. i(1A(O)_2B(O))e—2%et+i(\}§y—22)7 o %C<O)e—ﬁt+i(\/§z+%y+2)

2\v2 . ) (31)
w=——_(0)e e Hi(VEt Javts)
2v2
According to (5), the unknown p is defined as
1 3 ,
p=p(0) + ;C(0) (\Q[A(O) - ¢63(0)>e—ﬂ»t+l<ﬁw+ﬂy-z>. (32)
4.3. Solution 3. Equations (27) are also satisfied if ny = ns =0,
n3=1iV3, mi=mo=mz=1iV3, =l =1, I3 =2.
The velocities in this case are defined as
w= 2 ((VBAO)+B(0)) et ~YIHE g = iC(0)ee VAT,
(33)
w = %ﬁC(O)e%t—ﬁw-ﬁﬁm.
For pressure we have the following expression
1 .
p=p(0) + 70(0)(iV3A(0) + B(0))erie! -V 2Vautsr, (34)

Conclusion

As a result of the implementation of the proposed approach new complex solutions of 3D
Navier—Stokes equations (1-4) are obtained. They are defined by expressions (29-34).

Let us pay attention to the qualitative differences of the obtained solutions. Let us consider
coeflicients at the time ¢ in Solution 1 and Solution 2. The following inequalities are true for these
p*(n3 + m3 + 1) §(n +m3 +13) 9

<0, — < 0 for Solution 1 and ——— < 0 for
Re 5 Re Re2
Solution 2. For Solution 3 we have — > 0. Then Solution 1 and Solution 2 decay exponentially

coefficients: —

with time. On the contrary, Solution eZ’)increases exponentially with time. This pattern holds for
both pressure and the magnitude of velocity.

The following fact is also worth attention.The pressure increases in half the time by compar-
ison to the magnitude of velocity.

If we compare expressions for pressure (30), (32) for Solution 1 and Solution 2 then there is
also a qualitative difference. The pressure does not depend on coordinates for Solution 1 whereas
the pressure depends on z, y and z for Solution 2.

Let us pay attention to another interesting feature of the proposed method for constructing
solutions. The above relations allow us to construct purely real solutions of the Navier—Stokes
equations. To do this, let us consider relations (24-26) and assume that ny = —iNg, my = —i My,
ly = —iLy, where k = 1,2, 3, i is the imaginary unit and Ny, My, Ly are real numbers. In this case
algebraic equations (27) retain their form but we should take Ny, My, Ly instead of ny,myg, .
Any set of real numbers (N1, My, L1), (Na, Ma, Lo), (N3, Ms, L3) that satisfies equations (27)
allows us to construct purely real solutions of Navier—Stokes equations (1-4).
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Tounbie pentenus 3D-ypaBuennit HaBbe—CTtokca

Anekcanap B. Konresn
TocymapcTBeHHBIH yHUBEPCUTET MOPCKOro U peuHoro duiora nmenu agmupasa C. O. Makaposa
Cankt-ITerepbypr, Poccuiickast @emepariust

Amnnoranus. B pabore npesioxkena mnporue/ypa MocTpoeHusl TOYHbIX perrennit 3D-ypasuennit HaBbe—
Crokca 1 HeCXKUMAEMOI KUJIKOCTH. 3& OCHOBY IIPUHUMAIOTCST COOTHOIIEHU S, TPEICTABJISIIOIINE TIEPBBIi
nnrerpas ypasHenuit HaBbe—Crokca, panee moJiydeHHble aBTOPOM. IloCTpOeH mHepBUYHBINA reHepaTop
YaCTHBIX PEIIeHUi, U C ero IOMOIIBIO HallJIeHbl HOBBbIE KJIACCHI TOUHBIX PeIleHMUI.

KurouyeBrble cjioBa: HEC2KIMAEMasi JKUJIKOCTD, IBUKEHNE, yPABHEHUE, NHTETPaJl, IEPBUIHBII TeHEPpaTOD

PpelIeHun, TOYHOEe PelleHue.
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