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The problem of motion of a binary mizture in a tube with rectangular cross-section is considered in the
paper. Ezact stationary and non-stationary solutions are obtained. Solutions are presented in the form

of series. It is proved that the solution reaches a stationary state with increasing time.
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Introduction

In fluid mechanics one can distinguish the classical models which include equations of gas
dynamics, Navier-Stokes equation, etc. At the present time interest is aroused in non-classical
hydrodynamic models. The model of convection with the effect of thermal diffusion is a non-
classical hydrodynamic model. This complicated model describes accurately actual physical
processes. Thus it is necessary to study various submodels of this complicated model. Solutions
of stationary and non-stationary problems on the motion of binary mixture in a horizontal cylin-
drical tube have been obtained in [1]. In this paper we study the motion of binary mixture in a
tube with rectangular cross-section. The exact solutions of stationary and non-stationary prob-
lems are obtained. The exact solutions have always been of considerable importance in correct
understanding of various phenomena. They are used as "test problems" to verify correctness of
various approximations and to estimate the accuracy of numerical methods.

1. Problem statement
Let us assume that the motion of mixture is described by the following system of equa-
tions [2,3]
w + (u-v)u = —piows oVt g(AiT + BC);
Ty +u-vyT = xV?T;
C; +u-vyC = DV2C + aDV?T;

V-u=0,

(1)

where u is the fluid velocity vector; p is the pressure deviation from hydrostatic pressure; v is
the kinematic viscosity coefficient; g is the vector of gravitational acceleration; x is the thermal
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diffusivity coefficient; D is the diffusion coefficient; « is the parameter of thermal diffusion, py is
the mass density.

System (1) admits the following operator —0, + pogz (614 + B2B)05 + A0r + BOc where
A > 0 and B are constants. Then invariant solutions of this problem have the following form [1]

u = (u(t,z,y);v(t, 2, y);w(t, x,y));

p=—(BA+ B2B)gporz + q(t, z,y); (2)
T=-Az+0(t,z,y), C=—-Bz+c(tz,y),
and functions u, v, w, q, 0, c satisfy the system of differential equations with three independent

variables x, y, t.
In system (1) with conditions (2) we introduce the dimensionless variables

u = %Perﬂ, v = %PTG25, w = %PT‘G{D, q = po1gAh*PrGy,
_ ¢ ®3)
o= Anpic, o= ABIPIGE
2

where h is the characteristic size, G is the Grashof number, Pr is the Prandtl number, S is
the Schmidt number, 1 and ¢ are thermal diffusion parameters. These dimensionless variables
satisfy the following relations

B AB1gh? v

, Pr=—, 8§ aba _ XPB
X

G — , €1 = .
B8 7' DBiA

v
=—.¢
V2 D’

Substituting (2) and (3) into (1), we obtain the system of equation (“wave” symbol is omitted
for convenience)
up + A(uuy +vuy) = =gy + Aogu+ 60 +¢;

v + AMuvg +vvy) = —qy + Dov;
wy + Muwg + vwy) = —x + Dow; (4)
Uy + vy, =0, Pro;+ APr(ufy + v8,) —w = A0;
Scep + ASc(ucg + vey) —eqw = Dac — Ao,

where A = PrG?; A\, is the Laplace operator, Ay = 92/0x% + 92 /0y>.

Further we consider the creeping motion of the binary mixture in a tube with rectangular
cross-section when A = 0 in system (4). Geometry of the flow is shown in Fig. 1.

System of equation (4) is transformed into the system

U = —Gx + Dou+0+c, vy =—qy+ Dov;

Uy + vy = 0;
wy = —x + Doqw; (6)
Pro; —w = Ny0; (7)
Sc —e1w = Nagc — eNob. (8)

The viscous friction force arises when fluid moves relative to a body at rest. This force is
directed oppositely to the velocity of motion. This is phenomenon of tangential forces that hinder
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pox

Fig. 1 Geometry of the flow

the movement of fluid near solid wall. On the boundary I' = I'y UT3 UT's UT'y we set shear

stresses [4]
0
ul
a’/"j r
where I'1: z=a,[5: y=bT3: x = —a, I'y: y = —b are solid walls.
Also on solid walls we set temperature
T‘ —T,

r

and the mass flux through the boundary is zero:

Oc oT
— + Dp— =0,
(8n o 8n> r
where Dy is the thermal-diffusion coefficient, « = —D7 /Ty D, and Tj is the characteristic tem-
perature.
Let us take h = a thenon I'; weget x = 1;0on I'y: y =ba ' =8, onT3: 2= —1;0on Iy :

y = —d0. We have the following boundary conditions:

uy(t7 ]-,y) = uy(ta 7]-7y) = uy(tax,‘s) = uy(tax, 75) = 0, ( )
9
ve(t, 1, y) = v (t, —1,y) = v (t, 2,8) = v (¢, 2, —0) = 0;

w(t, 1,y) = w(t,—1,y) = w(t, z,d) = w(t,z,—d§) = 0; (10)

(ce — 5090)|z:i1 =0, (¢y— 69y)|y:i§ = 0. (12)

The continuity equation u, = —v, allows us to introduce a stream-function (t, z,y):
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U =1y, v=—1,. (13)
Taking into account (13), equation (5) and boundary conditions (9), we write

0

aﬁzw = DNoloth + 0y + ¢y,

¢yy(tv Ly) = wyy(tv -l,y) = wyy(t,xﬁ) = wyy(tax 9) =0, (14)
=0.

'(/)xac(ta la y) = www(tv _1) Z/) = Z/le(taxa 6) = T/wa(t,x, _6)

To complete formulation of the problem we use initial conditions and compatibility conditions.
Then the stream-function satisfy the following conditions

(0,2, y) = vo(x,y), (15)
Yoyy(1,y) = Yoyy(—1,y) = toyy (2, 0) = thoyy(x, —6) =0,
Yowa (1, Y) = Yowa(—1,Y) = You2(2, 0) = tozz(2, —0) = 0.
Conditions for the third component of the velocity vector take the form
w(0,z,y) = wo(z,y), (16)
wo(1l,y) = wo(—1,y) = wo(z,d) = we(xz,—0) = 0.

For functions (¢, z,y) and c(¢,z,y) we have
G(O,I,y) = Go(x,y), (17)

90(17y) = 9%(9); 90(_172/) = 9%(y)’ 90(1"5) = 9%(56)7 90($7 _5) = Hg(y)

C(vavy) = Co(-ﬁ,g), (18)
cOw(lvy) - 690$(1ay) = 07 cOw(_lvy) - 590$(_1ay) = 07

coy(z,0) — 0oy (x,0) =0, coy(z, —0) — eboy(x, —6) = 0.

2. The solution of non-stationary problem

Let us consider equation (6) with boundary condition (10) and initial condition (16).
We solve the first boundary value problem by the method of separation of variables [5]. We
seek a solution in the form of a double series

o0

w(t,l',y) = Z Xk(x)yn(y)Tkn(t)
n,k=0

Function z is also represented in the form of a series

o0

r= 3 Xe(@)Ya) fin(0)

n,k=0
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The coeflicient fi,(t) is defined later. After substituting the series into equation (6) we obtain
T’r/Lk: + ok X ]lc/ Yy

= ok N
T X v DTS
where
X// Y//
~ — = —A ny n — A n-
X, + Y, k i + v k

The eigenvalues py and v, can be found from Sturm-Liouville problem for Xy (z) and Y, (y):

X (2) = sin(rkx), up, = (7k)?,

Y, (y) = sin (%y) JUp = (%)2

Now we need to solve the Cauchy problem
ngn + fin = —KTkn, Tkn(0) = Ku,,

where K = 72672(5%k% + n?) and coefficient K, follows from the Fourier sine series expansion
for the function wg(z,y):

1 ™
Ky, = —— wo(z,y) sin(mkz) sin | —vy ) dxdy.
= Tt [ oty sk sin (G dody

1/2

1 46

Coefficients ||wp|| and fnr are ||wo|| = (/ / w%dwdy) ,
—1J-s

Fok = V3(2V6)™ //xsm k) sm(6 )d:rdy—llxﬁw (nk) (=)™ = 1)(=1).

Finally, the solution of problem (6), (10), (16) has the from

w(t,z,y) = f: ((KWOH;"(’“) exp(—Kt) — fnk)sin(wkx)sin (%”y)

n,k=0

Function 0(¢, z,y) is the solution of the boundary value problem (7), (11), (17). The solution
can be obtained with the use of the Green’s function as [6]

1 t 2 26
o) =5 [ [ [ wrenG - o+ 1y +6.cmdednirs

28
+/' 006, m)G(t,x + 1,y + 6,6, n)dnde +
0

26
0
/ 05(n, 7 (aG(t—ﬂﬂC-i-l,y—i—(S,f 77)) d?’]dT—
1 26 a
_7/ / 01(n,7) (G(t—T r+1,y+9,¢, Tl) dndr+
Pr Jo Jo 23 s
1 t 2 ) a
+ﬁ/0 | 05(¢,7) (%G(t—nmﬂ,yw,g 77) dgdr—
_1/t 29%(5 7) 2G(Yf—Tac—l—l y+6,&,m) d§d7'.
Prfy Jo ’ an ’ ’ ’

—402 —



Alexandra E. Silaeva  On Creeping Motion of Binary Mixture in a Tube with Rectangular Cross-Section

The Green’s function is written as

S K
G(t7x,y7£;77) = % Z F(x’y7£777) exp <_4t>

Pr
k,n=0

where F(z,y,&,n) = sin (;ﬁkx> sin (;Wk’f) sin <2157my) sin (2167rnn>.

Let us consider the solution of boundary value problem (8), (12), (18). Because we have
inhomogeneous boundary conditions for the function ¢(¢, z,y), we introduce new unknown func-
tion c(t, z,y) = ¢(t,xz,y) + €0(t, z,y). Now we have boundary value problem with zero boundary
conditions for ¢(t, z,y):

SCt = Caz + Cyy — Seby + 1w,

0, 0, (19)

Z|

z=+1 Ey‘y:ié -

5(071‘7?4) = CO(xvy) - 590(1:7?/)'

Function —Se6; + eqw is known.

In order to solve problem (19) we divide it into two subproblems. The first problem is
homogeneous problem with nonzero initial conditions. The second problem is inhomogeneous
problem with zero initial conditions. The solution of these boundary value problems can be
obtained by the method of separation of variables. Finally, the solution of problem (8), (12),
(18) has the form:

- Kt\ K, Kt
c(t,x,y) = Z (KCOQO exp <Sc> + 79 <1 — exp (Sc))) cos(mkx) cos (%y) + €0,

k,n=0

where K,
coefficients of Fourier cosine series expansion for the known function on the right-hand side of
equation (19).

.0, are coefficients of Fourier cosine series expansion for initial condition (19), K, are

It only remains for us to solve boundary value problem (14), (15) to find stream-function.
The stream-function is represented in the following form:

o0

Y(t,x,y) = Z Yien (t) sin(mka) sin (%y) )

k,n=0
Let us notice that functions sin(7kxz) and sin(7mnd~'y) are orthogonal on —1 < z < 1,
15
—6 <y < 0, that is, / / sin(rkx) sin(mnd~ty)drdy = 0.
—1J=s

After substituting the expression for the stream-function in equation (14) we obtain function
Vg (t) and the solution takes the form:

V(t, z,y) = Z (_ ‘;{(926 + (I[((e; + Kw()) exp(—Kt)) sin(rkz) sin (%y) ,

k,n=0

where K are coefficients of Fourier sine series expansion for the known function on the right-
hand side of equation (14), Ky, are coefficients of Fourier sine series expansion for initial condi-
tion (15).
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3. The solution of stationary problem

Now we consider stationary problem. One needs to solve the system of equations

A2A2¢ + Qy + Cy = O,
—x + Now =0, (20)
—w = Aga,

—&1w = AQC - 6&20.

with boundary conditions (5)— (8), (10)- (12), (14)

Vyy(£1,y) = Vyy(2, £6) =0
Voo (£1,y) = thaa(z, £0) =
w(£l,y) = w(z,£J) =0, (21)
0(£1,y) = 0,°(y), 0(x, £8) = 0, (x),
(e — 50$)|w:i1 =0, (¢y— 591})|y:i5 =0.

Problem (20), (21) is solved by the method of separation of variables with the use of Green’s

function [6]. The solution has the form

Z — sm (mkx) sin (W(Sny) ,

k,n=0
O(x,y) =
2 20 20 b
[ e Ly semdcans [T oo (ot Lusacn)| an-
o Jo 0 £=0
26

dé—
n=0

2 0
d 92 (G 17 67 ) >
B nt [ 66 (5rGae+ Ly

/9257 ( Gi(z + 1, y+(5§77)>

clx,y) =0+ i % cos(mkx) cos (%y) ,

k,n=0

01 (n) (;Gl(wrl y+9.€, 77)>

0

dg,

n=20

oo

Koy
Y(x,y) = — Z K—isin(ﬂkx) sin (%y) ,
k,n=0
4 1 . . . .
where G1(z,y,§,mn) = 5 Z EF(x,yf,n) and K, is Fourier cosine transformation for the

function e;w.
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4. Convergence of the non-stationary solution to the sta-
tionary solution

Let us consider convergence of the solution of non-stationary problem to the solution of
stationary problem. Let us denote the solution of stationary problem as wy, 65, cs, andi,.

It is easy to see that when ¢t — oo function w(t, z,y) tends to function ws(z,y). The
difference between w(t, z,y) and ws(x,y) is

lws —w| =

- i <(Kw0 + f;(’“) exp(—Kt) — @{’“) sin(rke) sin (%y) +

n,k=0

+ i fLKksin(wk:x) sin (%y) <

k,n=0
<> <Kw0 + f]"(’“) exp(—Kt) 0.
n,k=0 t—o0

Let us consider functions ¢(¢, =, y) and ¢s(x,y). The difference between these functions depend
on the difference between Sef; + eyw and eqw. For stationary problem 6, = 0, that is, (Scef; +

61w)|9t:0 = g1w. Then we have
les — ] < i i(ng - K,)| — 0.
k=0 K

Therefore, the solution of non-stationary problem c(¢,x,y) converges to the solution of sta-
tionary problem.
In a similar way, we can show the convergence of function ¢ (¢, x,y) to function ¢(x,y) when

t — o0.
- K@c K@c KG(:
|¢8 - "/J| < Z 2 2 ( 2 + Kwn exp(—Kt) 0.
n,k=0 K K K t—o0

Now we prove convergence of function 0(¢, z,y) to function 0,(x,y) with the use of the max-
imum principle [5]. If T'= 6 — 0, then we obtain from equation (7) and the third equation (20)
the following equation

1 1
= 7A2T —+ 7((,0 — ws).

T,
LT pr Pr

Boundary conditions for this equation follows from (11) and (21):
T(t7 :l:lv y) = 0%,2“5 y) - 9%,2(y)a T(t7 €z, :I:(S) = 9%,2@7 l‘) - 9%,2(58)’

Initial condition is T'(0,z,y) = 6y(x,y) and we should also add the compatibility conditions.
According to the maximum principle, the maximum value of the function T'(¢,z,y) is achieved
on the boundary:

tel(0,
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If t — oo then T(t,+1,y) — 0, T(t,x,£8) — 0, as 0;(t,y) — 0j(y), 03(t,z) — 03 (x),
j = 1,2. It was proved earlier that w — w; — 0. It follows from compatibility condition that
6o — 0. Therefore, T(t,x,y) — 0 and we proved that |6 — 65|——0.

t—o0

Similar result has been obtained in the case of creeping motion in a horizontal cylindrical
tube [1].
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O mouasymieM OBMXKeHUU OMHAPHOII cMecHu B TpyOe

IIpAMOYTOJIBHOI'O CedeHnA

Anekcangpa E. CuaeBa

B pabome dana nocmanoska 3adauu deuscenus GunapHoll cmecu 8 mpybe NPAMOY20ALHO20 CEHEHUS.
THoayuerv, mownvle peuwerus CmayuoHapHotl U HECMAYUOHapHOT 3aday 6 sude pados. Jokasarno, wmo c
DOCTOM BDEMEHU PEULEHUE BBITOOUT, MG CTNAUUOHADHBIT PEAHCUM.

Karouesvie cro8a: BUHAPHAA CMECD, CMAUUOHAPHAA 360040, HECTNAYUUOHAPHAA 3A40040, NOA3YWUE DEULe-
HUA.
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