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Abstract. This article deals with the parabolic equation
dw —c(t)0jw = fin D, D= {(t,x) ER*:t >0, 1 (t) <z < pa(t)}

with ¢; : [0,4+00[— R,i = 1, 2 and ¢ : [0,+oo[— R satisfying some conditions and the problem is
supplemented with boundary conditions of Dirichlet-Robin type. We study the global regularity problem
in a suitable parabolic Sobolev space. We prove in particular that for f € L? (D) there exists a unique
solution w such that w, dyw, &w € L? (D), j =1, 2. Notice that the case of bounded non-rectangular
domains is studied in [9]. The proof is based on energy estimates after transforming the problem in a
strip region combined with some interpolation inequality. This work complements the results obtained
in [19] in the case of Cauchy-Dirichlet boundary conditions.
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1. Introduction and statement of the main result

Let D be an open set of R? defined by

D:={(t,x) eR*:t>0, ¢1(t) <z < pa(t)}
where ; € C([0,+00[) N C1(0, +0), i =1, 2,
w(t):=@a(t) —p1(t) >0 Vt>0, and p(0) =0.
The lateral boundaries of D are defined by
Li={(t.pi(t) eR*:t>0},i=1, 2.

Let us introduce the following functional space:

H'? (D) := {w € L* (D) : dyw, d,w, 7w € L* (D)}
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where L? (D) stands for the usual Lebesgue space of square-integrable functions on D. The space
H12 (D) is equipped with the natural norm, that is

2
2 2 2 ;o2
||w||7-¢1‘2(D) = ||w||L2(D) + Hathm(D) + Z H89ch||L2(D) .
j=1
We consider the problem: to find a function u € H12(D) that satisfies the equation
Opu — c(t)0%u = f a.e. on D (1.1)

and the boundary conditions
u|Fl = Oyu+ ﬁgu|F2 =0, (1.2)

where f € L?(D) and the coefficient ¢ is a continuous real-valued function defined on [0, +oo],
differentiable on ]0, +oo[ and such that

O<a<e(t)<p

for every t € [0, +00[, where a and 3 are positive constants. Here, the coefficient /33, in boundary
conditions is a real number such that

B2 > 0.
T
u 0
T
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Fig. 1. The unbounded non-rectangular domain D

Problem (1.1)—(1.2) modelizes, for instance, the lateral diffusion of a pollutant in a flow of a
river with variable width. Note that the Robin type condition

Ozu + Baulp, =0,

means for instance, that the flux of diffusion of the pollutant is proportional to its propagation
along the wide of the river. The most interesting points of the parabolic problem studied here
is the unboundedness of D with respect to the time variable ¢ and the fact that D shrinks at
t = 0 (p(0) = 0) which prevent one using the methods in [13] and [14]. It is well known that
there are two main approaches for the study of boundary value problems in such non-regular
domains. The analysis can be done in weighted spaces with the weight controlling the behavior
of the solutions near the singularity of the boundary of the domain (see, for instance, [10,11]
and [12]). Our approach is different. Indeed, the space H!? used here has low smoothness but
one must add assumptions on the type of the domain D, as well as conditions on the coefficients
¢ and f2, near the singular point 0 and in the neighborhood of +co. So, our main result is the
following:
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Theorem 1.1. Let us assume that

I (D)@ (t) =0 as t =0T, i=1,2, (1.3)

2¢(t)B2 — @4 (t) = 0 a.e. t €]0,400], (1.4)

© and @' are uniformly bounded in a neighborhood of + oo, (1.5)
¢ is a decreasing function in)0,4o00[, (1.6)

and one of the following conditions is satisfied

(a) ¢ is increasing in a neighborhood of 400,

(b) M >0 [¢'[p < Mecft).

Then Problem (1.1), (1.2) admits a unique solution u € H'2(D).

The case where D is bounded (with ¢(t) = 1) is studied in [9]. The case where 83 = 00
corresponding to Cauchy-Dirichlet boundary conditions is studied in [19]. Whereas second-
order parabolic equations in bounded non-cylindrical domains are well studied (see for instance
[2,5,7,15-18] and the references therein), the literature concerning unbounded non-cylindrical
domains does not seem to be very rich. The regularity of the heat equation solution in a non-
smooth and unbounded domain (in the = direction) is obtained in [3,6,8] and [4].

In the next sections, we prove Theorem 1.1 in four steps:

(1) case of a bounded domain which can be transformed into a rectangle;

(2) case of an unbounded domain which can be transformed into a half strip;

(3) case of a small in time bounded triangular domain;

(4) finally, we use the previous steps and a trace result to complete the proof of Theorem 1.1.

2. The case of a bounded domain which can be transformed
into a rectangle

Let T be an arbitrary positive number. Denote by
Dy :={(t,z) eER*:0<t<T; o1 (t) <z < p2(t)}
with ¢ () > 0 for all ¢ € [0, 7] and consider the following problem:

0w — c(t)0?u = f1 a.e. on Dy,
ulp, = ulp, =0, (2.1)
Oy + Bgu|F2 =0,

where f1 € L*(D;) and Iy is the part of 9D; where t = 0.

Let us denote the inner product in L? (D;) by (.,.). Then, the uniqueness of the solutions
may be obtained by developing the inner product

(Opu — c(t)02u, u) .

Indeed, Let us consider v € H12(D;) a solution of Problem (2.1) with a null right-hand side
term. So,

O — c(t)0%u =0 in Dj.
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Fig. 2. The bounded domain Dy

In addition u fulfils the boundary conditions
u\FO = u|Fl = 8Iu—|—,6’2u|r2 =0.

Using Green formula, we have

/Dl (Bpu — c(t)D7u) u dt dz = /

(1 lul? vy — c(t)@xu.uum> do +/ c(t) (|8xu\2) dt dz,
D4 2 D1

where v4, v, are the components of the unit outward normal vector at 9D;. We shall rewrite
the boundary integral making use of the boundary conditions. On the part of the boundary
of Dy where t = 0, we have v = 0. Accordingly the corresponding boundary integral vanishes.
On the part of the boundary of D; where t = T, we have v, = 0 and 1, = 1. Accordingly the

corresponding boundary integral

w2(T)
5 [ @
»1(T)
is nonnegative. On the parts of the boundary where x = ¢; (t), i = 1,2, we have
N Y N ) 1)
L+ (#)" (1) L+ () ®)

and
u(t, 1 (t) = Ozu(t, 2 (t)) + Pau(t, 2 (t)) = 0.

Consequently, the corresponding integral is

1
|5 Celt)p = ()02 (2 1) .

Then, we obtain

1 /7T
/ (O — c(t)P2u) u dt do = 5 / (2¢(t)Ba — @b (1)) u? (t, 2 (1)) dt +
Dy 0

1 p2(T)
+= / |u|2(T,m)dx+/ c(t) (|8mu|2)dtdx.
2 Dy

v1(T)
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Consequently using the fact that u is the solution yields

/Dl c(t) (|6'ru\2) dt da =0,

because thanks to the condition (1.4) and to the fact that ¢(t) > 0 for every t € [0,4o00], we
have

p2(T)

1 (" 1
5/ (2e(t)B2 = ¢ (1) w? (t, 02 () dt + 5 / Jul? (T,x)dx+/ c(t) (|81u|2> dt dz > 0.

’ 1(T) o
This implies that |8,u|” = 0 and consequently &2u = 0. Then, the hypothesis dyu — c(t)2u = 0
gives 0yu = 0. Thus, u is a constant. The boundary conditions and the fact that Sy # 0, imply
that w = 0 in D;. This proves the uniqueness of the solution of Problem (2.1).
Now, let us look at the existence of solutions for Problem (2.1). The change of variables (¢, z) to

— t
(t, xgo(ftl)()) transforms D; into the rectangle @ = ]0,T[ x ]0,1[ and Problem (2.1) becomes

the following;:
c(t)
@ (t)

Ou+ a(t,x) Opu — 0%u = f; a.e. onQ,

ul;—g = ul,—g =0,

Ozt~ Pa(t)ul,_, =0,

() + oy (¢
where f; € L?(Q) and a (¢, z) = _339"()(‘:)901(). Observe that the coefficient a is bounded. So,
P

a(t,2)0, : H? (Q) — L*(Q)

the operator

is compact. Hence, it is sufficient to study the following problem:

oct) o
Oru 200 O;u= f1 a.e. on @,

uly_g = ul,_o =0, (2:2)
a:tu + ﬂ?@(t)u|x=1 = 07

where f; € L?(Q). It is clear that Problem (2.2) admits a (unique) solution u € H2(Q) because
c(t)
@ (1)
other hand, it is easy to verify that the aforementioned change of variable conserves the spaces
L? and H'2. Consequently, we have proved the following theorem:

the coefficient "

satisfies the "uniform parabolicity" condition (see, for example [1]). On

Theorem 2.1. Problem (2.1) admits a (unique) solution u € HY?(Dy).

3. The case of an unbounded domain which can be
transformed into a half strip

In this case, we set

Dy :={(t,z) ER*:t>0; 1 (t) <z <2 (t)}
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with ¢ (0) > 0 and consider the following problem:

Opu — c(t)0?u = f1 a.e. on Dy,
ulp, = ulp, =0, (3.1)
Osu + 52u|r2 =0,

where f; € L?(Ds), and Ty is the part of 9Dy where t = 0.

4
%u,e
3 ?]J‘u‘\',_,i..l,. _
_ﬁ\'ﬂ )
A
T
u=10 N
0 g
x> T
L,@ B
u—gp

Fig. 3. The unbounded domain Dy

The change of variables indicated in the previous section transforms D, into the half strip
P =]0,400[ x]0,1[. So Problem (3.1) can be written as follows:

c(t) B
Opu+ a (t, ) Oyu 2 Oiu= f1 a.e. on P,

u|t=0 = u‘ac:O = 07 (32)
Ozu+ Bap(t)ul,_, =0,

where f; € L?(P) and the coefficients a is that defined in Section 2.

T
h

Oruw+ Pou =0

u=>0

Fig. 4. The half strip P

Let fl(n) be the restriction f1|}0’n[x]0’1[ , for all n € N*. Then, Theorem 2.1 shows that for all
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n € N*| there exists a function u,, € H'? (P,) which solves the problem

t
Opun + a (t,x) Oy, — 62((1) 02u, = 1(") a.e. on P,,
¥

un|t:0 = unlz:O = 07
Oyl + /82(10(t)un|x:1 =0,

(3.3)

where £ € L2(P,), and P, =10,n[ x ]0,1[.

r
h

Oty + oy, =0

Uy =0

0 up =0 n

Fig. 5. The truncated half strip Pn
Now, let us prove an "energy" type estimate for the solutions u,, which will allow us to solve
Problem (3.2) and then equivalently Problem (3.1).
Proposition 3.1. There exists a constant K > 0 independent of n such that

2 2
K| fillzzcpy -

2 n)
HunHHLZ(Pn) S KHfl L2(P,) <

In order to prove Proposition 3.1, we need the following result:

Lemma 3.1. There exists a constant K independent of n such that
2 2 2
lunllzz(p,) < K Osunllr2(p,) < K f1llpzcp) -

Proof. The Poincaré inequality gives |[un|r2(p,) < K ||0sunl|p2(p,) - Now, we estimate the inner
product <f1("), un>
Estimation of <f1(n), un>:

<f1n)7un> = / unﬁtundtdx—l—/ a (t,x) upOpupdtdx —/ Z(ii)unaiundtdx =
P, P, p, ¥
c(t)

1 1
/6 [2 |un|2 vy + a(t,x)§ |u”|2 Vg — spz(t)axun.unux] do +

C(t) 2 1 / 2
+ ——— (Ogu,)” dtde — = Oza(t, x) |uy|” dtdx,
/P = (t)( ) 2 /. (t,2) |un|

where v, v, are the components of the unit outward normal vector at the boundary of P,. We
shall rewrite the boundary integral making use of the boundary conditions. On the part of the
boundary of P, where ¢t = 0, we have u, = 0 and consequently the corresponding boundary

n
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integral vanishes. On the part of the boundary where ¢ = n, we have v, = 0 and vy = 1.
Accordingly the corresponding boundary integral is the following:

/0 % (un)? (n, z)dz.

On the part of the boundary where x = 0, we have v, = —1, vy = 0 and wu, (¢,0) = 0. Conse-
quently, the corresponding integral vanishes. On the part of the boundary where z = 1, we have
vy =1, vy, =0 and

Oz (t,1) 4 Baip (t) up (t,1) = 0.

Consequently, the corresponding integral is

/” (2¢(t)B2 = #5 (1)) (un)” (8, 1)dt.
0

2 (1)
Finally,
p2(n)
(@) = [ S g [7EAOEEAT) ) ¢
p1(n)
+/Pn@2(t)(aw )2 dtd +2/13n(p(t)| W2 dtde.

Thanks to the condition (1.4) and since the function ¢ increases, we obtain

(n) N c(t) 2 S 2
(7 0 ) > /P G eh O e > C 0,00,

Hence, for all € > 0,

2 1 (n)
||8zun||L2(Pn) < 6 ||Un||L2(pn) ‘fl L2(Py) <
1 (n) 2 € 2
ae L P S
By using the Poincaré inequality, we obtain
€ 2 1 (n) 2
(1 — 6) HaxUnHL2(Pn) g a 1 L2(Pn) .

Choosing € small enough in the previous inequality, we prove the existence of a constant K such

that
2

2 n
HazunHm(Pn) < KHfl :

L2(P,)

Since
2

e

2
poiny < IHillEacr).

we obtain
5 2
[0ztnllz2cp,) < K fillz2py -
O

Remark 3.1. Similar computations show that the same result holds true when we substitute the
condition that ¢ increases in a neighborhood of +o0o by the following:

" ()] p(t) < Mc(t).
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Proof of Proposition 3.1.
Let us denote the inner product in L? (P,) by (.,.), then we have

_ )
) =(Opun, + a (t,x) Oy, 200

— 1BrtunllZagp,y + ladsttnllZagp, +

2 cet) o
Oy, Oy, + a (t, ) Opun, 2 oup) =
2

+2/ a0y Opupdtdr—
L2(P,) P,

Hf(")

<) o,
22

—2/ a@@acun@gundtdx—Q/ &@una‘zundtdm.
P, P2 (1) P, ¥* (1)

c(t)
©* (1)

Observe that the coefficients a and are bounded. So, thanks to Lemma 3.1, for all € > 0

we obtain

2

ct) e - / ) g, WOPupdtds <
L2(P,) p, ¥ 2(t)

22 () wln

2
[0cunllzz(p,) + ’

2

Hfl L2 + |a0zunlr2(p,) + 2 100unll 12 (p,y 160 unll p2(p,) +
c(t)
+2||02uy, a——~OgUn, <
R T

2 2 2

Hf1 L2(P ) + K (1 + e) 10zunllz(p,) + €10tunllL2ep,) +€ Hagun||L2(pn) <
(n) 2 2
< Kc||fi L2(Py) +e ||6t“n||L2(Pn) te Haxu"HL?(P")

where K, and K; are constants independent of n. Consequently

2 22 c(?) 2 (n)
(1—¢) (||8tUnHL2(pn) + ||amun}|L2(Pn)> < 2/Pn Watun8$undtdx + K, . (3.4)
Estimation of 2 / &&un(ﬁundtdw :
p, (1)
We have )
Aptin 02ty = Oy (DyinDytiy) — 50 (Dpun)” .
Then
c(t) 2 / c(t) / c(t) 2
2/ Opun Oyundtdr = 2 ——0,, (Oyu,,0zu,,) dtdr — O (Ozup)” dtdx =
Ik 2 (O OrinOtn) i = | oy O (Orin)
c(?) 2 / c(t) 2
= — (Ogup)” vy + 204Uy, Opunvy | do + Ogpuy, ) dtdx
f 700 [ @ 20 i+ [, )@

where v4,v, are the components of the outward normal vector at the boundary of P,. We
shall rewrite the boundary integral making use of the boundary conditions. On the part of
the boundary of P, where t = 0, we have u,, = 0 and consequently 0, u,, = 0. The corresponding
boundary integral vanishes. On the part of the boundary where t = n, we have v, = 0 and
vy = 1. Accordingly the corresponding boundary integral

_/0 9062(7(2) (Opun)*(n, x)dx
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is negative. On the part of the boundary where x = 0, we have v, = —1, vy = 0 and w,, (¢,0) = 0.
Consequently, the corresponding integral vanishes. On the part of the boundary where x = 1,
we have v, =1, v, =0 and

Oztp (t,1) + Bap () up (,1) = 0.

Consequently, the corresponding integral is

" —2fac(1) —Bac(n) , " c(t) \/
/O T2 D (£, 1)un (t, 1)dt = un(n,1)+/0 52( )ui(t,1)dt,

o (t) ¢ (n) e (t)
which is negative thanks to the condition (1.6) and to the fact that 85 > 0. Finally,
c(t ) 2 / c(n) Bac(n)
2/ Opun O undtde = — Opun)?(n, x)dx — u, (n, 1)+

(n
2(¢tt) tl)dt—i—/P (;2(2))/<6xun>2dtda:.
5)

Q

“f

n

/
are bounded. So, by using Lemma 3.1, we deduce

Note that the functions (() (
2 /P n S0(72))@%3 undtdz /P n (@02(2))'@ s <

2

K, ||awunHL2(Pn) <
2

Ks | fillze(py »

<
<

1
where K5 and K3 are constants independent of n. Consequently, Choosing € = 3 in the relation-
ship (3.4), we obtain
10ctunllZapyy + 10203 p,y < K 11132

Consequently, making use of Lemma 3.1 and the previous estimate, then, there exists a constant
K > 0, independent of n satisfying

2 2
lunllzg2p,y < K Nfillz2(py -
This ends the proof of Proposition 3.1.

Remark 3.2. We obtain the solution u of Problem (3.1) by letting n go to infinity in the previous
proposition. The uniqueness can be proved as in Theorem 2.1.

Finally, we have proved the following Theorem:

Theorem 3.1. Problem (3.1) admits a (unique) solution u € HY?(Dy).

4. The case of a small in time bounded triangular domain

Let T be a small enough positive real number. We set
Dy:={(t,z) eR*:0<t<T; o1 (t) <z < p2(t)}
with ¢ (0) = 0 and consider the following problem:

Opu — c(t)0?u = f1 a.e. on D3,
ulp, =0, (4.1)
Ozu + Baulp, =0,
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where f1 € L?*(D3). Set

1 1
QnZ{(t,x)€D3:n<t<T}, n € N* and 5<T,

1 n
For each n € N* such that ~ < T, we set fl( ) = filg, € L*(Qn) and denote by u, € H"* (Qy)

the solution of the following problem:

Oy, — c(t)0%u, = f1 a.e. on Qp,
= O,
=0.

un|t:% = Up|

Ot + ﬂZun|

z=¢1(t)
r=p2(t)
Such a solution exists by Theorem 2.1.

Proposition 4.1. There exists a constant K > 0 independent of n such that

2
2
lanlnaq,y < K | A

2
13Qu) < K| fillzepg) -

Remark 4.1. Let € > 0 be a real which we will choose small enough. The hypothesis (1.3)

implies the existence of a real number T > 0 small enough such that
loh (t) p(t)| <€, forallt € (0,T), i=1,2.
In order to prove Proposition 4.1, we need some preliminary results.

Lemma 4.1. There exists a constant K independent of n such that for all t €]0,T:

D lunll2(q,) < K l[@0aunll2(q,);

©2(t) ®2(t)
2) [ wi(t,x)de < Kp* [ (02un)?(t, z)dw;
p1(t) w1(t)

#2(t) P2(t)
3) [ (Opun)?(t,x)de < Kp? [ (02un)?(t, z)dx;
p1(t) w1(t)

4) 10zunllr2(q,) < Kl f1llp2cp,) -

Proof. Inequality (1) is a consequence of the Poincaré inequality.
The following operator is an isomorphism (see, [9])

2 2
HZ(0,1) — L*(0,1), u > u”,

where,
H2(0,1) = {u e H*(0,1) : u(0) = 0,u (1) + Bou (1) = 0} .

So, there exists a constant K > 0 such that

||“||L2(0,1) < ||UH||L2(0,1)’
lu'll 20,0y < NIl p20,0) -

The change of variables (for a fixed t)

[0,1] = [p1(t), p2(B)]; x— y = (1 —x)p1(t) + zp2(2),
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leads to the estimates (2) and (3).

To prove (4), it is sufficient to expand the inner product < fl(")

,un> and use the inequality (1).

Indeed, we deduce for all € > 0, (see the proof of uniqueness of solutions in Theorem 2.1)

/ c(t)(Opun)?dtde < ’<f1(n),un> <

Qn
< A, el <
el iz "A@)=

2 2
S ALz + K 00aunllzz g, -
However, ¢ is bounded and ¢ > a > 0. Choosing € small enough yields the desired result. O

Proof of Proposition 4.1. Let us denote the inner product in L?(Q,) by (.,.) and set £ :=
0y — c(t)9?2, then we have

n 2 2
Hfl( ) o = (Luy,, Luy,) = ||at“nHL2(Qn) + Hc(t)aiunHLz(Qn) — 2(Dytn,, c(t)0?uy,).
Estimation of —2(d;u,,, c(t)02u,,) :
We have
unduy, = Op(Opundpun) — 30; (Dpun)? .
Then,

—2(0y,, ¢(t) D) —2/ c(t)0sun 02 uy dtde =

n

-2 / (t) 0y (Opundyuy,) didz + / c(t)0; (Opun)® dtds =

n n

/ c(t) [(8zun)2 v, — 28tunamunux] do — / ¢ (t)(0puy, ) dtd
0Qn

n

where vy, v, are the components of the unit outward normal vector at the boundary of @,,. We
shall rewrite the boundary integral making use of the boundary conditions. On the part of the

boundary of @,, where t = —, we have u,, = 0 and consequently 0,u,, = 0. The corresponding

n
boundary integral vanishes. On the part of the boundary where ¢ = T, we have v, = 0 and
vy = 1. Accordingly the corresponding boundary integral

#2(T)
(T) (Dpun)? da
©1(T)
is nonnegative. On the parts of the boundary where z = ¢; (t), i = 1,2, we have
CON 10
L+ (9)* (1) L+ (1) (1)

s Un (891 (1)) = Ozun (8, 02 (1)) + Baun (L, 02 (8)) = 0.

Vgp=

Consequently, the corresponding integral is

T T
— [ et (1) [Bsun (¢, o1 (8)) dt —2 / c(t)Brun (L, p2 () Oxun (¢, @2 (1)) dt —

1

3=

n

T
- C(t)()pé (t) [awun (ta P2 (t))]Q dt.

3=
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By putting A (t) := u,(t, p2(t)), t € [1,T], we obtain

Dt (1, 02 (1) Dtin (£, p2(1)) = B (1) (t, 3(t)) = 93(t) (Dun(t, p2(1)))*.

So, by using the boundary conditions, we get

T
9 / ()00 (t, (1)) Datin (£, 9 (£)) dt =

n

T

=—aﬁcwwwmwwmwMHa/;wwﬁnawwwwm%ﬁ:

T

T
= 2ﬂz/ C(t)h'(t)h(t)dt+2/ c(t)pa(t) (Duun(t, p2(1)))* dt =

1

ES
n
T

:xyﬁc@wmwm+2ﬁyﬂwwﬂm%www»fﬁ:

T T

= Boe(T)(W(T))? - B [ (2t o (8) it + 2 / c(t)on(E) (Datin(t, 22 (£)))? dt.

1

Observe that, thanks to the condition (1.6) and the fact that 82 > 0, ¢(¢) > 0, we have
T
Bac(T)(W(T))* — 52/ (it pa(t)dt > 0.

1
n

So, by setting

h1=—[cw¢w@%wwwWw

n

T
Mzz(ﬁdWﬂm%w@meﬁ

n

we have

~ 20y, e()3un) = — L] = nz2| - (4.4)
Estimation of I, ;, k=1, 2.
Lemma 4.2. There exists a constant K > 0 independent of n such that
5 12
max(|Ina|, [ Inz]) < Ke HawunHm(Qn) .

Proof. We convert the boundary integral I,, ; into a surface integral by setting

w2(t)

L el -

»1(t)

[Dpun (£, 01 (£)]2 = —22 (t)—=

=0 () Oen (2]

e2(1) P2(t)
= w (% T 2u xT)ar — L U T 2 T
=2 [ B0, () R () da = [ s (D (1)

2
»1(t) w1(t)
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Then, we have

1

L = - / ()@} (t) Dgtin (£, 1 ()t =

3

_ M u 2 . MC , . 2 i
N / e (t) (Osun)” dtd +2/” - (@) (1) (t) (Oxun) (O2un) didz.

Thanks to Lemma 4.1, we can write

p2(t) p2(t)
[Ortn (2, x)]2 dx < Clp (t)]2 / [aﬁun (t, :r)]2 dx.
w1 (t) w1(t)

Therefore,
p2(t) p2(t)

dr <Cleillel [ [2un (t.2))" da.

»1(t) w1(t)

consequently,

|In,1

< C/ c(t) o1 [¢] (8§un)2 dtdx + 2/ c(t) 9] 0ptn| |02un | dida,
p2(t) —
(t)

'
Tl <C [ 1elt)] 6] (2un) dedo -+ ¢ [ elt) (@2u) dtdo % [ o(t) (1) (0ru,)” dtde.
Qn €

n n

since < 1. So, for all € > 0, we have

Lemma 4.1 yields
1 1
o )7 @t < 07 [ elt) () e (G

Thus, there exists a constant M > 0 independent of n such that

n

Ll < C / c(t) [muwlwafw] (02u,) dida + ¢ / (t) (0%u,)° dtde <
Qn €
€

< M/ (02u,,)? dtdz,

n

because ‘cp/lgo’ < €. The inequality

Lol < Ke | @unf7a.

can be proved by a similar argument. O

Now, we can complete the proof of Proposition 4.1. Summing up the estimates (4.4) and
those of Lemma 4.2, we then obtain

2

b

2 2
vy 2 1020, + e@®2nl 520, = Kae |02l f2q, ) =

> [0, + (0% = Kie) [02un g, -
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where K is a positive number. Then, it is sufficient to choose € such that
2
a” — Kqye > 0,

to get a constant Ky > 0 independent of n such that

2 2
L2(Qn) = KO( ||atun||L2(Qn) + Ha:zunH[g(Q") )

But

(n)
| v S Ml

then, there exists a constant K > 0, independent of n satisfying
2 2 2
||atunHL2(Qn) + HazunHLz(Qn) <K ||f1HL2(D3) :

Consequently, making use of Lemma 4.1 and the previous estimates, then, there exists a constant
K > 0, independent of n satisfying.

2 2
[unll32(q,) < CllfillL2(p,) -
This ends the proof of Proposition 4.1. Finally, we have proved the following Theorem:
Theorem 4.1. Problem (4.1) admits a (unique) solution u € H?(D3).

Proof. We obtain the solution u of Problem (4.1) by letting n go to infinity in the previous
proposition. The uniqueness can be proved as in Theorem 2.1. O

5. Back to Problems (1.1)—(1.2) and proof of Theorem 1.1

The proof of Theorem 1.1 can be obtained by subdividing the domain
D:={(t,2) eR*:t>0, o1 (t) <z <¢2(t)}
into three open sub-domains €24, 9 and Q3. So, we set D = Q; UQy U Q3 UI'r, Uy, where
Q={(t,x)eD:0<t<Ti}, Q={(tz)eD Ty <t<To}, Q={(tz)eD:t>T},

FT] = {(Tl,l‘) S R?: Y1 (Tl) <x < P2 (Tl)} and FT2: {(TQ,Z‘) € R?: ¥1 (TQ) <xT < P2 (TQ)}

with T is a small enough positive number and T is an arbitrary positive number such that
T, > Ti. In the sequel, f; stands for an arbitrary fixed elements of L? (D) and ffz) = f1|ﬂi7
i=1,2,3.

Theorem 4.1 applied to the triangular domain 21, shows that there exists a unique solution
wy € HY2 () of the problem

Oywy — c(t)0%wy = fl(l) a.e. on (),
w1|F1,1 = O’ (51)
Opw1 + Pawr|p, , =0,

where fl(l) € L? () and T'; ; are the parts of the boundary of Q; where z = ; (t), i =1,2.

Lemma 5.1. If w € HY2(]0,T[ x ]0,1[), then w|,_, € H" (v0), w|,_, € Hi (v1) and w|,_, €
H? (v5), where 4o = {0} x]0,1[, 71 =10, T[ x {0} and vo =10,T[ x {1}.

- 271 —



Louanas Bouzidi, Arezki Kheloufi Global in Time Results for a Parabolic Equation Solution. ..

It is a particular case of Theorem 2.1 ([14, Vol. 2]). The transformation
(t,2) — (', 2") = (L () z + 91 (1))
leads to the following lemma:

Lemma 5.2. If we H"2(Qy), then w|FT1 € H (I'r,), Wy 1) € H? (Iy5) and wl
H%(Fgg), where T'; o are the parts of the boundary of Qs where x = ¢, (t), i =1,2.

z=¢2(t) €

Hereafter, we denote the trace wi|,, by ¥ which is in the Sobolev space H! (T'r,) because
1

wy € HY? (1) (see Lemma 5.2). Now, consider the following problem in Q5 :

Oywsz — c(t)2wz = 1(2) a.e. on (o,
w3\pT1 =11,

ws‘rm =0,

Opws + Paws|p, , =0,

(5.2)

where fl(z) € L? (Q) and I'; » are the parts of the boundary of Qs where z= ¢;(t), i= 1,2. We use
the following result, which is a consequence of Theorem 4.3 ([14, Vol.2]), to solve Problem (5.2).

Proposition 5.1. Let Q be the rectangle 10, T[ x 10, 1], f1, fo € L?(Q) and 1,12 € H' (7).
Then, the following problem admits a (unique) solution u € HY? (Q):

O — c(t)0?u = f1 € L?(Q),
U|,Y0 =1,
u|,y1 =0,
Ogu + ﬂ2u|,y2 =0,
where Yo = {0} X ]07 1[3 7= ]OvT[ X {0} and V2 = ]OaT[ X {1} '

Thanks to the transformation
(t,2) — (ty) = (Lo Bz + e (D),
we deduce the following result:
Proposition 5.2. Problem (5.2) admits a (unique) solution wz € HY? (Qy).
Hereafter, we denote the trace w3|FT2 by ®; which is in the Sobolev space H! (I'1,) because

wz € HY? (Q2) (see Lemma 5.2). Now, consider the following problem in Q3 :

Oyws — c(t) 02wz = fl(g) a.e. on {3,

Ws = (b s
oy, = 1 (5.3)
w5‘1—‘1,3 = 0’

Oz ws + 52105\1}3 =0,
where fl(g) € L? (Q3) and I'; 3 are the parts of the boundary of Q3 where z = ¢; (¢), i = 1,2. By
similar arguments like those used previously, we deduce the following result:
Proposition 5.3. Problem (5.3) admits a (unique) solution ws € H1? (Q3).
Finally, the function u defined by

w1 in Ql,
U= ws in Qs
Ws in Qg,

is the (unique) solution of Problem (1.1)—(1.2). This ends the proof of Theorem 1.1.
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Remark 5.1. Let us consider the following problem: to find a function v € HY2(D) that satisfies
the equation
O — c(t)0?v = fo a.e. on D (5.4)

and the boundary conditions
v|F2 = Oyv+ ﬂlv|r1 =0, (5.5)

where fo € L?(D) and the coefficient ¢ and the domain D have the same properties as in Problem

(1.1),(1.2).

By using the same arguments like those used in solving Problem (1.1), (1.2), we can show that
Problem (5.4)-(5.5) admits a (unique) solution v belonging to H'?(D), under the assumption

B1 <0 and 2¢(t)B1 — @y (t) <0 a.e. t €]0,+00].

The authors want to thank the anonymous referee for a careful reading of the manuscript and
for his/her helpful suggestions.
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I'mobGasibHBIE BO BpeMeHU Pe3yJIbTaThl AJIsSI penieHus
MapaboJINvYeCKOTO YpaBHEHUsI B HENPSIMOYTOJIbHBIX
obJacTax

Jlyanac By3umau
Apesku Xesioydn

Yuusepcurer Bemxkas
Bemxas, Amxup

Awnnoranusi. B 310it cTaThe paccMarpuBaeTcs mapabomIecKoe ypaBHEHNE
dw —c(t)0iw = fin D, D= {(t,2) ER*:t >0, ¢1(t) <z < pa(t)},

rae ; : [0,400[— R,i =1, 2 m ¢ : [0,+00[— R, ymoBreTBOpsiss HEKOTOPBIM YCJIOBUSAM, 33298 J10-
MIOJIHSIETCSI TPAHUYHBIMU ycaoBusiMu Tumna /lupuxise-Pobuna. Ml usydaem npobsiemy riaobajabHOM pery-
JIIDHOCTH B NOAXOZsIeM napabosmdeckoM npocrpanctse CobosieBa. B wacrHOCTH, JOKaXKeM, 9TO JJIst
f € L?(D) cyuiecTByer eqMHCTBEHHOE pEIIeHHe w Takoe, 4to w, dww, P w € L*(D), j = 1, 2. O6paru-
Te BHEMAHUE, YTO CJIydail OrpaHUIEeHHBIX HENIPSIMOYTOIbHBIX obsacTeii nusydaercs B [9]. JokasaTesbcTBo
OCHOBAHO Ha OIIEHKAaX SHEPIUH II0CJe MPpeodpa3oBaHus 3aJadl B II0JIOCOBOM 00IaCTH B COYETAHUN C HEKO-
TOPBIM MHTEPIIOJISIIMOHHBIM HEPABEHCTBOM. DTa PaboTa JONIOJHSIET Pe3yabTaThl, noaydenuse B [19] B
ciaydae rpaHnyHbix ycsouii Kommw-/Iupuxie.

KuroueBsbie ciioBa: napabomyecKne ypaBHEHUsI, yPAaBHEHUE TEILJIONPOBOIHOCTH, HEIIPSIMOYTOJIbHBIE 006-
JIaCTH, HEOTPAHWYEHHBIE 00JIACTH, aHU30TPOIHBIE MpocTpaHcTBa CoboseBa.
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