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Well-known method of the construction of finite projective translation planes (analogously, semifield

planes) uses their correspondence with quasifields (resp., semifields). We distinguish certain questions on

the structure of any finite quasifield (possible maximal subfields, the property of cyclicity of multiplicative

loop of non-zero elements and possible orders of elements). In the present paper we discover some

anomalous properties of finite quasifields of small even orders.
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A ring S = 〈S,+, ◦〉 with the identity e 6= 0 is said to be a semifield (or "quasitelo", according
to [1, II. 6.1]), if S∗ = (S \ {0}, ◦) is a loop, i.e., for any a ∈ S∗ and b ∈ S each equation a ◦x = b
and y ◦ a = b is uniquely solvable in S. For finite S the weakening of two-sided distributivity
to one-sided one gives a quasifield [2, 3]. It is well-known that there exists its unique minimal
subfield of a prime order p and hence the order |S| is p-primary.

The construction of proper (or not being a field) quasifields is closely related to construction
of non-Desargues projective translation planes and from the middle of last century it is based on
computer calculations. Unlike finite fields, finite quasifields and semifields are poorly studied [4].

By the order |v| of element v of the loop we shall call (generalizing the notion of the order of
a group element) the smallest integer m > 1 such that at least one m-th degree of element v at
all possible positioning of brackets shall be equal e; the order is infinite when such m does not
exist. The set of orders of all elements of a loop is called a spectrum.

For a finite proper quasifield the first author wrote down the following questions.

(A) Enumerate maximal subfields and their possible orders.

(B) What loop spectrums S∗ of finite semifields and quasifields are possible ?

(C) Enumerate finite quasifields, in particular, semifields where the loop S∗ is not singly-
generated.

It remains open still the hypothesis of Wene on right primitive of semifield of order > 32
( [5, 6]): Is it true that the right-ordered degrees of a fixed element give all elements in S∗? See
also N.D.Podufalov [7] and his questions 9.43, 10.48, 11.76, 11.77 and 12.66 in [8].

Smallest even orders of non-Desargues projective semifield planes and translation planes are
the same (unlike odd orders) and they are equal to 16, by virtue of [9] and [10]. Such planes are
enumerated in [11–13] (see also [14, 15]), and of order 32 — in [12, 16]. Up to isotopisms, corre-
sponding semifields and quasifields exhaust all ones of the same orders. For their P.K.Shtukkert
have studied the issues (A)–(C) in the case of semifields, see [17] and Section 2 below. In the
present paper we use the Kleinfeld’s classification of semifields of order 16, up to isomorphisms.
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According to [11], the number of isotopic classes and the number of isomorphic classes of
proper semifields of order 16 is equal to 2 and 23, respectively. Theorems 2.1, 2.2 and Tab. 4 in
Section 2 solve questions (A)–(C) for all semifields of order 16. Note that up to isomorphisms
and anti-isomorphisms the number of such semifields is equal to 16. Using [16] we show that
there exists a quasifield Q of order 16, which are the set-theoretic union of its 7 subfields of
order 4; in particular, the loop Q∗ is not singly-generated and its spectrum is {1, 3} (Theorem
3.3 in Section 3).

Anomalous properties of proper semifields of order 32 are considered in Section 4.

1. The tie of quasifields and translation planes

The projective plane is defined as a set of points with certain subsets, which are called
lines [18, Section 20.1]; ibid see definition of the plane order.

For the construction of a translation plane π of rank n it must be chosen a n-dimensional
linear space W over a field F (coordinatized set), the outer direct sum of two copies of W ,

V = W ⊕ W = {(x, y) | x, y ∈ W},

and the spread µ of additive group (V,+) such that V = M ⊕ N for any M 6= N from µ. By
definition, 1-dimensional subspaces in V are points of projective translation plane π = π(V, µ),
subgroups from µ and their cosets are lines of π and, also, different cosets on the same subgroup
have a unique general point (∞) and all such singular points give a singular line [∞] of π, [2].

Recall that the spread of an additive group is a set of its subgroups (components of spread),
which have trivial pairwise intersections and their set-theoretic union gives whole group. The
components of our spread µ are n-dimensional subspace in V [3]. It is well-known the following
lemma [19], where

V (σ) = {(v, vσ) | v ∈ W} (σ ∈ GL(W )), V (0) = (W, 0), V (∞) = (0,W ).

Lemma 1.1. Let us assume that V (0), V (∞) ∈ µ. Then:
а) if M ∈ µ and M 6= V (0), V (∞), then M = V (σ) at unique σ ∈ GL(W ) and, in particular,

µ = {V (σ) | σ ∈ R∗ ∪ {0}} ∪ {V (∞)} at R∗ = {σ ∈ GL(W ) | V (σ) ∈ µ};

b) if u, v ∈ W \ {0}, then uσ = v at unique σ ∈ R∗;

c) if τ, ρ ∈ R∗ and τ 6= ρ, then τ − ρ ∈ GL(W ).

Conversely if a subset R∗ in GL(W ) satisfies b) and c), then µ = {V (0), V (∞)}∪{V (σ) | σ ∈
R∗} is a spread of the group (V,+) such that V = M ⊕ N for any M 6= N from µ.

Taking into account b) there exists a bijective mapping θ : W → R∗ ∪ {0} such that

θ(v) = σ (v ∈ W \ {0}, uσ = v), θ(0) = 0.

The totality R of a subset R∗ in GL(W ) with the identity satisfying b), c) and the null map is
said to be a regular set of plane π. Writing the vectors from W as coordinate rows and setting

x ◦ y := x · θ(y) (x, y ∈ W ) (1)

we obtain a quasifield W = (W,+, ◦). If W is a semifield then π is called a semifield plane.

Definition 1.1. Quasifields 〈S1,+, ◦〉 and 〈S2,+, ·〉 are called isotopic, if there exist isomor-
phisms F,G,H of additive groups S1 → S2 such that

xF · yG = (x ◦ y)H (x, y ∈ S1).
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It is well-known the following lemmas.

Lemma 1.2. (Albert, 1960) Two semifield planes are isomorphic if and only if the corre-
sponding semifields are isotopic.

Lemma 1.3. The projective translation plane is Desargues if and only if the corresponding
quasifield is a field.

Lemma 1.4. Coordinatized set is a field if and only if the regular set is subfield of a ring M(n, F )
of all n × n-dimentions matrixes over F.

We now consider the structure of semifield planes of order 16. Any such plane π can be
coordinatizate by 4-dimension space W over Z2. Choosing a regular set R = θ(W ) with the
Z2-linear map θ : W → M(4, Z2), which is identical onto (1, 0, 0, 0). When (W,+, ◦) is a finite
field with multiplication (1), by lemma 1.4, R is a subfield of order 16 in the ring M(4, Z2). Then
R∗ is a cyclic group of order 15 which is generated by a matrix A ∈ GL(4, 2) with irreducible
characteristic polynomial over Z2; for construction of such matrices we may use the natural
normal form of matrices [20, Section 15.5]. In general we have

θ(x1, x2, x3, x4) = x1 · E + x2 · B + x3 · C + x4 · D (B,C,D ∈ GL(4, Z2)).

By computer calculations we obtain exactly 19936 different sets {B,C,D} in which 336 cases give
a field R = θ(W ). In other cases any set {B,C,D} uniquely defines a non-Desargues semifield
plane π (together with R) and a semifield W with multiplication (1). All non-Desargues semifield
planes of rang 2 over GF (4) are pairwise isomorphic [21]. In fact by methods [21] we may show
that the enumeration of nonisomorphic non-Desargues semifield planes gives two cases:

θ(x, y, z, w) =









x y z w
w x + w z + w y + z + w
z z + w x + y + w y + w
y z y + w x









,

θ(x, y, z, w) =









x y z w
w x + z z + w y + w
z w x + y + z + w y + z + w

y + z + w z y + z x + w









(x, y, z, w ∈ Z2).

Taking into account (1) and lemma 1.2, we find, up to isotopism, exactly 2 proper semifields of
order 16 with the multiplication, respectively,

(a, b, c, d) ◦ (u, v, z, w) = (au + bv + cz + dw, av + bu + bw + cz + cw + dz,

az + bz + bw + cu + cv + cw + dv + dw, aw + bv + bz + bw + cv + cw + du); (2)

(a, b, c, d) ◦ (u, v, z, w) = (au + bv + cz + dv + dz + dw, av + bu + bz + cw + dz,

az + bz + bw + cu + cv + cz + cw + dv + dz, aw + bv + bw + cv + cz + cw + du + dw). (3)

We now obtain the following theorem which was earlier proved also with computer calculations,
see E.Kleinfeld [11] and D.Knuth [12].

Theorem 1.1. There exist only 3 nonisomorphic semifield planes of order 16.

In the investigation of any quasifield the impotent role play the left, middle and right kernels.
For any semifield S it is, respectively,

Nl(S) = {x ∈ S | x ◦ (y ◦ z) = (x ◦ y) ◦ z, ∀y, z ∈ S},

Nm(S) = {y ∈ S | x ◦ (y ◦ z) = (x ◦ y) ◦ z, ∀x, z ∈ S},

Nr(S) = {z ∈ S | x ◦ (y ◦ z) = (x ◦ y) ◦ z, ∀x, y ∈ S}.
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2. The construction of semifields of order 16

In 1960 E.Kleinfeld [11] obtained the classification of proper semifields of order 16, up to
isomorphisms. It had been shown that one isotopic class has 18 pairwise nonisomorphic semifields
V1, V2, · · · , V18, and second has 5 pairwise nonisomorphic semifields T24, T25, T35, T45, T50.

Note that the constructed semifields with the multiplication (2) and (3) in Section 2 are
isomorphic to semifields V7 and T25, respectively. We now investigate their structure.

Theorem 2.1. Let S be the semifield with multiplication (2), i.e., S ≃ V7. Then:

(i) the minimal subfield Z2e of S is maximal;

(ii) the loop S∗ is generated by each nonidentity element;

(iii) the spectrum of loop S∗ is {1, 4, 5, 6}.

Proof. Firstly we find Cayley’s table of loop multiplication S∗, see Tab. 1. (In the table
multiplications on identity element (1, 0, 0, 0) is omitted.)

Further we denote by gk, the k−th degree (k > 1) of element g of semifield with the right
(or the right-normalized) positioning of brackets. The Tab. 1 shows that the right k-th degrees
(1 6 k 6 15) of each element

m1 = (0, 1, 1, 1), m2 = (1, 1, 0, 0), m3 = (1, 1, 0, 1), m4 = (1, 1, 1, 0)

give all elements of the loop S∗. In particular, each element mi generates loop S∗ and (mi)
15 = e.

Since for the element h = (0, 0, 0, 1) all products of length < 5 differ from e and h2 · h3 = e,
so |h| = 5. On the other hand, for the element m1 all possible products of length 6 5 also do not
equal e and m2

1
· (m1 · (m1)

3) = e. Therefore |m1| = 6. Analogously we show that any element
of the loop S∗ has the order 6 6. The orders of all elements of the loop S∗ are given in Tab. 2.

In particular, the analog of group-theoretic Lagrange’s theorem is not satisfied even for the
orders of elements of the loop S∗. Also we consider a table of left and right invertible elements.

The Tabs. 1 and 3 show that any nonidentity element of the loop S∗ is a suitable degree of
some element of mi and, therefore, it generates the loop S∗. In particular, S∗ is the right-cyclic
or the right-primitive in terms of [6].

It is clear that for each element of any subfield left and right invertible elements are coincide.
In according to Tabs. 2 and 3, such nonidentity elements are only elements (1,1,0,0) and (1,1,1,0)
of order > 3. Consequently, the semifield S has no a subfield of order > 2. 2

For the semifield with multiplication (3) it is true

Theorem 2.2. Let S be the semifield with multiplication (3),i.e., S ≃ T25. Then:

(i) there exist exactly 2 maximal subfields H1 and H2, and |H1| = |H2| = 4;

(ii) the loop S∗ is generated by each element from S \ {H1 ∪ H2};

(iii) the spectrum of loop S∗ is {1, 3, 4, 5, 6}.

In fact, it was obtained the analogous structural description for all 23 proper Kleinfeld’s
semifields of order 16. It seems, up to isomorphisms and antiisomorphisms, there exist only 16
of proper semifields of order 16. More exactly it is proved

Theorem 2.3. Any proper semifield of order 16 up to isomorphisms is either one of 7 semi-
fields V1, V3, V4, V8, V11, V15, T25 or one of opposite semifields to them V6, V7, V5, V9, V14, V6, T50,
respectively, or one of 9 semifields V2, V10, V12, V13, V17, V18, T21, T35, T45.

For any semifield W the opposite semifield is denoted by W op. The following Tab. 4 gives
the structure of proper semifields of order 16 up to isomorphisms and antiisomorphisms.
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Table 1. Loop S∗ with multiplication

(0,0,0,1) (0,0,1,0) (0,0,1,1) (0,1,0,0) (0,1,0,1) (0,1,1,0) (0,1,1,1)

(0,0,0,1) (0,0,1,0) (0,1,0,0) (0,1,1,0) (1,0,1,0) (1,0,0,0) (1,1,1,0) (1,1,0,0)

(0,0,1,0) (0,1,1,1) (1,1,0,0) (1,0,1,1) (0,0,1,1) (0,1,0,0) (1,1,1,1) (1,0,0,0)

(0,0,1,1) (0,1,0,1) (1,0,0,0) (1,1,0,1) (1,0,0,1) (1,1,0,0) (0,0,0,1) (0,1,0,0)

(0,1,0,0) (1,1,1,1) (0,0,1,1) (1,1,0,0) (0,0,0,1) (1,1,1,0) (0,0,1,0) (1,1,0,1)

(0,1,0,1) (1,1,0,1) (0,1,1,1) (1,0,1,0) (1,0,1,1) (0,1,1,0) (1,1,0,0) (0,0,0,1)

(0,1,1,0) (1,0,0,0) (1,1,1,1) (0,1,1,1) (0,0,1,0) (1,0,1,0) (1,1,0,1) (0,1,0,1)

(0,1,1,1) (1,0,1,0) (1,0,1,1) (0,0,0,1) (1,0,0,0) (0,0,1,1) (0,0,1,1,) (1,0,0,1)

(1,0,0,1) (0,0,1,1) (0,1,1,0) (0,1,0,1) (1,1,1,0) (1,1,0,1) (1,0,0,0) (1,0,1,1)

(1,0,1,0) (0,1,1,0) (1,1,1,0) (1,0,0,0) (0,1,1,1) (0,0,0,1) (1,0,0,1) (1,1,1,1)

(1,0,1,1) (0,1,0,0) (1,0,1,0) (1,1,1,0) (1,1,0,1) (1,0,0,1) (0,1,1,1) (0,0,1,1)

(1,1,0,0) (1,1,1,0) (0,0,0,1) (1,1,1,1) (0,1,0,1) (1,0,1,1) (0,1,0,0) (1,0,1,0)

(1,1,0,1) (1,1,0,0) (0,1,0,1) (1,0,0,1) (1,1,1,1) (0,0,1,1) (1,0,1,0) (0,1,1,0)

(1,1,1,0) (1,0,0,1) (1,1,0,1) (0,1,0,0) (0,1,1,0) (1,1,1,1) (1,0,1,1) (0,0,1,0)

(1,1,1,1) (1,0,1,1) (1,0,0,1) (0,0,1,0) (1,1,0,0) (0,1,1,1) (0,1,0,1) (1,1,1,0)

(1,0,0,1) (1,0,1,0) (1,0,1,1) (1,1,0,0) (1,1,0,1) (1,1,1,0) (1,1,1,1)

(0,0,0,1) (0,0,1,1) (0,1,0,1) (0,1,1,1) (1,0,1,1) (1,0,0,1) (1,1,1,1) (1,1,0,1)

(0,0,1,0) (0,1,0,1) (1,1,1,0) (1,0,0,1) (0,0,0,1) (0,1,1,0) (1,1,0,1) (1,0,1,0)

(0,0,1,1) (0,1,1,0) (1,0,1,1) (1,1,1,0) (1,0,1,0) (1,1,1,1) (0,0,1,0) (0,1,1,1)

(0,1,0,0) (1,0,1,1) (0,1,1,1) (1,0,0,0) (0,1,0,1) (1,0,1,0) (0,1,1,0) (1,0,0,1)

(0,1,0,1) (1,0,0,0) (0,0,1,0) (1,1,1,1) (1,1,1,0) (0,0,1,1) (1,0,0,1) (0,1,0,0)

(0,1,1,0) (1,1,1,0) (1,0,0,1) (0,0,0,1) (0,1,0,0) (1,1,0,0) (1,0,1,1) (0,0,1,1)

(0,1,1,1) (1,1,0,1) (1,1,0,0) (0,1,1,0) (1,1,1,1) (0,1,0,1) (0,1,0,0) (1,1,1,0)

(1,0,0,1) (1,0,1,0) (1,1,1,1) (1,1,0,0) (0,1,1,1) (0,1,0,0) (0,0,0,1) (0,0,1,0)

(1,0,1,0) (1,1,0,0) (0,1,0,0) (0,0,1,0) (1,1,0,1) (1,0,1,1) (0,0,1,1) (0,1,0,1)

(1,0,1,1) (1,1,1,1) (0,0,0,1) (0,1,0,1) (0,1,1,0) (0,0,1,0) (1,1,0,0) (1,0,0,0)

(1,1,0,0) (0,0,1,0) (1,1,0,1) (0,0,1,1) (1,0,0,1) (0,1,1,1) (1,0,0,0) (0,1,1,0)

(1,1,0,1) (0,0,0,1) (1,0,0,0) (0,1,0,0) (0,0,1,0) (1,1,1,0) (0,1,1,1) (1,0,1,1)

(1,1,1,0) (0,1,1,1) (0,0,1,1) (1,0,1,0) (1,0,0,0) (0,0,0,1) (0,1,0,1) (1,1,0,0)

(1,1,1,1) (0,1,0,0) (0,1,1,0) (1,1,0,1) (0,0,1,1) (1,0,0,0) (1,0,1,0) (0,0,0,1)

Table 2. The orders of elements of the loop S∗

y (1,0,0,0) (0,0,0,1) (0,0,1,0) (0,0,1,1) (0,1,0,0) (0,1,0,1) (0,1,1,0) (0,1,1,1)

|y| 1 5 5 5 5 5 5 6

y (1,0,0,1) (1,0,1,0) (1,0,1,1) (1,1,0,0) (1,1,0,1) (1,1,1,0) (1,1,1,1)

|y| 6 5 4 6 6 5 4

3. Quasifields of order 16

Kleinfeld [11] classified quasifields of order 16 with kernel of order 4 using computer calcula-
tions. Also he noted: "The problem of determining all such Veblen-Wedderburn systems turns
out to be more difficult in the previous case and we abandon it in favor of determining all such
division rings".

U.Dempwolff and A.Reifart (see works [13, 16]) have completely classified translation planes
of order 16. Up to isomorphisms, there are exactly 8 planes and the number of classes containing
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Table 3. Right and left invertible elements in the loop S∗

The element The left invertible The right invertible
(1,0,0,0) (1,0,0,0) (1,0,0,0)
(1,1,0,0) (1,1,1,0) (1,1,1,0)
(1,1,1,0) (1,1,0,0) (1,1,0,0)
(0,0,0,1) (0,1,1,0) (0,1,0,1)
(0,0,1,0) (0,0,1,1) (0,1,1,1)
(0,1,0,0) (0,1,1,1) (1,0,1,1)
(0,0,1,1) (1,0,1,0) (0,0,1,0)
(0,1,0,1) (0,0,0,1) (1,0,0,1)
(0,1,1,0) (1,0,0,1) (0,0,0,1)
(1,0,0,1) (0,1,0,1) (0,1,1,0)
(1,0,1,0) (1,1,0,1) (0,0,1,1)
(0,1,1,1) (0,0,1,0) (0,1,0,0)
(1,1,0,1) (1,1,1,1) (1,0,1,0)
(1,0,1,1) (0,1,0,0) (1,1,1,1)
(1,1,1,1) (1,0,1,1) (1,1,0,1)

Table 4. The structure of nonisomorphic semifields of order 16

The number The number of

Semifield |Nl| of subfields The spectrum elements with equal The opposite

of order 4 of the loop left and right invertible semifield

V1 2 – {1, 4, 5} 1 V op
1

≃ V6

V2 2 1 {1, 3, 4, 5, 6} 3 V op
2

= V2

V3 2 – {1, 4, 5, 6} 3 V op
3

≃ V7

V4 2 1 {1, 3, 4, 5, 6} 3 V op
4

≃ V5

V8 2 2 {1, 3, 4, 5, 6} 7 V op
8

≃ V9

V10 2 1 {1, 3, 5, 6} 3 V op
10

= V10

V11 2 1 {1, 3, 4, 5, 6} 7 V op
11

≃ V14

V12 2 – {1, 4, 5, 6} 1 V op
12

= V12

V13 2 4 {1, 3, 5} 9 V op
13

= V13

V15 2 2 {1, 3, 4, 5} 7 V op
15

≃ V16

V17 2 1 {1, 3, 4, 5, 6} 3 V op
17

= V17

V18 2 2 {1, 3, 5, 6} 5 V op
18

= V18

T24 4 2 {1, 3, 4, 5, 6} 5 T op
24

= T24

T25 4 2 {1, 3, 4, 5, 6} 5 T op
25

≃ T50

T35 4 1 {1, 3, 4, 5, 6} 3 T op
35

= T35

T45 4 3 {1, 3, 5} 7 T op
45

= T45

semifield planes is 3. Regular sets of representatives of 5 other isomorphic classes of translation
planes are described in [16]. We write them in the following fixed order where O and E are zero
and identity matrices, respectively:
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





O, E,









0 0 0 1

1 0 1 0

1 1 1 1

1 0 0 1









,









0 0 1 0

0 0 1 1

1 0 1 0

1 1 0 1









,









0 0 1 1

1 0 0 1

0 1 0 1

1 1 1 0









,









0 1 0 0

1 1 0 0

1 0 1 1

0 1 1 0









,









0 1 0 1

0 1 1 0

0 1 0 0

1 0 1 1









,









0 1 1 0

1 1 1 1

0 0 0 1

0 0 1 1









,









0 1 1 1

0 1 0 1

1 1 1 0

0 1 0 0









,









1 0 0 1

1 1 1 0

1 1 0 1

1 0 0 0









,









1 0 1 0

0 1 1 1

1 0 0 0

1 1 0 0









,









1 0 1 1

1 1 0 1

0 1 1 1

1 1 1 1









,









1 1 0 0

1 0 0 0

1 0 0 1

0 1 1 1









,









1 1 0 1

0 0 1 0

0 1 1 0

1 0 1 0









,









1 1 1 0

1 0 1 1

0 0 1 1

0 0 1 0









,









1 1 1 1

0 0 0 1

1 1 0 0

0 1 0 1















;







O, E,









0 0 0 1

0 1 1 0

1 1 0 1

0 1 0 0









,









0 0 1 0

0 0 1 1

1 0 1 0

1 1 0 1









,









0 0 1 1

1 1 0 1

0 1 1 1

1 0 1 1









,









0 1 0 0

1 1 1 1

0 0 1 1

0 1 0 1









,









0 1 0 1

1 1 0 0

1 1 1 0

1 1 1 1









,









0 1 1 0

1 1 1 0

1 0 0 1

0 0 1 0









,









0 1 1 1

0 1 0 1

0 1 0 0

1 0 1 0









,









1 0 0 1

1 0 1 0

1 1 1 1

0 1 1 1









,









1 0 1 0

0 1 1 1

1 1 1 1

0 1 1 1









,









1 0 1 1

0 0 0 1

0 1 0 1

1 0 0 0









,









1 1 0 0

1 0 0 1

0 0 0 1

1 1 1 0









,









1 1 0 1

0 0 1 0

1 1 0 0

0 1 1 0









,









1 1 1 0

1 0 0 0

1 0 1 1

1 0 0 1









,









1 1 1 1

1 0 1 1

0 1 1 0

0 0 1 1















;







O, E,









0 0 0 1

1 0 1 0

1 1 1 1

1 0 0 1









,









0 0 1 0

0 0 1 1

1 0 1 0

1 1 0 1









,









0 0 1 1

1 0 0 1

0 1 0 1

1 1 1 0









,









0 1 0 0

1 1 0 0

0 0 0 1

0 0 1 1









,









0 1 0 1

1 0 1 1

1 1 0 0

0 1 1 0









,









0 1 1 0

0 1 0 1

1 0 1 1

0 1 0 0









,









0 1 1 1

0 0 1 0

0 1 1 0

1 0 1 1









,









1 0 0 1

1 1 1 0

1 1 0 1

1 0 0 0









,









1 0 1 0

0 1 1 1

1 0 0 0

1 1 0 0









,









1 0 1 1

1 1 0 1

0 1 1 1

1 1 1 1









,









1 1 0 0

1 0 0 0

0 0 1 1

0 0 1 0









,









1 1 0 1

1 1 1 1

1 1 1 0

0 1 1 1









,









1 1 1 0

0 0 0 1

1 0 0 1

0 1 0 1









,









1 1 1 1

0 1 1 0

0 1 0 0

1 0 1 0















;







O, E,









0 0 0 1

1 1 1 1

1 1 0 0

1 0 0 1









,









0 0 1 0

0 0 1 1

1 0 1 0

1 1 0 1









,









0 0 1 1

0 1 1 0

0 1 0 0

1 1 1 1









,









0 1 0 0

1 1 0 0

0 1 1 1

1 1 1 0









,









0 1 0 1

1 0 1 0

1 0 1 1

0 1 1 1









,









0 1 1 0

0 0 0 1

1 1 1 1

0 1 0 1









,









0 1 1 1

1 1 1 0

0 0 1 1

0 0 1 0









,









1 0 0 1

0 0 1 0

0 1 1 0

1 0 0 0









,









1 0 1 0

0 1 1 1

1 0 0 0

1 1 0 0









,









1 0 1 1

1 0 0 1

1 1 1 0

0 1 1 0









,









1 1 0 0

1 0 0 0

1 1 0 1

1 0 1 1









,









1 1 0 1

1 0 1 1

0 0 0 1

0 0 1 1









,









1 1 1 0

1 1 0 1

0 1 0 1

1 0 1 0









,









1 1 1 1

0 1 0 1

1 0 0 1

0 1 0 0















;







O, E,









0 0 0 1

0 0 1 0

1 1 0 0

0 1 0 1









,









0 0 1 0

0 0 1 1

1 0 1 0

1 1 0 1









,









0 0 1 1

0 0 0 1

0 1 0 0

1 0 1 1









,









0 1 0 0

1 1 1 1

0 1 1 1

1 0 0 1









,
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







0 1 0 1

1 0 1 0

1 0 1 1

0 1 1 1









,









0 1 1 0

1 0 0 0

1 1 1 1

1 0 1 0









,









0 1 1 1

1 1 1 0

0 0 1 1

0 0 1 0









,









1 0 0 1

1 1 0 1

0 1 1 0

1 1 1 0









,









1 0 1 0

0 1 1 1

1 0 0 0

1 1 0 0









,









1 0 1 1

1 1 0 0

1 1 1 0

1 0 0 0









,









1 1 0 0

1 0 0 1

1 1 0 1

0 1 1 0









,









1 1 0 1

1 0 1 1

0 0 0 1

0 0 1 1









,









1 1 1 0

0 1 1 0

0 1 0 1

1 1 1 1









,









1 1 1 1

0 1 0 1

1 0 0 1

0 1 0 0















.

Determining for each of them on the multiplication on formula (1) we get pairwise nonisotopic
quasifields Qi, i = 1, 2, 3, 4, 5, respectively. For each of them we found the Cayley’s table of loop
Q∗

i and investigate questions (A)–(C).
The following two Theorems show structure of quasifields Q2 and Q5 which are most similar

properties to finite fields.

Theorem 3.1. The quasifield Q2 has a single maximal subfield H and |H| = 4. Each element
of Q2 \ H has order 5 and generates a loop Q∗

2
.

Unlike Q2, the quasifield Q5 has 3 subfields of order 4:

G1 = {0, e, (0, 0, 1, 0), (1, 0, 1, 0)}, G2 = {0, e, (0, 1, 0, 1), (1, 1, 0, 1)},

G3 = {0, e, (0, 1, 1, 1), (1, 1, 1, 1)}

Theorem 3.2. Every maximal subfield of the quasifield Q5 coincides with G1, G2 or G3 and
any element from Q∗

5
\ {G1 ∪ G2 ∪ G3} has the order 5 and generates loop Q∗

5
. In particular,

spectrum of loop Q∗

5
is {1, 3, 5}.

Quasifields Q1, Q3, Q4 has an essential anomalous properties; in particular, any element of
each of them is element from some subfield of order 4. One shows

Theorem 3.3. Any semifield Qi, i = 1, 3, 4, has 7 maximal subfields of order 4 and their
set-theoretic union coincides with Qi. In particular, spectrum of loop Q∗

i is {1, 3}.

Proof. Using the first regular set we define multiplication (1) in quasifield Q1. Further we find
Cayley’s table of loop Q∗

1
(multiplication on the identity element (1, 0, 0, 0) is omitted) (Tab. 5).

Similarly, we find a Cayley’s tables for loops Q∗

3
and Q∗

4
. Any element of each loop Q∗

i ,
i = 1, 3, 4, has identical left and right invertible elements as it show the Cayley’s tables. Also
each quasifield Qi has the following 7 subfields:

F1 = {0, e, (0, 0, 0, 1), (1, 0, 0, 1)}, F2 = {0, e, (0, 0, 1, 0), (1, 0, 1, 0)},

F3 = {0, e, (0, 0, 1, 1), (1, 0, 1, 1)}, F4 = {0, e, (0, 1, 0, 0), (1, 1, 0, 0)},

F5 = {0, e, (0, 1, 0, 1), (1, 1, 0, 1)}, F6 = {0, e, (0, 1, 1, 0), (1, 1, 1, 0)},

F7 = {0, e, (0, 1, 1, 1), (1, 1, 1, 1)}.

Clear that the set-theoretic union of 7 different subfields coincides with Qi. In particular, the
spectrum of loop Q∗

i is {1, 3}. 2

Remark 3.1. It was also established that there are quasifields of order 16 with kernel of order
4 having elements of order 3, which are not lie in the any subfield of order 4. For instance, these
are Kleinfeld’s quasifields S3 and S10.
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Table 5. Cayley’s table of loop Q∗

1

(0,0,0,1) (0,0,1,0) (0,0,1,1) (0,1,0,0) (0,1,0,1) (0,1,1,0) (0,1,1,1)

(0,0,0,1) (1,0,0,1) (1,1,0,1) (1,1,1,0) (0,1,1,0) (1,0,1,1) (0,0,1,1) (0,1,0,0)

(0,0,1,0) (1,1,1,1) (1,0,1,0) (0,1,0,1) (1,0,1,1) (0,1,0,0) (0,0,0,1) (1,1,1,0)

(0,0,1,1) (0,1,1,0) (0,1,1,1) (1,0,1,1) (1,1,0,1) (1,1,1,1) (0,0,1,0) (1,0,1,0)

(0,1,0,0) (1,0,1,0) (0,0,1,1) (1,0,0,1) (1,1,0,0) (0,1,1,0) (1,1,1,1) (0,1,0,1)

(0,1,0,1) (0,0,1,1) (1,1,1,0) (0,1,1,1) (1,0,1,0) (1,1,0,1) (1,1,0,0) (0,0,0,1)

(0,1,1,0) (0,1,0,1) (1,0,0,1) (1,1,0,0) (0,1,1,1) (0,0,1,0) (1,1,1,0) (1,0,1,1)

(0,1,1,1) (1,1,0,0) (0,1,0,0) (0,0,1,0) (0,0,0,1) (1,0,0,1) (1,1,0,1) (1,1,1,1)

(1,0,0,1) (1,0,0,0) (1,1,1,1) (1,1,0,1) (0,0,1,0) (1,1,1,0) (0,1,0,1) (0,0,1,1)

(1,0,1,0) (1,1,1,0) (1,0,0,0) (0,1,1,0) (1,1,1,1) (0,0,0,1) (0,1,1,1) (1,0,0,1)

(1,0,1,1) (0,1,1,1) (0,1,0,1) (1,0,0,0) (1,0,0,1) (1,0,1,0) (0,1,0,0) (1,1,0,1)

(1,1,0,0) (1,0,1,1) (0,0,0,1) (1,0,1,0) (1,0,0,0) (0,0,1,1) (1,0,0,1) (0,0,1,0)

(1,1,0,1) (0,0,1,0) (1,1,0,0) (0,1,0,0) (1,1,1,0) (1,0,0,0) (1,0,1,0) (0,1,1,0)

(1,1,1,0) (0,1,0,0) (1,0,1,1) (1,1,1,1) (0,0,1,1) (0,1,1,1) (1,0,0,0) (1,1,0,0)

(1,1,1,1) (1,1,0,1) (0,1,1,0) (0,0,0,1) (0,1,0,1) (1,1,0,0) (1,0,1,1) (1,0,0,0)

(1,0,0,1) (1,0,1,0) (1,0,1,1) (1,1,0,0) (1,1,0,1) (1,1,1,0) (1,1,1,1)

(0,0,0,1) (1,0,0,0) (1,1,0,0) (1,1,1,1) (0,1,1,1) (1,0,1,0) (0,0,1,0) (0,1,0,1)

(0,0,1,0) (1,1,0,1) (1,0,0,0) (0,1,1,1) (1,0,0,1) (0,1,1,0) (0,0,1,1) (1,1,0,0)

(0,0,1,1) (0,1,0,1) (0,1,0,0) (1,0,0,0) (1,1,1,0) (1,1,0,0) (0,0,0,1) (1,0,0,1)

(0,1,0,0) (1,1,1,0) (0,1,1,1) (1,1,0,1) (1,0,0,0) (0,0,1,0) (1,0,1,1) (0,0,0,1)

(0,1,0,1) (0,1,1,0) (1,0,1,1) (0,0,1,0) (1,1,1,1) (1,0,0,0) (1,0,0,1) (0,1,0,0)

(0,1,1,0) (0,0,1,1) (1,1,1,1) (1,0,1,0) (0,0,0,1) (0,1,0,0) (1,0,0,0) (1,1,0,1)

(0,1,1,1) (1,0,1,1) (0,0,1,1) (0,1,0,1) (0,1,1,0) (1,1,1,0) (1,0,1,0) (1,0,0,0)

(1,0,0,1) (0,0,0,1) (0,1,1,0) (0,1,0,0) (1,0,1,1) (0,1,1,1) (1,1,0,0) (1,0,1,0)

(1,0,1,0) (0,1,0,0) (0,0,1,0) (1,1,0,0) (0,1,0,1) (1,0,1,1) (1,1,0,1) (0,0,1,1)

(1,0,1,1) (1,1,0,1) (1,1,1,0) (0,0,1,1) (0,0,1,0) (0,0,0,1) (1,1,1,1) (0,1,1,0)

(1,1,0,0) (0,1,1,1) (1,1,0,1) (0,1,1,0) (0,1,0,0) (1,1,1,1) (0,1,0,1) (1,1,1,0)

(1,1,0,1) (1,1,1,1) (0,0,0,1) (1,0,0,1) (0,0,1,1) (0,1,0,1) (0,1,1,1) (1,0,1,1)

(1,1,1,0) (1,0,1,0) (0,1,0,1) (0,0,0,1) (1,1,0,1) (1,0,0,1) (0,1,1,0) (0,0,1,0)

(1,1,1,1) (0,0,1,0) (1,0,0,1) (1,1,1,0) (1,0,1,0) (0,0,1,1) (0,1,0,0) (0,1,1,1)

4. Semifields of order 32

In 2011 all translation planes of order 32 and their regular sets were described by U.Dempwolff
and R.Rockenfeller [16, 22]. (See also R. J.Walker [23].) There are 9 of these planes up to
isomorphisms including 5 semifield planes and a Desargues plane. A coordinatizing set here is a
5-dimentional space W over the field Z2.

Regular sets of non-Desargues semifield planes of order 32 are described in [16]. We denote
their by Ri (1 6 i 6 5), according to [17]. Let Pi (1 6 i 6 5) be a semifield, which corresponding
regular set Ri. In particular, using the regular set











x y z w s

z x + z + w y + w w + s w

z + s w x y + w z + w

z + w + s z + s s x + z + w y + z + s

y + z + w w + s y z x + z











and multiplication (1) we obtain the semifield P5. The following theorems are proved in [17].

Theorem 4.1. The minimal subfield Z2e in every semifield Pi, i = 1, 2, 3, 4, is maximal and
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each element of order > 1 generates the loop P ∗

i . The spectrum of loop P ∗

i is {1, 4, 5, 6, 7} for
i = 1, 2; it coincides with {1, 4, 5, 6, 7, 8} for i = 3 and with {1, 5, 6, 7, 8, 9} for i = 4.

Theorem 4.2. The semifield P5 has a single subfield H and |H| = 4. The spectrum of the loop
P ∗

5
is {1, 3, 4, 5, 6, 7, 8}. Each element of P5 \ H has order > 3 and generates the loop P ∗

5
.

Remark 4.1. Theorem 5.2 distinguishes a semifield of order 32 having anomalous property of
subfields (compared with finite fields): the semifield P5 of order 25 has a subfield of order 22.
The similar subfield S is constructed by Rua [6, Corollary 1]. In connection with the Wene’s
hypothesis he shows that the loop S∗ is not right primitive. However, it is possible to prove that
this loop S∗ is one generated.

The problem on the structure of semifields of order 32 is more difficult than the case of
semifields of order 16 which studied in Section 2. Up to isomorphism, there exist 2502 semifields
of order 32 and they form 6 isotopic classes corresponding to six of pairswise nonisomorphic
planes π(i) (0 6 i 6 5) [6]. This shows the following table from [6] (Tab. 6).

Table 6. Isomorphic classes of semifields of order 32

Plane π(0) π(1) π(2) π(3) π(4) π(5)

Left and right primitive 1 961 961 180 186 186

Only left primitive 0 0 0 6 0 7

Only right primitive 0 0 0 6 7 0

Neither L. nor R. prim. 0 0 0 1 0 0

This work was supported by the Russian Foundation Basic Research (project 12-01-00968).
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Вопросы строения квазиполей порядка 16 и 32

Владимир М. Левчук,

Полина К.Штуккерт

Известный метод построения конечных проективных плоскостей трансляций (аналогично, по-

луполевых плоскостей) основан на их соответствии с квазиполями (соответственно, с полупо-

лями) того же порядка. В статье рассматриваются вопросы структурного строения конечного

квазиполя (возможные максимальные подполя, свойства цикличности мультипликативной лупы

ненулевых элементов и возможные порядки элементов). Для конечных квазиполей малых четных

порядков найдены аномальные свойства.

Ключевые слова: проективная плоскость трансляций, квазиполе, полуполе, мультипликативная

лупа, порядки элементов.
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