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The problem of motion of a binary mixture in a tube with rectangular cross-section is considered in the

paper. Exact stationary and non-stationary solutions are obtained. Solutions are presented in the form

of series. It is proved that the solution reaches a stationary state with increasing time.
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Introduction

In fluid mechanics one can distinguish the classical models which include equations of gas

dynamics, Navier-Stokes equation, etc. At the present time interest is aroused in non-classical

hydrodynamic models. The model of convection with the effect of thermal diffusion is a non-

classical hydrodynamic model. This complicated model describes accurately actual physical

processes. Thus it is necessary to study various submodels of this complicated model. Solutions

of stationary and non-stationary problems on the motion of binary mixture in a horizontal cylin-

drical tube have been obtained in [1]. In this paper we study the motion of binary mixture in a

tube with rectangular cross-section. The exact solutions of stationary and non-stationary prob-

lems are obtained. The exact solutions have always been of considerable importance in correct

understanding of various phenomena. They are used as "test problems" to verify correctness of

various approximations and to estimate the accuracy of numerical methods.

1. Problem statement

Let us assume that the motion of mixture is described by the following system of equa-

tions [2, 3]

ut + (u · ▽)u = − 1

ρ0
∇p̄+ ν∇2

u + g(β1T + β2C);

Tt + u · ▽T = χ∇2T ;

Ct + u · ▽C = D∇2C + αD∇2T ;

∇ · u = 0,

(1)

where u is the fluid velocity vector; p̄ is the pressure deviation from hydrostatic pressure; ν is

the kinematic viscosity coefficient; g is the vector of gravitational acceleration; χ is the thermal
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diffusivity coefficient; D is the diffusion coefficient; α is the parameter of thermal diffusion, ρ0 is

the mass density.

System (1) admits the following operator −∂z + ρ0gx(β1A + β2B)∂p + A∂T + B∂C where

A > 0 and B are constants. Then invariant solutions of this problem have the following form [1]

u = (u(t, x, y); v(t, x, y);w(t, x, y));

p = −(β1A+ β2B)gρ0xz + q(t, x, y);

T = −Az + θ(t, x, y), C = −Bz + c(t, x, y),

(2)

and functions u, v, w, q, θ, c satisfy the system of differential equations with three independent

variables x, y, t.

In system (1) with conditions (2) we introduce the dimensionless variables

u =
ν

h
PrG2ũ, v =

ν

h
PrG2ṽ, w =

ν

h
PrGw̃, q = ρ0β1gAh

2PrGq̃,

θ = AhPrGθ̃, c =
Aβ1hPrGc̃

β2
,

(3)

where h is the characteristic size, G is the Grashof number, Pr is the Prandtl number, S is

the Schmidt number, ε1 and ε are thermal diffusion parameters. These dimensionless variables

satisfy the following relations

G =
Aβ1gh

4

ν2
, P r =

ν

χ
, S =

ν

D
, ε = −αβ2

β1
, ε1 =

χβ2B

Dβ1A
.

Substituting (2) and (3) into (1), we obtain the system of equation (“wave” symbol is omitted

for convenience)

ut + λ(uux + vuy) = −qx + ∆2u+ θ + c;

vt + λ(uvx + vvy) = −qy + △2v;

wt + λ(uwx + vwy) = −x+ △2w;

ux + vy = 0, P rθt + λPr(uθx + vθy) − w = △2θ;

Sc ct + λSc(ucx + vcy) − ε1w = △2c− ε△2θ,

(4)

where λ = PrG2; △2 is the Laplace operator, △2 = ∂2/∂x2 + ∂2/∂y2.

Further we consider the creeping motion of the binary mixture in a tube with rectangular

cross-section when λ = 0 in system (4). Geometry of the flow is shown in Fig. 1.

System of equation (4) is transformed into the system

ut = −qx + ∆2u+ θ + c, vt = −qy + △2v;

ux + vy = 0;
(5)

wt = −x+ △2w; (6)

Prθt − w = △2θ; (7)

S ct − ε1w = △2c− ε△2θ. (8)

The viscous friction force arises when fluid moves relative to a body at rest. This force is

directed oppositely to the velocity of motion. This is phenomenon of tangential forces that hinder
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Fig. 1 Geometry of the flow

the movement of fluid near solid wall. On the boundary Γ = Γ1 ∪ Γ2 ∪ Γ3 ∪ Γ4 we set shear

stresses [4]
∂u

∂τj

∣∣∣∣
Γ

= 0,

where Γ1 : x = a, Γ2 : y = b, Γ3 : x = −a, Γ4 : y = −b are solid walls.

Also on solid walls we set temperature

T
∣∣∣
Γ

= T0

and the mass flux through the boundary is zero:

(
∂c

∂n
+DT

∂T

∂n

)∣∣∣∣
Γ

= 0,

where DT is the thermal-diffusion coefficient, α = −DT /T0D, and T0 is the characteristic tem-

perature.

Let us take h = a then on Γ1 we get x = 1; on Γ2: y = ba−1 = δ; on Γ3 : x = −1; on Γ4 :

y = −δ. We have the following boundary conditions:

uy(t, 1, y) = uy(t,−1, y) = uy(t, x, δ) = uy(t, x,−δ) = 0,

vx(t, 1, y) = vx(t,−1, y) = vx(t, x, δ) = vx(t, x,−δ) = 0;
(9)

w(t, 1, y) = w(t,−1, y) = w(t, x, δ) = w(t, x,−δ) = 0; (10)

θ(t, 1, y) = θ11(t, y), θ(t,−1, y) = θ12(t, y),

θ(t, x, δ) = θ21(t, x), θ(t, x,−δ) = θ22(t, x);
(11)

(cx − εθx)
∣∣
x=±1

= 0, (cy − εθy)
∣∣
y=±δ

= 0. (12)

The continuity equation ux = −vy allows us to introduce a stream-function ψ(t, x, y):
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u = ψy, v = −ψx. (13)

Taking into account (13), equation (5) and boundary conditions (9), we write

∂

∂t
△2ψ = △2△2ψ + θy + cy,

ψyy(t, 1, y) = ψyy(t,−1, y) = ψyy(t, x, δ) = ψyy(t, x,−δ) = 0,

ψxx(t, 1, y) = ψxx(t,−1, y) = ψxx(t, x, δ) = ψxx(t, x,−δ) = 0.

(14)

To complete formulation of the problem we use initial conditions and compatibility conditions.

Then the stream-function satisfy the following conditions

ψ(0, x, y) = ψ0(x, y), (15)

ψ0yy(1, y) = ψ0yy(−1, y) = ψ0yy(x, δ) = ψ0yy(x,−δ) = 0,

ψ0xx(1, y) = ψ0xx(−1, y) = ψ0xx(x, δ) = ψ0xx(x,−δ) = 0.

Conditions for the third component of the velocity vector take the form

w(0, x, y) = w0(x, y), (16)

w0(1, y) = w0(−1, y) = w0(x, δ) = w0(x,−δ) = 0.

For functions θ(t, x, y) and c(t, x, y) we have

θ(0, x, y) = θ0(x, y), (17)

θ0(1, y) = θ11(y), θ0(−1, y) = θ12(y), θ0(x, δ) = θ21(x), θ0(x,−δ) = θ22(y).

c(0, x, y) = c0(x, y), (18)

c0x(1, y) − εθ0x(1, y) = 0, c0x(−1, y) − εθ0x(−1, y) = 0,

c0y(x, δ) − εθ0y(x, δ) = 0, c0y(x,−δ) − εθ0y(x,−δ) = 0.

2. The solution of non-stationary problem

Let us consider equation (6) with boundary condition (10) and initial condition (16).

We solve the first boundary value problem by the method of separation of variables [5]. We

seek a solution in the form of a double series

w(t, x, y) =
∞∑

n,k=0

Xk(x)Yn(y)Tkn(t).

Function x is also represented in the form of a series

x =

∞∑

n,k=0

Xk(x)Yn(y)fkn(t),
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The coefficient fkn(t) is defined later. After substituting the series into equation (6) we obtain

T ′
nk + fnk
Tkn

=
X ′′
k

Xk
+
Y ′′
n

Yn
, k, n ∈ N,

where

X ′′
k

Xk
+
Y ′′
n

Yn
= −λkn, µk + νn = λkn.

The eigenvalues µk and νn can be found from Sturm-Liouville problem for Xk(x) and Yn(y):

Xk(x) = sin(πkx), µk = (πk)2,

Yn(y) = sin
(πn
δ
y
)
, νn =

(πn
δ

)2

.

Now we need to solve the Cauchy problem

T ′
kn + fkn = −KTkn, Tkn(0) = Kw0

,

where K = π2δ−2(δ2k2 + n2) and coefficient Kw0
follows from the Fourier sine series expansion

for the function w0(x, y):

Kw0
=

1

‖w0‖

∫∫

Γ

w0(x, y) sin(πkx) sin
(πn
δ
y
)
dxdy.

Coefficients ‖w0‖ and fnk are ‖w0‖ =

(∫ 1

−1

∫ δ

−δ

w2
0dxdy

)1/2

,

fnk =
√

3(2
√
δ)−1

∫ 1

−1

∫ δ

−δ

x sin(πkx) sin
(πn
δ
y
)
dxdy = 4

√
3δπ−2(nk)−1((−1)n − 1)(−1)k.

Finally, the solution of problem (6), (10), (16) has the from

w(t, x, y) =

∞∑

n,k=0

((
Kω0

+
fnk
K

)
exp(−Kt) − fnk

K

)
sin(πkx) sin

(πn
δ
y
)
.

Function θ(t, x, y) is the solution of the boundary value problem (7), (11), (17). The solution

can be obtained with the use of the Green’s function as [6]

θ(t, x, y) =
1

Pr

∫ t

0

∫ 2

0

∫ 2δ

0

w(τ, ξ, η)G(t− τ, x+ 1, y + δ, ξ, η)dξdηdτ+

+

∫ 2

0

∫ 2δ

0

θ0(ξ, η)G(t, x+ 1, y + δ, ξ, η)dηdξ+

+
1

Pr

∫ t

0

∫ 2δ

0

θ12(η, τ)

(
∂

∂ξ
G(t− τ, x+ 1, y + δ, ξ, η)

)∣∣∣∣∣
ξ=0

dηdτ−

− 1

Pr

∫ t

0

∫ 2δ

0

θ11(η, τ)

(
∂

∂ξ
G(t− τ, x+ 1, y + δ, ξ, η)

)∣∣∣∣∣
ξ=2

dηdτ+

+
1

Pr

∫ t

0

∫ 2

0

θ22(ξ, τ)

(
∂

∂η
G(t− τ, x+ 1, y + δ, ξ, η)

)∣∣∣∣
η=0

dξdτ−

− 1

Pr

∫ t

0

∫ 2

0

θ21(ξ, τ)

(
∂

∂η
G(t− τ, x+ 1, y + δ, ξ, η)

)∣∣∣∣
η=2δ

dξdτ.
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The Green’s function is written as

G(t, x, y, ξ, η) =
1

δ

∞∑

k,n=0

F (x, y, ξ, η) exp

(
− Kt

4Pr

)

where F (x, y, ξ, η) = sin

(
1

2
πkx

)
sin

(
1

2
πkξ

)
sin

(
1

2δ
πny

)
sin

(
1

2δ
πnη

)
.

Let us consider the solution of boundary value problem (8), (12), (18). Because we have

inhomogeneous boundary conditions for the function c(t, x, y), we introduce new unknown func-

tion c(t, x, y) = c̃(t, x, y) + εθ(t, x, y). Now we have boundary value problem with zero boundary

conditions for c̃(t, x, y):

Sc̃t = c̃xx + c̃yy − Sεθt + ε1w,

c̃x
∣∣
x=±1

= 0, c̃y
∣∣
y=±δ

= 0,

c̃(0, x, y) = c0(x, y) − εθ0(x, y).

(19)

Function −Sεθt + ε1w is known.

In order to solve problem (19) we divide it into two subproblems. The first problem is

homogeneous problem with nonzero initial conditions. The second problem is inhomogeneous

problem with zero initial conditions. The solution of these boundary value problems can be

obtained by the method of separation of variables. Finally, the solution of problem (8), (12),

(18) has the form:

c(t, x, y) =

∞∑

k,n=0

(
Kc0θ0 exp

(
−Kt
Sc

)
+
Kwθ

K

(
1 − exp

(
−Kt
Sc

)))
cos(πkx) cos

(πn
δ
y
)

+ εθ,

where Kc0θ0 are coefficients of Fourier cosine series expansion for initial condition (19), Kwθ are

coefficients of Fourier cosine series expansion for the known function on the right-hand side of

equation (19).

It only remains for us to solve boundary value problem (14), (15) to find stream-function.

The stream-function is represented in the following form:

ψ(t, x, y) =
∞∑

k,n=0

ψkn(t) sin(πkx) sin
(πn
δ
y
)
.

Let us notice that functions sin(πkx) and sin(πnδ−1y) are orthogonal on −1 6 x 6 1,

−δ 6 y 6 δ, that is,

∫ 1

−1

∫ δ

−δ

sin(πkx) sin(πnδ−1y)dxdy = 0.

After substituting the expression for the stream-function in equation (14) we obtain function

ψkn(t) and the solution takes the form:

ψ(t, x, y) =
∞∑

k,n=0

(
−Kθc

K2
+

(
Kθc

K2
+Kψ0

)
exp(−Kt)

)
sin(πkx) sin

(πn
δ
y
)
,

where Kcθ are coefficients of Fourier sine series expansion for the known function on the right-

hand side of equation (14), Kψ0
are coefficients of Fourier sine series expansion for initial condi-

tion (15).
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3. The solution of stationary problem

Now we consider stationary problem. One needs to solve the system of equations

△2△2ψ + θy + cy = 0,

−x+ △2w = 0,

−w = △2θ,

−ε1w = △2c− ε△2θ.

(20)

with boundary conditions (5)– (8), (10)– (12), (14)

ψyy(±1, y) = ψyy(x,±δ) = 0,

ψxx(±1, y) = ψxx(x,±δ) = 0,

w(±1, y) = w(x,±δ) = 0,

θ(±1, y) = θ1,21 (y), θ(x,±δ) = θ1,22 (x),

(cx − εθx)
∣∣
x=±1

= 0, (cy − εθy)
∣∣
y=±δ

= 0.

(21)

Problem (20), (21) is solved by the method of separation of variables with the use of Green’s

function [6]. The solution has the form

w(x, y) = −
∞∑

k,n=0

fnk
K

sin(πkx) sin
(πn
δ
y
)
,

θ(x, y) =

= −
∫ 2

0

∫ 2δ

0

w(ξ, η)G1(x+ 1, y + δ, ξ, η)dξdη +

∫ 2δ

0

θ12(η)

(
∂

∂ξ
G1(x+ 1, y + δ, ξ, η)

)∣∣∣∣
ξ=0

dη−

−
∫ 2δ

0

θ11(η)

(
∂

∂ξ
G1(x+ 1, y + δ, ξ, η)

)∣∣∣∣∣
ξ=2

dη +

∫ 2

0

θ22(ξ)

(
∂

∂η
G1(x+ 1, y + δ, ξ, η)

)∣∣∣∣
η=0

dξ−

−
∫ 2

0

θ21(ξ, τ)

(
∂

∂η
G1(x+ 1, y + δ, ξ, η)

)∣∣∣∣
η=2δ

dξ,

c(x, y) = εθ +

∞∑

k,n=0

Kω

K
cos(πkx) cos

(πn
δ
y
)
,

ψ(x, y) = −
∞∑

k,n=0

Kθc

K2
sin(πkx) sin

(πn
δ
y
)
,

where G1(x, y, ξ, η) =
4

δ

∞∑

k,n=0

1

K
F (x, yξ, η) and Kw is Fourier cosine transformation for the

function ε1w.
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4. Convergence of the non-stationary solution to the sta-

tionary solution

Let us consider convergence of the solution of non-stationary problem to the solution of

stationary problem. Let us denote the solution of stationary problem as ws, θs, cs, andψs.

It is easy to see that when t −→ ∞ function w(t, x, y) tends to function ws(x, y). The

difference between w(t, x, y) and ws(x, y) is

|ws − w| =

=

∣∣∣∣∣∣

∞∑

n,k=0

((
Kω0

+
fnk
K

)
exp(−Kt) − fnk

K

)
sin(πkx) sin

(πn
δ
y
)

+

+

∞∑

k,n=0

fnk
K

sin(πkx) sin
(πn
δ
y
)
∣∣∣∣∣∣
6

6

∞∑

n,k=0

∣∣∣∣
(
Kw0

+
fnk
K

)
exp(−Kt)

∣∣∣∣−−−−→
t−→∞

0.

Let us consider functions c(t, x, y) and cs(x, y). The difference between these functions depend

on the difference between Sεθt + ε1w and ε1w. For stationary problem θt = 0, that is, (Scεθt +

ε1w)
∣∣
θt=0

= ε1w. Then we have

|cs − c| 6

∞∑

n,k=0

∣∣∣∣
1

K
(Kωθ −Kω)

∣∣∣∣→ 0.

Therefore, the solution of non-stationary problem c(t, x, y) converges to the solution of sta-

tionary problem.

In a similar way, we can show the convergence of function ψ(t, x, y) to function ψ(x, y) when

t→ ∞.

|ψs − ψ| 6

∞∑

n,k=0

∣∣∣∣
Kθc

K2
− Kθc

K2
+

(
Kθc

K2
+Kψ0

)
exp(−Kt)

∣∣∣∣−−−→
t→∞

0.

Now we prove convergence of function θ(t, x, y) to function θs(x, y) with the use of the max-

imum principle [5]. If T = θ − θs then we obtain from equation (7) and the third equation (20)

the following equation

Tt =
1

Pr
∆2T +

1

Pr
(ω − ωs).

Boundary conditions for this equation follows from (11) and (21):

T (t,±1, y) = θ11,2(t, y) − θ11,2(y), T (t, x,±δ) = θ21,2(t, x) − θ21,2(x),

Initial condition is T (0, x, y) = θ0(x, y) and we should also add the compatibility conditions.

According to the maximum principle, the maximum value of the function T (t, x, y) is achieved

on the boundary:

|T (t, x, y)| 6 max
t∈[0,T ]

(T (t, 1, y); T (t,−1, y); T (t, x, δ); T (t, x,−δ); ω − ωs; θ0).
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If t → ∞ then T (t,±1, y) → 0, T (t, x,±δ) → 0, as θ1j (t, y) → θ1j (y), θ
2
j (t, x) → θ2j (x),

j = 1, 2. It was proved earlier that ω − ωs → 0. It follows from compatibility condition that

θ0 → 0. Therefore, T (t, x, y) → 0 and we proved that |θ − θs|−−−→t→∞
0.

Similar result has been obtained in the case of creeping motion in a horizontal cylindrical

tube [1].
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О ползущем движении бинарной смеси в трубе
прямоугольного сечения

Александра Е.Силаева

В работе дана постановка задачи движения бинарной смеси в трубе прямоугольного сечения.

Получены точные решения стационарной и нестационарной задач в виде рядов. Доказано, что с

ростом времени решение выходит на стационарный режим.

Ключевые слова: бинарная смесь, стационарная задача, нестационарная задача, ползущие реше-

ния.
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